
Construction of Abstract State Graphs with PVS

Susanne Graf and Hassen Saidi
VERIMAG I

{graf, saidi} @imag.fr

Abstract. In this paper, we propose a method for the automat ic construction of an
abstract s tate graph of an arbi t rary system using the Pvs theorem prover.
Given a parallel composition of sequential processes and a par t i t ion of the s ta te space
induced by predicates ~ i , ..., ~ on the program variables which defines an abstract
s tate space, we construct an abstract s tate graph, start ing in the abstract initial state.
The possible successors of a s tate are computed using the Pvs theorem prover by
verifying for each index i if ~ or - ~ i is a postcondition of it. This allows an abstract
s tate space exploration for arbi t rary programs.

keywords: abstract interpretation, state graph exploration, theorem proving

1 Introduction

I t is now widely accep ted t h a t a b s t r a c t i o n techniques are useful, and even nec-
essary for a successful ver i f ica t ion [Kur94 ,CGL94 ,G L 93 ,L G S+95 ,G ra 95 ,D a m96]
[DF95]. However , in case t h a t t he sys t em has an infini te s t a t e space, i t is dif-
f icult to mechanize the cons t ruc t ion of an a b s t r a c t sy s t em or s t a t e g raph . In
[GL93,KDG95] tools a re descr ibed which, given a sys t em (wi th var iab les on fi-
n i te domains), a set of abstract (boolean) variables, and an abstraction relation
relating the concrete and the abstract variables, construct automatically a cor-
responding abstract system, which then may be analyzed by any model-checker.
For the analysis of real-time and particular hybrid systems, there exist tools
for the abstract analysis by means of abstract interpretation methods based on
the use of polyhedra [HH95,DOTY96,HPR94] but they are restricted to systems
with linear assignments. In [Gra95,DF95], methods for the construction of ab-
stract state graphs of more general infinite state systems are proposed, but they
require an important amount of user intervention, as it is necessary to give for
any atomic operation of the system a corresponding abstract operation which
must be proven to be correct. The definition of abstract operations and the cor-
responding correctness proofs are in general rather time consuming, and in case
of modification of the system or non satisfaction of the desired properties on the
abstract system, some of them need to be modified.

We describe a method based on abstract interpretation which, from a theoret-
ical point of view, is similar to the splitting method proposed in [DGG93,Dam96]
but the weaker abstract transition relation we use, allows us to construct auto-
matically abstract state graphs paying a reasonable price.

We consider a particular set of abstract states: the set of the monomials on
a set of state predicates ~1, ...,qol. The successor of an abstract state ~ for a

1 Centre Equation, 2, Avenue de la Vignate, 38610 Grenoble-Gi~res

73

transition T of the program is the least monomial satisfied by all successors via
~- of concrete states satisfying ~ . This successor can be determined exactly if
for each predicate ~i it can be determined if ~i or - '~i is a postcondition of

for T. In order to do this, we use the P v s theorem prover [SOR93] and our
Pvs-interface defined in [GS96]. If the tactic used for the proof of the verifica-
tion conditions is not powerful enough, an upper approximation of the abstract
successor is constructed.

This allows us to compute upper approximations of the set of reachable states
which is sufficient for the verification of invariants. Also, for almost the same
price, an abstract state graph can be constructed: the expensive part of the algo-
r i thm is the computation of an abstract successor as it requires several validity
checks. Therefore, only relatively small state graphs can be constructed and the
additional cost for the storage of the transition relation is almost negligible. An
abstract state graph can be used for the verification of any property expressible
as a temporal logic formula without existential quantification over paths, due to
the results on property preservation [CGL94,LGS+95] using a model checker.

An abstract state graph represents also a relatively precise global control
graph of the system (the guards of the system are used for the construction
of the abstract state graph) which can be used for a backwards verification of
invariants as described in [GS96]. A global control graph allows us to obtain much
stronger structural invariants using the tool described in [BLS96,BBC+96] than
the initial presentation as a parallel composition of processes.
We have implemented a particular case of this method in our tool [GS96] where
only successors of canonical monomials are constructed: if a successor is not a
canonical monomial (that is some non-determinism is introduced by the abstrac-
tion), it is split into its canonical monomials. We have also interfaced the tool
with the state space analysis tool ALDEBARAN [FGK+96].

We have verified a bounded retransmission protocol developed by Philips
which has already been proven correct before using theorem provers [GvdP93]
[HSV94,HS96]. But for all these proofs powerful auxiliary invariants had to be
given by the user. Using our tool, this protocol can be verified without user
intervention.

2 C o n s t r u c t i o n o f a b s t r a c t s t a t e g r a p h s

2.1 Preliminary definitions

We consider systems which are parallel compositions of processes of the following
form, where we consider parallel composition by interleaving and synchronization
by shared variables as in Unity [CM88]:

Definition 1 (Processes).
Name : P
Declarations : Xl : T1, ...,xn : Tn

Transitions : 71, ..., 7p

Initial States : init

74

where P is a name, x~ are variables of type Ti (which may be any type definable
in Pvs). The list of variables declared in one process indicates which variables
are (intended to be) used in this process, but in fact all variable declarations are
global. Each transition ~-~ is a guarded assignment of the form

gi(Z) ,) ~ := assi('2) (1)
where gi(~) is a boolean Pvs-expression and assi('Z) a tuple of Pvs-expressions
ass~j of type Tj.

Semantics: As parallel composition is as in Unity, the state graph associated
with a parallel composition of processes is the state graph associated with a
single process having, as variables the union of the variables of all processes, as
transitions the union of the transitions of all processes, and as initial predicate
the intersection of the initial predicates of all processes. That means, parallel
composition is only useful for better readability and for the generation of struc-
tural invariants [BLS96]. Therefore, we consider here only systems with a single
process P. P defines a state graph S p = (Qp , R p , Ip)~ where

- Qp=TI•215
p ~ / if gi(q) --- false

- R p = ~Ji=l Ti, where r~(q) = (assi(q) o therwi se

denotes also the (partial) transition function associated with transition ~'i.
- IF = {q I init(q) _~ true} is the set of initial states.

P red ica t e t ransformers : Let us first recall briefly the notion of predicate
transformers associated with relations and their well-known characterization for
guarded command programs. In the sequel, we always consider sets of (concrete)
states to be represented by predicates ~o on the program variables (hence the
name predicate transformer).

Defini t ion 2 (predicate t ransformers) . Let R be a binary relation on a set
Q and ~ E P (Q) represent a subset of Q. Then,

- p o s t [R] (~ o) = ~q ' . R(q ' , q) ^ ~o(q')
- p - r - ~ [n] (~) = V q ' . (n (q , q') =* ~o(q'))

post[R](~o) defines the set of successors of ~o by R (strongest postcondition).
~[R](~o) represents the largest set of states such that all its successors satisfy
~o (weakest precondition). Preconditions for guarded commands ~'i of the form
(1) can be expressed without quantifiers:

- (2 . 1)

These predicate transformers have many interesting properties (see for example
[Sif82]), but here we need only the following:

post[R](~o) ~ ~0' iff ~o ~ ~Fe[R](~0') 2 (2.2)

Abs t r ac t semant ics of programs: All the results presented in this section
are an application of abstract interpretation [CC77].

2 this property is due to the fact that (pr-e[R](), post[R]()) forms a Galois connection

75

Defini t ion 3 (abstract s tate g r a p h s) . Let $ = (Q, u~-i, I) be the state graph
of a program, QA a lattice of abst ract states and (a : P(Q) ~4 QA,3' : QA ~4
:P(Q)) a Galois connection 3. S A = (QA, UTiA, I A) is an abstraction of $ iff

- x c

- Vi VQ a e QA . post[Ti](3'(QA)) C 3'(TA (QA))

The abstraction function a associates with any set of concrete states a corre-
sponding abst ract s tate (the abstract s tate space is a lattice where larger ab-
s tract states represent larger sets of concrete states). The concretisation function
3: associates with every abstract s tate the set of concrete s tate tha t it represents.
The above definition simply expresses tha t the abs t rac t initial s ta te represents
(at least) all concrete initial states, and the successor of any abst ract s tate QA
by some abst ract transit ion represents all successors of the set of concrete states
represented by QA by the corresponding concrete transition. Thus, every con-
crete execution sequence is represented by at least one abs t rac t one. Intuitively,
the smaller the represented superset of execution paths is, the more properties
are satisfied on the abst ract system.

2.2 A particular abstract ion scheme

Choice o f a n abstract state lattice: We consider an abst ract s tate lattice
QA induced by a set of predicates~l,..., ~t on the variables of p4. We choose as

abstract s tate space the lattice A4 of the 3 ~ + 1 monomials on abst ract boolean
variables 71, ..., 7~ 5. Notice that ,

- A4 forms a complete lattice with order relation ~ (implication), glb operator
A (conjunction,), lub operator LJ which is weaker than V (e.g. 71A~2 U 72A

- ~ 3 = 72). The set of a toms of the lattice is the set j~c of the 2 ~ canonical
monomials.

- Each abstract s tate ~ E M represents a set of concrete states defined by
the predicate on concrete program variables obtained by substi tut ing every
abst ract variable ~ by the concrete predicate ~i, tha t is

- Sets of abstract states can be represented by arbi t rary boolean expressions
o n . . ' ,

Abstract transit ions: For each concrete transit ion 7i of the program, we define
an abstract transit ion function ~-~ associating with any abs t rac t s tate ~ the least
abstract s tate representing all successors of the concrete states represented by
~ . The fact tha t the abst ract successor ~1 is a monomial, allows to determine
it as follows: it is "false" (s has no successor) if in all concrete states satisfying

3 a Galois connection is a pair of functions (a, 7) satisfying a(7(QA)) ~- QA and ~ =~
V(a(~o)). Given 7, a is implicitly defined by a(~) = N{Q A E QA [~ =~ 7(qn)) .

4 predicates ~1, ..., ~l define a partition of Qp, even if they are not independent
5 a monomial is a conjunction of ~i's and - ~ i ' s containing each ~ at most once.

Furthermore, we consider the predicate false as a monomial.

76

7(m), ri is not enabled; ~ ' has a conjunct ~j (resp. --~j) if all successors of
states satisfying 7(~) satisfy Wj (resp. -~ j) ; otherwise, ~ t depends not on ~j:

false { if 7 (~) ; -~g~ (3.0)
~j i f post[Ti](7(~)) ~ ~j (3.1)

TA(m) = /~r%~,~ = -@'j ifpost[7i](7(~7~)) ~ - ~ j (3.2) otherwise (3)
true otherwise (3.3)

The properties (2.1) and (2.2) allow to recognize easily that the involved impli-
cations can be expressed without introducing existential quantifiers. E.g. (3.1)
is equivalent to

A (3.1)
That means that the successor of a given abstract state can be "computed"

if it is possible to check the validity of the implications in (3). In order to prove
these implications, one can use a theorem prover. In this case, we are sure to
compute the "exact" result defined by (3) if for all indices i either (3.0), (3.1) or
(3.2) can be proved. Otherwise, the negative results can either be due to the fact
that post[Ti](~) has a non-empty intersection with both ~ and with --~i or
simply to the fact that the applied proof strategy is not powerful enough. This
allows us to do a state space exploration, starting in the abstract initial state
which can be computed analogously.

2.3 Abs t r ac t s ta te space explora t ion m e t h o d s

Using the above defined abstract transition functions ~-~, different upper ap-
proximations of the set of reachable states (invariants) can be defined.

Firs t approximat ion: Z1 is obtained by identifying the abstract state and
property lattices:

O0
Xo = I A

Z1 = U Xj where Xj+I tip T~ (xj)
j=O

All approximations Xj are abstract states (elements of ,M). Thus, Z1 can be
computed in at most * iterations, as the longest chains in Ad are of length L

Second approximat ion: The strongest invariant that can be obtained using
T. A is obtained by allowing abstract properties to be arbitrary disjunctions of
abstract states (the abstract property lattice is the lattice of boolean expressions
on ~1,..-, (P~) and by applying T~ only on canonical monomials Cn c E .Mc:

o~ X0 = t A
Z2 = V Xj where ~--

j=0 x5+1 = t ,7 c e M A x j , i = 1..p}

272 can be obtained by a state space exploration, where only canonical monomials
are treated as "states", and each constructed abstract successor is split into its
set of canonical monomials.

Complex i ty issues: tt is reasonable to express the complexity of the computa-
tion of the above invaxiants by means of the number of necessary proofs. In order

77

to compute the successor of an arbi t rary abstract state ~ , at most K -- 2*p*~+ 1
proofs (1 proof for the enabledness and 2 proofs for each predicate ~i and each
transition Tj) are needed. The computation of the invariant 1:1 needs therefore
maximally ~ * K proofs, but it is in general too weak. For the second invari-
ant, in the worst case, the successors of (almost) all 2 ~ minimal abstract states
(canonical monomials) have to be computed, leading to maximally 2~. K proofs.
However, in practice, the number of necessary proofs is much smaller as

1. some transitions Tj leave some predicates ~ triviMly unchanged or transform
~i independently of all (or most) other predicates Pk

2. only a subset of states are reachable
3. we have not required the predicates ~1, ..., P~ to be independent. If they are

not, not all 2 l canonical monomials are consistent (that is states). In this
case, a dependency predicate allows us to eliminate inconsistent states.

I m p r o v e m e n t o f the c o m p u t e d invariants: The invariants J[K can be im-
proved by using them as the starting point of a backward analysis

Z + = A j~176 o Yj where Y0 = ZK
: Ai----1 p-'re [Ti] (Yj) Yj+I Y~ A p (4)

Improved versions of this backward analysis which use theorem proving to
discharge verification conditions are implemented in [BBC+96,GS96]. Notice
that the approximations Y~ are arbitrary predicates of the concrete property
lattice and not necessarily boolean combinations of Pl , ..., ~ . In order to do an
abstract backward analysis (cf. [CC77]) a lower approximation of ~ [T i] (Y j) is
needed, e.g., the weakest monomial completely contained in ~ [f i] (Y j) which
can be obtained with at most 2 * l proofs.

Construc t ion of s tate g r a p h s : As the computation of a successor requires
several proofs, only relatively small abstract state spaces (a few thousand succes-
sor computations) can reasonably be explored. Under these circumstances, the
additional cost for the representation of the transition relation is almost negli-
gible. The construction of a complete state graph has at least two advantages:

- any property representable as a temporal logic property without existential
quantification over executions can be verified using a model checker.

- It represents a relatively precise global control graph, especially if all ab-
stract states represent a set of concrete states enabling exactly the same
transitions. The method and tool described in [BLS96] generate stronger
structural invariants for this control graph than for the initial control struc-
ture. These invariants can be used to improve the result of the backward
analysis defined by (4).

R e f i n e m e n t o f a n a b s t r a c t s t a t e g r a p h : If the abstract state space explo-
ration by means of 7~ does not allow some property to be verified, one can t ry to
construct a more precise abstraction by adding more predicates to ~1, .-., ~ , that
is, to consider a finer parti t ion of the concrete state space. For the computation
of a successor of ~A~new by the refined transition relation, not all implications
of Definition (3) - - already checked during the construction of the successor of

- - have to be checked, but only those which could not be proved valid in the

78

previous check (and this information can be deduced from the so far constructed
transition relation; it is not necessary to keep a list of valid assertions). That
means the construction of a sufficiently precise state graph can be obtained in
an incremental manner.

3 A n i m p l e m e n t a t i o n

In [GS96] and [Sa97], we presented a tool implementing the backward compu-
tation of inductive invariants (4) and also the methods described in [BLS96]and
[BBC+96] for the generation of structural invariants. We have also implemented
an abstract state graph generation corresponding to the second approximation.
We have achieved an integration with the Pvs theorem prover, where all the
implications necessary to compute the successors of an already reached state are
submitted to the Pvs prover. A proof strategy combining decision procedures,
rewriting and boolean simplification using BDDS, is systematically applied. This
proof strategy is often sufficient to prove all valid implications that are generated.

As our tool also deals with explicit control, an abstract state N consists of
the concrete control configuration c and a valuation of a set of boolean variables
71,..., ~ as defined in the preceding section.

1. Given a set of predicates ~1, . . . ,~t, an upper approximation of a depen-
dency predicate is computed and used in order to generate only consistent
successors.

2. Auxiliary invariants described in [BLS96] are generated using the initial con-
trol structure where all control configurations of a system consisting of sev-
eral parallel components are considered reachable.

3. A state graph is generated. The conjunction 5[of already known invariants of
the system is used to construct smaller successors for each abstract state by
replacing the implications of (3) by weaker ones. For example the implication
(3.1) becomes:

ZA 7(fft) A gi =:> qoj[assi(-2)/-2] (3.1')

Also, not all the implications of (3) are generated, but only those compatible with
the generated dependency predicate. (3.1') considers only successors of states in
Z. Furthermore, only successors having a non-empty intersection with 5[should
be added to the set of reachable states. If Z is (provably) inductive, only such
successors are constructed. Otherwise, for each abstract state N obtained by
(4), it should be verified if

(5)
holds. If the proof of (5) succeeds, no state in 7 (~) is reachable, otherwise,

we don't know, and ~ must be considered as reachable. If an abstract state is
reached, such that for some enabled transition no (consistent) successor in Z is
constructed, this state is itself not in Z, and is eliminated.

The generation of the abstract graph is completely automatic as we never
try to prove interactively a generated implication: if the proof of a valid im-
plication fails, a weaker successor is obtained. The user guides the verification

79

by (re)defining the predicates ~1,-.-, ~l for the definition of the abstract state
graph and by defining the automatic proof strategy. The constructed abstract
state graph is generated in the format of the ALDt~BARAN tool [FGK+96], and
can therefore be analyzed by all the techniques available in ALDI~BARAN, such as
minimization, model-checking and automatic display of graphs. In a near future
it is foreseen to represent abstract state sets and transition relation by BDDS,
which is convenient for an incremental construction of the abstract state graph.

Choice of the predicates ~i: In order to prove that r is an invariant of the
system (or any other property involving r we can try to use r for the definition
of the abstract state space. But it is essential to use the guards appearing in the
transitions of the system. This allows us to construct successors only via tran-
sitions enabled in all represented concrete states and replaces the enabledness
check (3.0) by a boolean test. Furthermore, each predicate is split into its literals.
E.g., for the verification of the invariant (6) below we take ~1 = (O U T = I N)

and ~2 = (O U T -- t a i l (I N)) instead of the disjunction ~1 V ~2; otherwise, in
most cases, too much information is lost.

Example: We have applied this method for the verification of an alternating bit
protocol. The protocol is correct if the list of already received messages O U T is
a prefix of the list of so far sent messages I N such that O U T has at most one
element less than I N . This can be expressed by

[] (OUT = I N V O U T = t a i l (I N)) (6)
Using only the already implemented backward method to prove (6), the com-

putation of the appropriate inductive invariant ~ does not terminate (also using
the generated structural invariants).

Using the predicates appearing in the guards, the abstract state graph of
Figure 1 is constructed. These two predicates express the fact that the bit joint
with the message (respectively the bit representing the acknowledgment) is of
the expected value. 34 implications are submitted to the prover, 5 abstract states
are created, and the construction takes 68 seconds.

Using the literals ~1 and ~2 of (6) for the construction of the abstract state
graph does not result in more precision. We have used two methods to obtain a
better approximation:

1. We have refined the so far obtained state graph by using also the internal
predicate message(message_channe l) = h e a d (I N) - - expressing that the
last sent message is the head of I N . The constructed state graph is again
the one of Figure 1, but all its states satisfy either I N = O U T or O U T =

t a i l (I N) .

2. We have used the state graph of Figure 1 as a control graph which allows to
generate more structural invariants using the methods of [BLS96,BBC+96].
Then, we apply the suggested backward analysis to strengthen the already
obtained invariant. The Property (6) can be proved with a single iteration.

In this simple protocol, the control depends only on finite domain variables,
and it would be much faster to construct the control graph using the expansion

6 The weakest inductive invariant implying I N = OUT V OUT = ta i l (IN)

r l r 4

I!

80

r 7

Sender Receiver
(control) (control)

~6

Abstract
state space
exploration

i

; /

(control)

Fig. 1. Abstract control graph for the alternating bit protocol

method described in [HGD95]. In the example of the next section however, the
control depends partially on infinite domain variables, and the expansion method
does not work.

4 Ver i f i cat ion of a B o u n d e d R e t r a n s m i s s i o n P r o t o c o l

We have used this method to verify a Bounded Retransmission Protocol (BRP)
developed by Philips [GvdP93]. The BRP protocol is an extension of the alter-
nating bit protocol, where not single messages, but message packets are trans-
mitted and the number of possible retransmissions per message is bounded by
some number m a x . We consider a fully parameterized version of the protocol
where the packets can be of any size, and m a x any positive number. The pro-
tocol has already been proved using a theorem prover [GvdP93,HSV94,HS96],
where a large amount of user interaction has been necessary to provide powerful
enough auxiliary invariants.

Input ~ Receivin|
<-~ Sender] [Receiver ~'~[.aic Client

Conf

Fig. 2. The architecture of the BRP protocol

8]

Descr ipt ion of the protocol: The sender receives from a sending client a mes-
sage packet to transmit. The sender delivers a confirmation to its client: 0K, if all
messages have been transmitted and acknowledged, NOT_0K, if the transmission
has been aborted as more than max retransmissions would have been necessary
to deliver a message, DONT_KNOW, if the last message has not been acknowledged
(in this case, it is not possible to know if this message or its acknowledgment
has been lost).

The receiver acknowledges each received message, and delivers an indication
to the receiving client. The indication is FIRST for the first received message of a
packet, INCOMPLETE for any intermediate message, and OK for the last message.
If the sender abandons the transmission of a packet after sending successfully at
least one message, the receiver delivers a not NOT_0K indication.

Correc tness cri terion: We have to prove that the sequences of received mes-
sages and of sent messages are consistent, that is, Property (6) of Section 3.
We have also to prove that for each packet, the indication and the confirma-
tion delivered to the clients are consistent. That means, if the sender delivers a
0K confirmation, the receiver delivers an 0K indication. If the receiver delivers
a NOT_0K indication, the sender delivers the DONT_KNOW or NOT_0K confirmation.
These properties can easily be expressed by temporal logic formulas.

Verification of the protocol: To construct the abstract state graph for the
BRP, we have used 19 predicates appearing in the guards of the transitions of
the system. The constructed abstract graph has 475 states and 685 transitions
and has been obtained in five hours on a Sparc 10. Of the 24 possible global
control configurations, only 9 are found reachable. On this graph the properties
concerning confirmations and indications have been verified using ALDl~BARAN.
Property (6) has been verified on a weaker abstraction where only predicates
concerning the transmission of a single message are considered relevant. The
obtained abstract state graph is similar to the one obtained for the alternating
bit protocol (cf Figure 1), except that at any moment the transmission can be
abandoned because the maximal number of retransmissions has been reached.

5 C o n c l u s i o n s

We have presented and implemented a method allowing to construct abstract
state graphs of arbitrary infinite state systems, where abstract states are valua-
tions of a set-of predicates PI, .-., P~ on concrete variables. At a first sight, the
method may look rather expensive as the construction of a successor requires sev-
eral proofs, and the construction of an abstract state graph for the BRP with 500
states takes 5 hours. However, all proofs are done without user interaction using
a single tactic, and if this tactic fails to prove some valid statements, a weaker
abstraction is obtained. Once the user has provided the predicates 9] ,..., Pz (the
tool proposes a set consisting of the literals occurring in the guards and prop-
erties to be proved), the construction is completely automatic. In this case, the
execution time is not really a problem. One can always apply this method to
get a first approximation of a system which - - from the point of view of human

82

effort - - is for free. The constructed state graph is always of a reasonable size
and can be explored by a model-checker. It can also be used as a finite global
control graph which can be used for invariant generation and backward analysis
already implemented [BLS96,GS96].

If the initial set of predicates, defining the abstract state space, does not
give a satisfactory abstraction, one can t ry to add new predicates to obtain a
more precise abstraction. To provide a new predicate is similar to providing
an auxiliary invariant, which is usually necessary to prove program properties.
However, it is easier to provide some predicates leading to a sufficiently refined
state graph than the corresponding auxiliary invariant (expressing when these
predicates hold and when not).

This method is in some sense complementary to the tableau construction im-
plemented in STeP [BBC+96] where the tableau of the property to be proved (or
disproved) is taken as the starting point for an abstract state graph construction
by expanding it until it fits with the program. Our method takes the control of
the program of the program as a starting point and refines it until it satisfies
the property to be verified. The particularity of our method is that it integrates
a reachability analysis.

It has also some other interesting characteristics:

- it is incremental: a refinement generates new implications and strengthens
the left hand side of previously generated implications. All implications valid
for a given partition, are also valid for a finer partition. Furthermore, in order
to use this fact, it is not necessary to store the already proved implications,
but only the corresponding abstract transition relation.

- It is compositional: for each component a separate abstract state graph can be
constructed, where in each component the predicates involving its variables
are used. The obtained global abstraction is in general weaker, and for the
examples presented in this paper, the compositional approach turned out
not to be interesting.

- The abstract state graphs constructed by our method are interesting for de-
bugging. It can be used to guide the search of a concrete execution sequence
violating a required property, especially as any transition enabled in some
abstract state is enabled in all concrete states it represents.

References

[BBC+96]

[BBL97]

[BLS96]

[CC77]

N. Bjorner, A. Browne, E. Chang, M. Colon, A. Kaput, Z. Manna, H. Sipma,
and T. Uribe. Step: Deductive-algorithmic verification of reactive and real-
time systems. In CAV'96. LNCS 1102, 1996.
K. Baukus, S. Bensatem, and Y. Lakhnech. A PVS based tool for the
verification of invariants, submitted to CAV'97.
S. Bensalem, Y. Lakhnech, and H. Saidi. Powerful techniques for the auto-
matic generation of invariants. In CAV'96, LNCS 1102, 1996.
P. Cousot and P~. Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints.
In ~th POPL, January 1977.

83

[CGL94]

[CM88]
[Dam96]

[DF95]

[DGG93]

[DOTY96]

[FGK+96]

[GL93]

[Gra95]

[GS96]

[GvdP93]

[HGD95]

[HH95]

[HPR94]

[HS96]

[HSV94]

[KDG95]

[Kur94]

[LGS+95]

[Sa97]

[SitS2]

[SOR93]

E.M. Clarke, O. Grumberg, and D.E. Long. Model checking and abstraction.
ACM Transactions on Programming Languages and Systems, 16(5), 1994.
K. M. Chandy and J. Misra. Parallel Program Design. 1988.
D. Dams. Abstract interpretation and partition refinement for model check-
ing. Phd Thesis, Technical University of Eindhoven, July 1996.
J. Dingel and Th. Filkorn. Model checking for infinite state systems us-
ing data abstraction, assumption-commitment style reasoning and theorem
proving. In CAV'95. LNCS 939, 1995.
D. Dams, O. Grumberg, and R. Gerth. Generation of reduced models for
checking fragments of CTL. In CAV'93, LNCS 697, 1993.
C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool KRONOS. In
Hybrid Systems III, Verification and Control, LNCS 1066, 1996.
J.-C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier and M.
Sighireanu. CADP (Cmsar/Ald~baran Development Package): A protocol
validation and verification toolbox. In CAV'96. LNCS 1102.
S. Graf and C. Loiseaux. A tool for symbolic program verification and
abstraction. In CAV'93. LNCS 697, 1993.
S. Graf. Characterization of a sequentially consistent memory and verifica-
tion of a cache memory by abstraction, accepted to Distributed Computing.
S. Graf and H. Saidi. Verifying invariants using theorem proving. In CAV'96,
LNCS 1102, 1996.
J.F Groote and J. van de Pol. A bounded retransmission protocol for large
data packets. Technical Report Logic Group 100, Utrecht University, 1993.
H. Hungar, O. Grumberg, and W. Datum. What if model checking must be
truly symbolic. In TACAS'95. LNCS 1019, 1995.
T. Henzinger and P.H. Ho. Hytech: the Cornell hybrid technology tool. In
Hybrid Systems II. LNCS 999, 1995.
N. Halbwachs, Y.-E. Froy, and P. Raymond. Verification of linear hybrid
systems by means of convex approximations. In SAS'94. LNCS 864.
K. Havelund and N. Shankar. Experiments in theorem proving and model
checking for protocol verification. In Formal Methods in Europe'96, 1996.
L. Helmink, M. Sellink, and F. Vaandrager. Proof-checking a data link
protocol. Technical report CS-R9420, CWI, 1994.
P. Kelb, D. Dams, and R. Gerth. Efficient symbolic model-checking for the
full p-calculus using compositional abstractions. Tech Rep 31, TU Eind-
hoven, 1995.
R.P. Kurshan. Computer-Aided Verification of Coordinating processes, the
automata theoretic approach. Princeton Series in Computer Science. 1994.
C. Loiseanx, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property
preserving abstractions for the verification of concurrent systems. Formal
Methods in System Design, Vol 6, Iss 1, 1995
H. Saidi. The invariant checker: Automated deductive verification of reactive
systems. In this volume.
Joseph Sifakis. A unified approach for studying the properties of transition
systems. TCS 18, 1982.
N. Shankar, S. Owre, and J.M. Rushby. A Tutorial on Specification and
Verification using PVS. SRI International, Menlo Park, CA, 1993.

