
Workflow Transparency

Peter Bichler, Giinter Preuner, Michael Schrefl

Department of Business Information Systems, University of Linz, Austria
E-Mail: {bichler [preuner [schrefl}~dke.uni-linz.ac.at

Abstract . Workflow transparency refers to the ability of considering a
business process independently of the workflow implementing it. Unlike
current workflow systems, which do not differentiate between business
processes and workflows, workflow transparency requires to model busi-
ness processes and workflows separately.
Workflow systems supporting workflow transparency offer advantages
comparable with database systems supporting data independence. Simi-
larly as data independence allows to change the actual organization of
data without effecting applications accessing the database at the concep-
tual level, workflow transparency allows for dynamic re-organisation of
the actual flow of work without effecting the overall results of business
processes.

1 Introduction

Modern organizations must continuously adapt their workflows to be competi-
tive. The support for adaption of workflows is thus a critical issue since poor
support may result in error-prone and time-consuming adaption processes. Hence
workfiow management systems (WFMS) face high demands and must offer several
features: mechanisms to change workflow descriptions while they are enacted,
mechanisms to test the correctness of changed workflows wrt. to the underlying
business process, and mechanisms to deal efficiently with business cases that exi-
sted at the time of change (known as the dynamic change problem [6]). Although
these problems have been identified (cf. [1, 4, 6, 17]), contemporary WFMSs do
not provide adequate support for the adaption of workflows.

Contemporary WFMSs suffer from two serious shortcomings: First, their mo-
deling components rely on a flat, single-schema architecture which provides no
means to explicitly capture the business process a workflow implements. Se-
cond, they do not provide efficient support for the dynamic change of workflows.
Therefore, expensive change procedures can cause the day-to-day business of
organizations to be interrupted in order to avoid unpredictable side effects, e.g.,
wrong re-assignments of business cases.

How do related disciplines solve the problem of evolving systems? In object-
oriented programming, the concept of encapsulation abstracts the interface from
the implementation of objects, which allows to adapt the implementation of
objects without effecting their clients (cf. [14]). In data engineering, the three
schema ANSI SPARC architecture describes the contents of a database at three
levels. Application programs that access the database at higher levels are widely

424

independent from changes at lower levels (physical data independence and logical
data independence. To provide a similar flexibility for dynamic objects, Saake et
al. [15] have introduced an analogous three-schema architecture.

In this paper, we introduce a two-schema architecture for the modeling com-
ponents of WFMSs. The proposed architecture naturally extends existing single-
schema architectures by abstracting the essential business process logic out of a
workflow schema and modeling it separately in a business process schema. The
resulting two-schema architecture copes very efficiently with a number of adap-
tions that are reflected in the workflow leaving the supported business process
the same. Radical changes in the business processes, however, require additional
effort.

Section 2 describes the basic concepts of a two-schema architecture for work-
flow systems. Section 3 presents OBDbp/wl, a notation for the conceptual design
of business process schemas and workflow schemas, which relies on the propo-
sed two-schema architecture. Section 4 discusses the advantages of the presented
schema architecture wrt. dynamic change of work flows and compares it to related
previous work. Section 5 summarizes the main achievements of this work.

2 A T w o - S c h e m a A r c h i t e c t u r e f o r W o r k f l o w S y s t e m s

The business policy of an organization determines what kind of work the orga-
nization performs and in which way it performs that work. The market forces
organizations more or less often to change their business policy to be competitive.
To implement such changes, information systems must be frequently adapted to
changed requirements. Loucopoulos [12] pointed out that maintenance and evo-
lution of information systems could be improved significantly if the knowledge
expressed in business policies were represented explicitly. Therefore, recent ap-
proaches to the modeling of information systems, e.g., [5, 8, 12, 13], express the
business policy of an organization in form of business rules.

Business rules may be classified into external and internal business rules
[7]. External business rules--e.g., business rules based on natural facts or law--
determine a frame within which an organization may operate. Internal business
rules--i.e, business rules based oR organizational commitments--restrict this
frame and determine the way an organization actually performs work. To react
to changes in the business environment, an organization may change its internal
business rules but, usually, it may not influence external business rules. This
paper focuses on business rules that concern the flow of work. These business
rules, although expressed by event-condition-action rules by some authors, are
better represented by appropriate high-level concepts, such as extended Petri Nets,
at the conceptual level (cf. [10]).

The two-schema architecture for the conceptual modeling of workflows, which
we present below, offers high-level concepts for the modeling of business policies
and allows to separate external from internal business rules. This separation
allows to verify the change of internal business rules wrt. external business rules.
In conventional workflow systems, which rely on single-schema architectures,
changes cannot be verified within the system, but can only be validated wrt. the
environment.

425

The two schemas are the business process schema and the workflow schema.
The business process schema specifies a comprehensive set of alternative ways to
meet the objectives of a business process. The business process is specified by a
set of business process activities and constraints on performing these activities,
where only constraints implied by external business rules are considered. For
example, external rules might constrain the execution order of activities (e.g., it
is a natural fact that input-output dependencies among activities require their
serialization) and the invocation of activities in general (e.g., the cancellation fee
a hotel might charge is limited by law depending on the time of cancellation).

A workfiow schema models the realization of a business process in a certain
organization at a certain time. To adapt a business process schema to a context of
internal business rules, i.e., to design a workflow schema, means (a) to determine
the actual flow of work, possibly selecting only a subset of the alternative ways
provided by the business process to meet its objectives and (b) to specify how
input data for business process activities are collected.

Notice, ARIS [16] provides also a multi-level architecture for modeling work-
flows where each level consists of several views. The aims of these levels and
views, however, are orthogonal to our aims. The levels of ARIS reflect "different
proximity to information technology" and the views represent different aspects
of an enterprise (e.g., function view, organization view). Our two schemas sepa-
rate external and internal business rules and could be included in ARIS as part
of the function view at the design specification level.

We conclude this section with a definition of workflow transparency: Work-
flow transparency denotes the quality of a workflow system to consider the speci-
fication of a business process independently from the workflow(s) implementing
it.

3 Modeling Business Processes and Workflows
In this section we present OBDbp/~1 (Object/Behavior diagrams for the concep-
tual modeling of business processes and workflows). They extend Object/Behavior
diagrams (OBD), which have been originally introduced for the conceptual design
of object-oriented database schemas [9], and build on the proposed two-schema
architecture: The business process schema is modeled using pure OBD. The
workflow schema is modeled by the extension of OBD presented in Subsect. 3.2.
As a running example we use a simple hotel reservation system [9, 11].

3.1 The Bus iness P rocess Schema

The business process schema specifies what data are collected about business
cases and how business cases are processed irrespective of internal business rules
currently effective. A business process schema consists of a set of business object
types, each defining the structure and behavior of its instances (which represent
business cases) by an object diagram and a behavior diagram, respectively. The
behavior diagram of an business object type is split into a life cycle diagram,
several activity specification diagrams, and several activity realization diagrams.
Due to space limitations, we consider only life cycle diagrams in this paper. For
the other diagrams, the reader is referred to [9, 11].

426

A life cycle diagram provides an overall view of a business process by de-
picting the states in which a business case may reside and the activities which
may be performed on a business case. An activity may be invoked on a business
case- -or on an object in general - -only if the object resides in every pre state
of the activity. During the execution of an activity on an object, the object re-
sides in an implicit s tate named after the activity, the activity stale. After the
successful execution of an activity, the object resides in every post s ta te of the
activity.

Example : Figure 1 shows the life cycle diagram of object type RESERVATION. Once
a reservation has been issued, a hotel may, at any time, bill the customer and the
customer may either cancel the reservation or check-in at the hotel. A customer that
cancels after having paid for a reservation, will get a refund. A customer that cancels
before being billed may be charged with a cancellation fee.

sen~emi~er ~ /

Fig. 1. Life cycle diagram of RESERVATION

3.2 T h e workflow schema

The workflow schema specifies how business cases are currenlly handled in a
specific organization. A workftow schema consists of a set of workflow types, each
defining the structure and behavior of its instances, which are called workflows.
A business case is treated according to a certain workflow if it has been assigned
to it as member .

A workflow consists of a set of boxes that serve as containers for mem-
bers which fulfill certain conditions and a set of worksteps that manipula te its
members by invoking business process activities and performing logically related

427

external operations (e.g., collecting cash). Similar as life cycle diagrams provide
an overall view of business processes, workflow diagrams provide an overall view
of workflows. A workflow diagram shows how the members of a workflow of some
workflow type flow between boxes and worksteps.

A box is specified by (1) the business object type whose business cases the
box may hold, (2) a life cycle state in which business cases held by the box must
reside, and (3) a boolean condition which instances held by the box must fulfill.
A business case belongs to a box of a workflow if it is a member of the workflow
and if it qualifies for the box according to the box specification. Notice that
business cases are neither inserted explicitly into boxes nor are they removed
explicitly from boxes. Box membership solely depends on the current life cycle
state, the current property values, and, possibly, the history of a business case.
If a business case is assigned to a workflow as a new member, the business case
becomes a member of all boxes for which it currently qualifies. Therefore, as we
will see later, business cases can be easily re-assigned to another workflow.

Boxes are depicted by rectangles with double-line borders. A unique name
for the box is shown above, the business object type and the life cycle state of
the business cases which are held by the box are shown inside, and the condition
that business cases held by the box must fulfill is shown below.

Example: Figure 2 shows the workflow diagram of workflow type RESERVATION-WF.
Members of a workflow of this type are instances of business object type RESERVA-
TION. One of the boxes defined by workflow type RESERVATION-WF is box R-4, which
holds reservations in state toBill, where the guest's credit rating is greater than three.
Note: the path expression guest.creditRating refers to properties that are defined in the
object diagrams of object types RESERVATION and CUSTOMER, which are not shown.

A workflow may contain boxes that always hold a subset of the members
of some other box. To indicate subset relationships between boxes, boxes are
organized in specialization hierarchies. A specialization of a box into subboxes
is depicted by a triangle symbol. Subboxes of the same specialization are always
disjoint. A box may, however, have different specializations.

Example: In our workflow box R-3 contains all reservations in state toBill, subbox R-4
holds all reservations which reside in box R-3 and whose guests have a credit rating
greater than three.

A workstep is specified by (1) one or several input boxes on whose members
the workstep may be applied, (2) additional internal or external data needed by
the workstep, (3) pre- and postconditions, and (4) the business process activities
that are possibly invoked by the workstep. Workstep specifications are depicted
by workstep specification diagrams, which are introduced later. For better reada-
bility, a workflow diagram usually visualizes workstep specifications only partly.

Worksteps are depicted by rectangles with a unique name at the top. Each
workstep has exactly one primary input port (depicted in black) with connecting
arcs to boxes on whose members the workstep may be performed. A workstep
may be performed on any business case that belongs to each box connected to
its primary input port.

428

checldn& checl~uL
IIIMI~IIr m l l l p~

Fig. 2. Workflow diagram of RESERVATION-WF

Boxes may be connected to input ports of worksteps by read-arcs (depicted
by dashed lines) or transfer-arcs (depicted by solid lines). If a box is connected
to a workstep by a transfer-arc and the workstep is performed on some business
case, the workstep must change the business case (by invoking some business
process activity) such that it no longer qualifies for this box. In the case of a
read-arc, the workstep may not modify the business case in a way such that it no
longer qualifies for the box sometimes during or immediate ly after the execution
of the workstep.

Arcs connecting the pr imary output port of a workstep with boxes indicate
into which boxes a business case handled by a workstep flows. Once a workstep
is completed, the business case assigned to its p r imary output port must qualify
for all boxes connected to the port.

Example" Workstep checkln&Register of RESERVATION-WF can be performed on any
reservation in box R-1 as its primary input port is connected solely to that box. W'ork-
step checkOut_Bill&Pay has a primary input port connected with two boxes. It can be
performed on any reservation which resides in boxes R-2 and R-3. The primary input
port of workstep checkout is connected by a transfer-arc to box R-2 and by a read-arc
to box R-4. After executing checkout, the handled business case no longer resides in
box R-2, but it still resides in box R-4 and qualifies for box R-5. The worksteps named
Migrate i will be explained in the next section.

A business case may be handled by a workflow in a more restrictive way
than its business process would require. Choices between alternative business
process activities may be restricted (or omit ted at all by supporting only one
alternative) and business process activities that could be invoked in any order
may be serialized. Furthermore, different worksteps may invoke the same busi-
ness process activity. Usually, such worksteps will have different realizations or

are connected to different boxes.

429

Example : According to the business process of RESERVATION a customer may check-
out from a hotel irrespective of whether he has already paid or not (cf. Fig. 1). Work-
flow RESERVATION-WF requires that customers with a low credit rating are billed
and pay immediately when they check-out from the hotel (cf, Fig. 2); thus workstep
checkOut_Bill&Pay (which invokes business process activities checkOut, billAtReception
and thereafter payCash or payByCreditCard) must be used. Workstep checkout (which
invokes business process activity checkout) may be performed only on reservations of
customers with a credit rating greater than three (cf. the reaxt-arc to box R-4). No-
tice that workflow diagram does not show which business process activities a workstep
invokes. This information is provided only in the workstep realization diagram.

According to the business process of RESERVATION, one can choose between char-
ging a cancellation fee for cancelled and yet unbilled reservations or not charging a
cancellation fee (cf. Fig. 1). Workflow RESERVATION-WF omits the alternative of wai-
ving the cancellation fee. Only workstep chargeCancellationFee (which invokes business
process activity chargeCanceJlationFee) may be performed on cancelled and yet unbilled
reservations.

To provide for modularity, a workflow diagram may contain abst ract work-
steps tha t are expanded later into a subdiagram. Abstract worksteps are depicted
by shaded rectangles.

Example : Figure 3 shows the subdiagram of abstract workstep pay in the workflow
diagram RESERVATION-WF.

TODAY _< seltlementDay C~ I

�9 ~OrRemindets _> 3
L J

Fig. 3. Subdiagram of abstract workstep pay

Business cases may move between boxes of a workflow diagram although no
workstep depicted in the workflow diagram is executed. Transition-arcs, denoted
by arrows, are used to visualize such transitions. The transit ion-arc is annotated
by the event or workstep that might cause (but need not always cause) the
transit ion. The condition that causes a transition to occur can be inferred from
the specifications of the boxes at the tail and the head of the transition-arc.

Example : Subdiagram pay of workflow RESERVATION-WF (cf. Fig. 3) handles pay-
ments of bills and sending of reminders. At the day after the settlement day, billed

430

reservations which have not been paid so far flow from box R-s3 into box R-a2 or box
R-a4, which is indicated by transition-arcs. If a customer has not paid in time and less
than three reminders have been sent so far, a reminder with a new settlement day is
sent (cf. box R-a2 and workstep sendReminder); if three reminders have already been
sent, a collection agency is engaged (cf. box R-a4 and workstep payByCollectionAgency).

The entire workstep specification is depicted in a worksfep specification dia-
gram. Next to the pr imary ports, a workstep specification diagram may show
some secondary ports (depicted in white) indicating additional data tha t are
needed or are produced by the workstep. These additional data may be internal
(e.g., another business case) or external (e.g., a credit card). Secondary ports
referencing internal data are connected to boxes the same way as primary ports.
Secondary ports referencing external data are connected to ovals that describe
the data informally. A workstep specification diagram also describes which busi-
ness process activities may be in.yoked by the workstep realization. The activities
that may be invoked are depicted next to the workstep together with their pre
and post states. Further, additional pre- and postconditions for the workstep are
specified textually.

Example : Figure 4 shows the workstep specification diagram of checkOut_B~ll&Pay.
The secondary input ports indicate that, besides a reservation object, the workstep
requires a key card of the customer and a means of payment. The secondary output
ports indicate that the workstep returns a means of payment together with a receipt.
The business process activities depicted in the right half indicate that not all forms of
payment supported by the business process RESERVATION can be used in this workstep
but only payments by cash or by credit card. The workstep may only be invoked at
the last day of a guest's stay.

wo~'kstep for:

key card receipt precondt~on: TODAY = departureOay

Fig. 4. Workflow specification diagram of checkOut_Bill&Pay

Workstep realization diagrams, which show how a workstep is carried out by
a human user or some machine agent, are described in [3].

4 Dynamic Change of Workflows
Dynamic change from an old workflow to a new workflow (or possibly, to several
new workflows) comprises three steps: migration (some existing business cases
are migrated to a new workflow, others are not), classification (migrated busi-
ness cases are placed within the new workflow), and transition (some migrated
business cases are handled according to transitional regulations in order to be
properly included in the new workflow).

431

Dynamic change of workflows has been investigated in the work of Ellis and
Keddara [6] and the work of Casati et al. [4]. We will compare our approach in
detail to their work. Related work exists also in the area of software engineering
that investigates the problem of evolving software process models. From the
numerous software process environments, we will consider in our comparison the
SPADE environment [2], which is--to our knowledge--the most flexible one.

4.1 M i g r a t i o n

Migration regulations specify which business cases of a workflow may migrate
to what target workflow. A business case may be selected for migration on the
basis of (a) its progress in the business process (life cycle), (b) its property va-
lues, and (c) its history. Every workflow type offers a generic workstep Migrate
that provides the behavior to re-assign a business case contained in some boxes
to another workflow. Migrate may be instantiated several times in one workflow.
Each instantiation (denoted by Migratei) specifies the boxes that must hold the
business case to be migrated, a target workflow, and a migration mode, which
specifies whether a business case is migrated immediately if it qualifies for mi-
gration (/-mode) or not (u-mode). In the latter case, the decision whether to
migrate or to continue in the old workflow is left to the user.

Three migration strategies can be distinguished for workflows: (1) No mi-
gration: Existing business cases continue according to the old workflow. New
business cases are started with the new workflow. (2) Static migration: Static
migration requires to decide once in time for all business cases whether they
shall be migrated to a new workflow or stay with the old workflow. There is no
opportunity to migrate business cases later if they did not migrate immediately.
(3) Dynamic migration: Dynamic migration allows existing business cases not
yet ready for migration to continue according to the old workflow until they
qualify for migration. Further, the decision whether to migrate or not to migrate
a business case that qualifies for migration may be left to the user.

Ellis and Keddara [6] have investigated the dynamic change problem for the
first time in detail and presented a solution to it by static migration. Casati et
al. [4] provide a very flexible support for static migration through "progressive
case evolution policies" that determine which business cases are migrated and
how they are migrated. OBDbp/~,s fully supports dynamic migration which is the
most powerful strategy. It allows business cases to take advantage of the old and
the new workflow during a migration period.

The SPADE environment offers a flexible approach to static migration. The
migration policy can be represented as a meta-process (of. [2]).

Example: Our hotel has considerably changed its workflow for managing reservations
(cf. Fig. 5(a)). In future, all customers will be billed immediately after their reservation
has been issued. Moreover, they must pay for their bill before they check in. Customers
who cancel will get a refund. Ignore the lower half of the workflow diagram, which shows
Transition Regulations, for the moment.

Our hotel decided to immediately migrate (1) all reservations of customers which
have neither checked in nor cancelled (cf. workstep Migrate 1 in Fig. 2) and (2) all reser-
vations of customers who have already checked out and have paid for their reservation

432

(cf. workstep Migrate2 in Fig. 2). A reservation of a current guest, i.e., a reservation
in boxes R-2 and R-3 (cf. Fig. 2), will be treated according to the old workflow until
the guest has checked out and paid. Then the reservation qualifies for boxes R-5 and
R-7 and is migrated. Until later, assume that no other reservations are migrated (i.e.,
assume that worksteps Migrate 3 and Migrate 4 have not been defined). Note: Figure 2
does not show the target workflow for worksteps Migrate i. It is assumed that all selected
business cases migrate to the same workflow of type RESERVATION-WF-2 (ef. Fig. 5).

daer &
Regimr checkout

I~n ply / archive

i
Transi t io. R N u t a t ~ n s ,~'/gig!

~..~...u.., ~!i:~!':i .,,4.~.i,,, ,-R~ ~ ~ /

(b) (r

Fig. 5. Workflow diagram for RESERVATION-WF-2

4.2 C l a s s i f i c a t i o n

Classification regulations specify how migrated business cases are placed within
the new workflow. For this placement, two classification sCra$egies can be applied:
(1) Static classification: Each migrated business case is explicitly mapped to a
specific "state" of the new workflow. (2) Dynamic classification: A migrated
business case is classified automatically to that "workfiow state" for which it
qualifies due to its business process state.

OBDbp/~,i applies dynamic classification. To ensure that every migrated bu-
siness case can be classified, every workflow type offers a box that contains all
business cases that are blocked. A business case is blocked if it resides in some
non-final s tate (i.e., a s tate that is pre state of some business process activity)
and no workstep is currently performed or can be started for the business case.
How blocking can be avoided and how blocked business cases are handled is

discussed later.

Example ' . Business cases migrate from a workflow of type RESERVATION-WF t o a
workflow of type RESERVATION-WF-2 by worksteps Migrate 1 and Migrate 2 (cf. Figs. 2
and 5). Once migrated by these worksteps, business cases are classified dynamically
into boxes R-1 and R-4 or boxes R-3 and R,6 of the new workflow.

Ellis and Keddara [6] offer static classification in the form of a so-called "token
mapp ing function". Casati et al. [4] use also static classification and apply the

433

same change primitives that modified the old workflow schema to old business
c a s e s .

The SPADE environment [2] prompts the user to classify existing "business
cases" (instances of software processes) on a case-by-case basis.

To demonstrate the flexibility of dynamic migration and dynamic classifi-
cation versus static migration and static classification, we compare OBDbp/,,,!
to the approach of Ellis and Keddara [6] by an example. Ellis and Keddara use
information control nets (ICN) to model workflows. An ICN is a single entry, sin-
gle exit, directed graph whose nodes are worksteps or control nodes. The latter
specify branching, parallelism, or synchronization. The specification of a work-
flow consists of an ICN and a correctness criterion that defines valid execution
sequences for the worksteps in the ICN.

Example: Figure 6(a) shows an ICN that presents a simplified version of the workflow
diagram of type RESERVATION-WF (cf. Fig. 2). Its correctness criterion (not shown)
defines that workstep checkln&Register must precede workstep checkout and that work-
step bill must precede workstep pay. Figure 6(b) shows the ICN that corresponds (but
is not equivalent to) the workflow of type RESERVATION-WF-2 (cf. Fig. 5). As in the
setting of Ellis and Keddara a new workflow must comprise exactly all worksteps of
the old workflow, workstep chargeCancellationFee is included in the ICN although it is
no longer present in the new OBD@/wl workflow.

In the approach of Ellis and Keddara, all business cases are migrated at once to the
new workflow, and in the absence of dynamic classification, each business case must be
assigned explicitly to a specific position in the new workflow. But, if the new workflow
has re-ordered some worksteps, old business cases cannot always be mapped into some
position of the new workfiow without sacrificing correctness. E.g., if reservations of
current guests that have not yet checked out are mapped to the position between
worksteps checkln&Reglster and checkout in the new workflow (cf. Fig. 6(c)), no bills
are issued for them. To take care of such cases, Ellis and Keddara have introduced a
concept called synthetic cut.over rewriting by which some part of the old workflow (cf.
the shaded nodes in Fig. 6(b)) is included in the new workflow. Now, old reservations
of current guests that have not yet checked out can be mapped to this "copy" of the
old workflow which they follow until they have been billed and paid (eft. Fig. 6(d)).

As OBDbp/,~I supports dynamic migration, no part of the old workflow needs to
be included in the new workflow if the migration of business cases is delayed until they
"fit" into the new workflow. In our example, OBD@/~ I (cf. Fig. 2) achieves the same
effect as the ICN solution above by migrating reservations of current guests that have
not yet paid only after they have paid (assume that worksteps Migrate 3 and Migrate4
have not been defined). Further, migrated reservations are classified automatically into
all boxes for which they qualify such that the old workflow need not be linked to
internal details (i.e., specific boxes) of the new workflow.

Casati et al. [4] also use static migration but combine it with selective mi-
gration, i.e., some business cases may migrate and others may continue forever
in the old workflow. To cope with business cases that are not "compliant" with
the new workflow, a temporary, hybrid workflow schema specifies the worksteps
that must be performed such that the migrated business cases can be treated
according to the new workflow. Temporary, hybrid workflow schemas are more
powerful than the synthetic cut-over rewriting offered by Ellis and Keddara in
that they may not only be used to redo worksteps of the old workflow, but also
to specify transitional regulations in general (see below).

434

R~n'atlon F.n~/ issue P-,ee, ewat~ E n w (~ ~ss ~

F. T. T ,o,"

(a) (b)

Fig. 6. Dynamic change in the setting of Ellis and Keddara

4.3 Trans i t ion

Transilional regulations specify how migrated business cases that are not "com-
pliant" with the new workfiow are handled. Three transition strategies can be
distinguished: (1) Implicit transition: Migrated business cases with a history of
performed activities that could never be generated in the new workflow may still
find a way through the new workflow by applying dynamic classification (see ex-
ample below). (2) Ad-hoc transilion: Migrated business cases that are blocked in
the new workflow (see definition in Subsect. 4.2) are handled on a case-by-case
basis. (3) Regulated transition: Transition rules regulate how migrated business
cases are taken over to the new workflow. They are especially used to avoid
blocking of migrated business cases.

OBDbp/~s supports all three transition strategies. Migrated business cases
may float through the new workflow in an "irregular way" without the need of
specifying transitional regulations.

Example : Our hotel changed its migration strategy. In addition to its previous stra-
tegy, it immediately migrates also reservations of credit-worthy customers who have
already checked out but have not yet been billed (cf. workstep Migrate 3 in Fig. 2).
These reservations are classified dynamically into boxes R-1 and R-6 of the new work-
flow (cf. Fig. 5). Notice that a reservation handled solely according to the new workflow
could never be in boxes R-1 and R-6. Yet, due to dynamic classification the migrated
reservations can be correctly billed, paid for, and archived.

Blocked business cases are collected in box Blocked and are treated by a ge-
neric workstep handleBlockedBusinessCases, which allows a human agent to invoke
any business process activity that is applicable to the blocked business case.

Example : Our hotel decided to migrate immediately all reservations of credit-worthy
customers that have cancelled (cf. workstep Migrate 4 in Fig. 2). Now, assume condition
not cancelled has not been defined with box R-I of the new workflow (cf. Fig. 5). Then,
the migrated reservations qualify for this box. After they have been billed and paid
for, they will be blocked (workstep cancel&Register cannot be executed as box R-4 will

435

not contain such reservations). The blocked reservation is handled by a human agent
who will refund the payment (cf. Figs. 5(b) and 1).

If condition not cancelled is defined with box R-l, the migrated reservations will
qualify for no box of the new workflow amd will be blocked. Again, a human agent will
take care of these reservations, possibly on a an individual basis. E.g., he may waive
the cancellation fee for regular customers and charge a cancellation fee for others by
invoking the appropriate business process activities (cf. Fig. 1).

Transitional regulations are specified by a set of boxes and worksteps that
transfer migrated business cases to a state in which they may switch to the
regular workflow. They may also keep migrated business cases off the regular
workflow if their history is not acceptable. Transitional regulations typically in-
volve a set of compensating (or rollback) activities or invoke alternative business
process activities not supported by the new workflow. The boxes specified with
transitional regulations hold only migrated business cases.

Example: Our hotel decided to waive the cancellations for migrated reservations that
have cancelled but have not yet been billed. To assure that such reservations are not
billed, box R-1 is extended by condition not cancelled and workstep chargeNoCancella-
tionFee is introduced in the transitional regulations (cf. Fig. 5(c)).

Ellis and Keddara [6] do not discuss transitional regulations. Casati et al. [4]
offer a very flexible approach for the definition of transitional regulations. But,
they do not support implicit transition and ad-hoc transition. Transitional regu-
lations are specified by temporary, hybrid workflow schemas and are subject to a
very strict correctness criterion: A business case may only be treated by the new
workflow if its history of performed worksteps contains only worksteps that are
also supported by the new workflow. OBDbp/,~I is less restrictive. Business cases
can migrate to a new workflow that supports different (but alternative) activi-
ties since its correctness criterion for dynamic change is based on the common
business process which the old and the new workflow implement.

The presentation of the SPADE environment in [2] does not discuss transi-
tional regulations.

5 C o n c l u s i o n
In this paper we have introduced a two-schema architecture for workflow sy-
stems. The business process schema models the logics of business processes ab-
stracting from the workflows implementing them. The workflow schema models
the actual flows of work currently effective in a particular organization to imple-
ment the business processes. The two-schema architecture provides for workflow
transparency which allows to modify a workfiow dynamically without effecting
the correctness of the business process it implements. In that a workflow may
change business cases only by business process activities, any modification of the
workflow obeys to the constraints defined in the business process schema. Whe-
reas modifications of workflows in single-schema architectures must be validaled
with respect to their environment, modifications of workflows in the two-schema
architecture are implicitly verified against the business process they implement.

The two-schema architecture supports workflow evolution in a very flexible
way. Business cases handled by the old workflow need not be migrated at once

436

to the new workflow (static migration) but can be migrated f rom t ime to t ime
to the new workflow (dynamic migration). Business cases which have been mi-
grated to a new workflow need not be assigned explicitly to specific boxes (static
classification) but qualify automatical ly for appropriate boxes (dynamic classifi-
cation). Dynamic classification reduces the need to specify transit ion regulations
explicitly as in many cases migrated business cases find their own way through
the new workflow.

We believe that other workflow models (e.g., [4, 16, 18]) could be extended
to a two-schema architecture in a similar way.

References

1. K.R. Abbot and S.K. Satin. Experiences with Workflow Management: Issues for
the Next Generation. In Proc. CSCW'94, 1994.

2. S.C. Bandinelli, A. Fugetta, and C. Ghezzi. Software Process Model Evolution in
the SPADE Environment. IEEE Trans. on Software Engineering, 19(12), 1993.

3. P. Bichler, G. Preuner, and M. Schrefl. Workflow Transparency. Technical Report
97.02, University of Linz, Department of Business Information Systems, 1997.

4. F. Casati, et at. Workfiow Evolution. In Proc. ER'96, LNCS 1157, Springer, 1996.
5. I. D'Haenens, et at. Experiences with rule-based dynamic modelling. In Dynamic

Modeling of Information Systems, North-Holland, 1991.
6. C.A. Ellis and K. Keddara. Dynamic Change within Workflow Systems. In Proe.

C00CS'95, 1995.
7. H. Herbst. A Meta-Model for Business Rules in Systems Analysis. In Proc.

CAiSE'95, LNCS 932, Springer, 1995.
8. H. Herbst, et at. The specification of business rules: a comparison of selected

methodologies. In Information Systems Life Cycle, North Holland, 1994.
9. G. Kappel and M. Schrefl. Object/Behavior Diagrams. In Proc. ICDE'91, 1991.

I0. G. Kappel and M. Schrefl. Modeling Object Behavior: To Use Methods or Rules
or Both? In Proc. DEXA '96, LNCS 1134, Springer, 1996.

11. G. Kappel and M. Schrefi. Objektorientierte lnformationssysteme: Konzepte, Dar-
stellungsmittel, Methoden. Springer, 1996. (in German).

12. P. Loucopoulos, B. Theodoulidis, and D. Pantazis. Business Rules Modelling:
Conceptual Modelling and Object-Oriented Specifications. In Object Oriented Ap-
proach in Information Systems, North-Holland, 1991.

13. P. MeBrien, et al. A Rule Language to Capture and Model Business Policy Speci-
fications. Proc. CAiSE'91, LNCS 498, Springer, 1991.

14. B. Meyer. Object-oriented Software Construction. Prentice Hall, 1988.
15. G. Snake and R. Jungclaus. Views and Formal Implementation in a Three-Level

Schema Architecture for Dynamic Objects. In Advanced Database Systems, BN-
COD 10, LCNS 618, Springer, 1992.

16. A.-W. Scheer. Business Process Engineering: Reference Models for Industrial En-
terprises. Springer, 2nd edition, 1994.

17. K.D. Swenson. Visual Support for Reengineering Work Processes. In Proc.
C00CS'93, ACM Press, 1993.

18. D. Wodtke, et al. The Mentor Project: Steps Towards Enterprise-Wide Workflow
Management. In Proc. ICDE'96, 1996.

