
Probabilistic Incremental Program Evolution: 
Stochastic Search Through Program Space 

Rafal Satustowicz and Jiirgen Schmidhuber 

IDSIA, Corso Elvezia 36, 6900 Lugano, Switzerland 
e-mail: {rafal, juergen)@idsia.ch 

tel.: +41-91-9919838 fax: +41-91-9919839 

Abstract. Probabilistic Incremental Program Evolution (PIPE) is a no- 
vel technique for automatic program synthesis. We combine probability 
vector coding of program instructions [Schmidhuber, 1997], Population- 
Based Incremental Learning (PBIL) [Baluja and Caruana, 1995] and 
tree-coding of programs used in variants of Genetic Programming (GP) 
[Cramer, 1985; Koza, 1992]. PIPE uses a stochastic selection method 
for successively generating better and better programs according to an 
adaptive "probabilistic prototype tree". No crossover operator is used. 
We compare PIPE to Koza's GP variant on a function regression problem 
and the 6-bit parity problem. 

1 I n t r o d u c t i o n  

Probabilistic Incremental Program Evolution (PIPE) synthesizes programs which 
compute solutions to a given problem. PIPE is inspired by recent work on 
learning with probabilistic programming languages [Schmidhuber, 1997] and 
by Population-Based Incremental Learning (PBIL) [Baluja and Caruana, 1995]. 
PIPE evolves tree-coded programs such as those used in Koza's variant of Ge- 
netic Programming [Koza, 1992], from now on simply referred to as GP. For 
earlier work on Genetic Programming see [Cramer, 1985; Dickmanns, 1987]. 

PIPE can be applied to any problem that GP can be applied to. PIPE's 
learning algorithm, however, is more like PBIL's and very different from GP's. 
PIPE does not use the crossover operator. Instead, it uses a "probabilistic pro- 
totype tree" to combine experiences of different programs and to generate better 
and better programs. 

Outl ine.  Section 2 describes the basic data structures and procedures used 
by PIPE. Section 3 introduces the new learning algorithm. Section 4 compares 
the performance of PIPE and GP on function regression and 6-bit parity. Section 
5 concludes. 

2 B a s i c  D a t a  S t r u c t u r e s  a n d  P r o c e d u r e s  

Overview. PIPE generates programs according to an underlying probabilistic 
prototype tree. 

P r o g r a m  Ins t ruc t ions .  Programs contain instructions from a function set 
F - {fl, f 2 , . . . ,  fk} with k functions and a terminal set T = {tl, t2 , . . . ,  tl} with 
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l terminals. For instance, to solve a one dimensional function approximation 
task one might use F = { + , - ,  *, %, sin, cos, exp, flog} and T = {x, R}, where 
% denotes protected division (Vy, z E ~ ,  z ~ 0: y%z = y/z and y%0 = 1), rlog 
denotes protected logarithm (Vy C ~ ,  y 7 ~ 0: rlog(y)=log(abs(y)) and flog(O) = 
0), x is an input variable and R represents a generic random constant E [0;1) 
(see also "ephemeral random constant" [Koza, 1992]). 

P r o g r a m  R e p r e s e n t a t i o n .  Programs are encoded in n-cry trees, with n 
being the maximal number of function arguments. Each argument is calculated 
by a subtree. The trees are parsed depth first from left to right. Sample program 
trees for a function approximation task are shown in Figure 1. 

Fig. 1. Sample program trees for function approximation. Left: f(x)=sin(exp(x)+(x~- 
o. 7I)). Right: f(x)=((ezp(~)+(x~O. 11))*(x-rlog(x)). 

P r o b a b i l i s t i c  P r o t o t y p e  Tree .  The probabilistic prototype tree (PPT) 
is generally a complete n-cry tree. At each node Nd,w it contains a random 
constant Rd,w and a variable probability vector Pd,w, where d _> 0 denotes the 
node's depth (root node has d = 0) and w defines the node's horizontal position 
when tree nodes with equal depth are read from left to right (0 _< w < n d ) .  
The probability vectors Pd,w have l + k components. Each component Pd,w(I) 
denotes the probability of choosing instruction I E F U T at Nd,~. We maintain: 

ZIeFUT Pd,w(I) = 1. 
P r o g r a m  G e n e r a t i o n .  To generate a program PROG from PPT, an instruc- 

tion I E F U T is selected with probability Pd,~(I) for each accessed node Nd,~ 
of PPT. This instruction is denoted Id,w. Nodes are accessed in a depth first 
way, starting at the root node N0,0, and traversing PPTfrom left to right. Once 
Id,w E F is selected, a subtree is created for each argument of Id,w. If Id,w = R, 
then an instance of R, called Vd,w(R), replaces R in PROG. If Pd,w(R) exceeds 
a threshold TR, then Vd,w(R) = Rd,w. Otherwise Vd,w(R) is randomly gener- 
ated. Figure 2 illustrates the relation between the prototype tree and a possible 
program tree. We denote the result of applying PaOG to data  x PaOG(x).  

T r e e  S ha p ing .  To reduce memory requirements we incrementally grow and 
prune the prototype tree. 

Growing. Initially the PPT contains only the root node. Nodes are created 
"on demand" whenever Id,w E F is selected and the subtree for an argument of 
Id,w is missing. Figure 3 shows a prototype tree after extraction of two programs. 

Pruning. We prune subtrees of the PPT attached to nodes which contain at 
least one probability vector component above a threshold Tp. In case of functions 
we prune only subtrees that are not required as function arguments (see Figure 
4). Pruning tends to discard old probability distributions that  are irrelevant by 
n O W .  
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PI,O 
P(x) = 0.0t 
P(R) = 0.01 
P(+) = 0.04 
P(-) = 0.02 
P(*) = 0.05 
P(%) = 0.01 
P(sin) = 0.01 
P(cos) = 0.02 
P{exp)= 0.8 
P(flog)= 0.03 

R 1,o m 0.45 

P 2,3 1 

R 2,3 = 0.71 

~ILO "'I~176 " 
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" - - "  12,0 " - - "  [2,2 " ' - "  2,3 

Fig. 2. Left: example of node Nl,0 's instruction probability vector P and random con- 
stant R. Middle: probabiIistic prototype tree PPT with details of node N2,3. Right: 
possible extracted program PaOG. At the time of creation of instruction 11,0 the dashed 
part of PaoG did not exist yet. 12,3 = R is instantiated to Vd,w(R) = R2,3 ---- 0.71, 
because probability P2,a(R) (not shown) exceeds the random constant threshold TR. 

1st Program 2nd Program 

Prototype Tree 

Fig. 3. Left: prototype tree. Right: two generated programs. The highlighted parts of the 
prototype tree were created during construction of the second program. 

3 L e a r n i n g  

O v e r v i e w .  PIPE attempts to find better and better programs, program quality 
being measured by a scalar, real-valued "fitness value". PIPE guides its search 
to promising search space areas by incrementally building on previous solutions. 
It generates successive program populations according to the underlying prob- 
abilistic prototype tree P P T  and stores in this tree the knowledge gained from 
evaluating the programs. 

P P T  Ini t ia l izat ion .  Each P P T  node Nd,w requires an initial random con- 
stant Rd,w and an initial probability Pd,w(I) for each instruction I E F U T. 
We pick Ra,w uniformly random from the interval [0;1). To initialize instruction 
probabilities we use a constant probability PT for selecting an instruction from 
T and (1 - PT) for selecting an instruction from F. Pd,w is then initialized as 
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P(R) = 0.008 
p(+) = 0.001 
P(-) = 0.003 
p(*) = 0 .006 
p(%) = 0.002 
P(sin) = 0.003 
P(eos) = 0.001 
P(exp) = 0.004 

I P(r log)= 0.002 . . . . . . . . . . . .  . . . "  "~ '-" -~, f -  " i  f "  -", . . . .  " . . . . . . . .  

, . . , . "  I j p  j p I p a " " . . .  
R = 0.23 . . - '  , ~ , , , , , . . .  

P r o t o t y p e  T r e e  

P(x) = 0.O91 
P(R) = 0.002 
P(+) = 0.004 
P(-) = 0.002 
P(*) = 0.005 
P(%) = 0.001 
P ( s i n )  = o .gs  
P(cos) = O.f102 
F(exp} •O.03 ] 
P(rlog) = 0.003 

R =  0.77 

Fig. 4. The dashed parts of the prototype tree can be pruned, because the probabilities 
of the adjacent nodes exceed threshold value Tp = 0.9 and contain high probabilities for 
a terminal (left) and a single function with one argument (right). 

follows: 

PT 1--PT VI : I F Pd,w(I) := - - ,  VI: I E T and Pd,w(I) := k , E (1) 

Learning Framework .  We combine two forms of learning: Generation- 
Based Learning (GBL) and Elitist Learning (EL). GBL is PIPE's main learning 
algorithm. EL's purpose is to make the the best program found so far an attrac- 
tor. We execute: 

1. GBL; 2. REPEAT { with probability Pel DO EL otherwise DO GBL } 

Here Pel is a user-defined constant in [0;1]. 
Gene ra t i on -Based  Learning. PIPE learns in successive generations, each 

comprising 5 distinct phases: (1) creation of program population, (2) population 
evaluation, (3) learning from population, (4) mutation of prototype tree and (5) 
prototype tree pruning. 

(1) Creation of  Program Population. A population of programs PROGj 
(0 < j < PS; PS is population size) is generated using the prototype tree P P T  
as described in Section 2. The PPT is grown "on demand". 

(2) Populat ion Evaluation. Each program PROGj of the current popu- 
lation is evaluated and assigned a non-negative "fitness value" FIT(PROGj). If 
FIT(PROGj) < FIT(PRoGi), then program PROGj is said to embody a better 
solution than program PROGI. Among programs with equal fitness we prefer 
shorter ones (Occam's razor), as measured by number of nodes. We define b to 
be the index of the best program of the current generation, and preserve the best 
program found so far in PROG el (elitist). 

(3) Learning f rom Population. Prototype tree probabilities are modi- 
fied such that the probability P(PROGb) of creating PROGb increases. We call 
this procedure adapg_.PPT_towards(PROGb). Our experiments indicate that it 
is beneficial to increase P(PROGb) regardless of PROGb'S length. To compute 
P(PROGb) we look at all PPT nodes Nd,w used to generate PRO%: 

P(PRO%) = H Pd,~(Id,~(PaOGb)), 
d,w:Nd,~ used to generate FROG b 

(2) 
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where Id,w(PROGb) denotes the instruction of program PROGb at node position 
d, w. Then we calculate a target probability PTARGET for PROGb: 

PTARGET = P(PROGb) + (1 -- P(PROGb))" lr. 
+ FIT(PROG el) 

E + FIT(PROGb) " 
(3) 

Here Ir is a constant learning rate and s a user defined constant. The fraction 

e+FIT(PROG~I) implements fitness dependent learning (]dl). We learn more from e+FIT(PROGb) 
programs with higher quality (lower fitness) than from programs with lower 
quality (higher fitness). Constant e determines the degree of fd/'s influence. If V 
FIT(PROGd): ~ < <  FIT(PROG~t), then P IPE  can use small population sizes, 
as generations containing only low-quality individuals do not affect the P P T  
much. Even learning with only one program per generation is then possible. 

Given PTARGET, all single node probabilities Pd,w(/a,,~(PROGb)) are in- 
creased iteratively (in parallel): 

REPEAT UNTIL P(PROGb) >_ PTARGET : 
Pd,~(Id,w(PROGb)) := Pd,w(Id,w(PROGb)) + Jr .  lr. (1 -- Pd,w(Id,w(PROGb))) 

Here c lr is a constant influencing the number of iterations. We use c lr -- 0.1, 
which turned out to be a good compromise between precision and speed. 

Finally each random constant in PROGb is copied to the appropriate node in 
PPT: if Id,w(PROGb) = R then Rd,w := Vd,w(R). 

(5) Mutation of Prototype Tree. Mutation is PIPE 's  major exploration 
mechanism. Mutation of PPT probabilities is guided by the current best solution 
PaOgb. We want to explore the area "around" PROGb. Probabilities Pd,w(I) 
stored in all nodes Nd,w that  were accessed to generate program PROGb are 
mutated with a probability PMp, defined as: 

PM 
PMp = (1 + k). ~ '  (4) 

where PM is a free parameter setting the overall mutation probability and 
IPROGbl denotes the number of nodes in program PaOGb. The justification of 
the square root is empirical: we found that larger programs improve faster with 
a higher mutat ion rate. Selected probability vector components are mutated as 
follows: 

Pd,~(I) := Pd,w(I) + mr.  (1 -- Pd,w(I)), (5) 

where mr is the mutation rate, another free parameter. All mutated vectors Pd,w 
are then renormalized. 

We see from assignment (5) that small probabilities (close to 0) are subject 
to stronger mutations than high probabilities. Otherwise mutations would tend 
to have little effect on the next generation. 

(5) Prototype Tree Pruning. At the end of each generation we prune the 
prototype tree as described in section 2. 
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El i t i s t  Lea rn ing .  During elitist learning (EL) we adapt P P T  towards the 
elitist program PROG e~ by calling adapt_PPT_towards (PRoGel), then we prune 
PPT.  However, we neither mutate the probabilities of P P T  nor create and eval- 
uate a population, making EL computationally cheap. It focuses search on pre- 
viously discovered promising parts of the search space. EL is particularly useful 
with small population sizes. It works efficiently in case of noise-free problems. 

Termination Criterion. PIPE is run either for a fixed number of program 
evaluations P E  (time constraint) or until a solution with fitness better than 
FIT8 is found (quality constraint). 

4 Experimental  Comparison with GP 
In this section we compare our PIPE method to Koza's Genetic Programming 
variant (GP) on two problems. First, we investigate a continuous function re- 
gression problem. We use a non-trivial function to prevent either algorithm from 
simply guessing it. We then compare both algorithms on the 6-bit parity prob- 
lem, a discrete task which allows for only 65 distinct fitness values. The limited 
number of fitness values permits us to test PIPE's  built-in Occam's razor. 

For both algorithms and problems we set F = {+, - , . ,  %, sin, cos, exp, flog} 
and T = {x, R} (see Section 2). For GP R denotes a set of constants from [0;1) 
("ephemeral random constant", see [Koza, 1992] for details). 

4.1 Function Regression 

The function to be approximated is: 

f ( x )  = x 3. e - x .  cos(x) ,  s in (x ) .  (sin2(x) �9 cos(x) - 1) 

See Figure 5. The training (testing) data  set D~r (Dte) samples f at 101 equidis- 
tant  points from the interval [0;10] ([0.05;10.05]). Dtr is used for learning, Dte to 
test generalization. The fitness value for each program PROG is FIT(PROG)  ---- 
~VxeD~. I f ( x )  - -  PROG(X)I, its generalization performance GEN(PROG) = 
~VxeD~ If(x)  -- PROG(X)I. We set PE = 100000 for both algorithms and 
tried many parameter settings for both PIPE and GP. Good parameters for 
PIPE are: PT=0.8, c = 1, Pel=0.2, PS=IO, /r=0.2, PM=0.2, mr-=0.4, TR=0.3, 
Tp=0.999999, FITs  = O. Good parameters for GP are: population size = 2000, 
crossover rate = 0.9, maximal tree depth = 10, initial depth = 2-6 with "half 
and half population initialization" and "over-selection" - see [Koza, 1992]. 

Resu l t s .  21 independent test runs were conducted for each algorithm. To 
obtain an idea how generalization performance relates to function approximation 
quality, consider Figure 6. Note that  generalization performance GEN(PROG) 
20 can be obtained using a constant function. 

PIPE's  and GP's generalization performances are summarized in Figure 7. 
Generalization performances w are plotted against numbers of programs with 
G E N ( P R o G )  < w. 

The top 24% of all PIPE runs led to better results than all GP runs. On the 
other hand, the worst 33% of all PIPE runs led to worse results than all GP 
runs. PIPE's  best solutions are better than GP's, but variance is higher, too. 
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Fig. 5. f ( x )  = x 3 �9 e -~ . cos(x) �9 s in(x)  Fig. 6. Test data set  Dt~ and approxima- 
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Fig. 7. Cumulat ive histograms of PIPE's  (left) and GP's (right) generalization perfor- 
mance on the funct ion regression problem�9 Each box indicates how often PIPE's  (left) 
and GP's  (right) generalization performance was at least as good as the corresponding 
o n e .  

4.2 6 -Bi t  Par i ty  P r o b l e m  

For this problem, Boolean values are represented by integers: 1 for true and 0 
for false. The 6-bit parity function has 6 Boolean arguments; it returns 1 if the 
number of non-zero arguments is odd and 0 otherwise. 

The fitness of a program is the number of patterns it classifies incorrectly. 
Best (worst) fitness for classifying all (no) patterns correctly is 0 (64). To fit the 
Boolean nature of the problem the reaLvalued output of a program is mapped 
to 0 if negative and to 1 otherwise. We set P E  = 500000 for both algorithms. 
After a coarse parameter search we found the following good parameter settings. 
For PIPE: PT=0.6, ~ = 1, Pel=0.05, PS=12, lr=0.01, PM=0.4, mr=0.4, TR=0.3, 
Tp=0.999999, F I T s  = 0. For GP: population size = 2000, crossover rate = 0.9, 
maximal tree depth = 10, initial depth = 2-6 with "half  and  hal f  population 
initialization" and "over-selection" - see [Koza, 1992]. The best GP parameters 
we found turned out to be the same as for the function approximation task, 
although we tried many combinations. PIPE was less robust with respect to 
parameter settings. 

Resu l t s .  50 independent test runs were conducted for each algorithm. The 
shortest PIPE-program embodying a perfect solution was found after 5829 pro- 
gram evaluations. It has 22 nodes and computes: 

(x2- ( (flog (flog (cos (0. 530687) ) )~,x2) %cos ( ( ((x5-x3) - (xO+ (xl-x4)) ) 
Y.rlog(O. 699001))))) 

Table 1 summarizes all results. 
On this task, PIPE performed better than GP. It solved the problem more 

reliably (more often) and faster in the median (with fewer program evaluations). 
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6-bit parity 
Program Evaluations 

Algorithm solved min- med -max 
PIPE 70 % 9,432-52,476-482,545 
GP 60 % 64,000-120,000-396,000 

Nodes 
min-med-max 

22- 61 -100 
24- 90 -161 

Table 1. Summary of 6-bit parity results. 

PIPE also found less complex solutions (containing fewer nodes). 

5 Conc lus ions  

We introduced PIPE, a novel method for automatic program synthesis. Succes- 
sive generations of programs are generated according to a probabilistic prototype 
tree PPT.  The P P T  guides the search and is updated according to the search 
results. PIPE performs better than GP on the 6-bit parity problem. It 's best 
solutions to a function regression problem are better than GP's best solutions. 
GP's results have lower variance though. 
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