
Probabilistic Incremental Program Evolution:
Stochastic Search Through Program Space

Rafal Satustowicz and Jiirgen Schmidhuber

IDSIA, Corso Elvezia 36, 6900 Lugano, Switzerland
e-mail: {rafal, juergen)@idsia.ch

tel.: +41-91-9919838 fax: +41-91-9919839

Abstract. Probabilistic Incremental Program Evolution (PIPE) is a no-
vel technique for automatic program synthesis. We combine probability
vector coding of program instructions [Schmidhuber, 1997], Population-
Based Incremental Learning (PBIL) [Baluja and Caruana, 1995] and
tree-coding of programs used in variants of Genetic Programming (GP)
[Cramer, 1985; Koza, 1992]. PIPE uses a stochastic selection method
for successively generating better and better programs according to an
adaptive "probabilistic prototype tree". No crossover operator is used.
We compare PIPE to Koza's GP variant on a function regression problem
and the 6-bit parity problem.

1 I n t r o d u c t i o n

Probabilistic Incremental Program Evolution (PIPE) synthesizes programs which
compute solutions to a given problem. PIPE is inspired by recent work on
learning with probabilistic programming languages [Schmidhuber, 1997] and
by Population-Based Incremental Learning (PBIL) [Baluja and Caruana, 1995].
PIPE evolves tree-coded programs such as those used in Koza's variant of Ge-
netic Programming [Koza, 1992], from now on simply referred to as GP. For
earlier work on Genetic Programming see [Cramer, 1985; Dickmanns, 1987].

PIPE can be applied to any problem that GP can be applied to. PIPE's
learning algorithm, however, is more like PBIL's and very different from GP's.
PIPE does not use the crossover operator. Instead, it uses a "probabilistic pro-
totype tree" to combine experiences of different programs and to generate better
and better programs.

Outl ine. Section 2 describes the basic data structures and procedures used
by PIPE. Section 3 introduces the new learning algorithm. Section 4 compares
the performance of PIPE and GP on function regression and 6-bit parity. Section
5 concludes.

2 B a s i c D a t a S t r u c t u r e s a n d P r o c e d u r e s

Overview. PIPE generates programs according to an underlying probabilistic
prototype tree.

P r o g r a m Ins t ruc t ions . Programs contain instructions from a function set
F - {fl, f 2 , . . . , fk} with k functions and a terminal set T = {tl, t2 , . . . , tl} with

214

l terminals. For instance, to solve a one dimensional function approximation
task one might use F = { + , - , *, %, sin, cos, exp, flog} and T = {x, R}, where
% denotes protected division (Vy, z E ~ , z ~ 0: y%z = y/z and y%0 = 1), rlog
denotes protected logarithm (Vy C ~ , y 7 ~ 0: rlog(y)=log(abs(y)) and flog(O) =
0), x is an input variable and R represents a generic random constant E [0;1)
(see also "ephemeral random constant" [Koza, 1992]).

P r o g r a m R e p r e s e n t a t i o n . Programs are encoded in n-cry trees, with n
being the maximal number of function arguments. Each argument is calculated
by a subtree. The trees are parsed depth first from left to right. Sample program
trees for a function approximation task are shown in Figure 1.

Fig. 1. Sample program trees for function approximation. Left: f(x)=sin(exp(x)+(x~-
o. 7I)). Right: f(x)=((ezp(~)+(x~O. 11))*(x-rlog(x)).

P r o b a b i l i s t i c P r o t o t y p e Tree . The probabilistic prototype tree (PPT)
is generally a complete n-cry tree. At each node Nd,w it contains a random
constant Rd,w and a variable probability vector Pd,w, where d _> 0 denotes the
node's depth (root node has d = 0) and w defines the node's horizontal position
when tree nodes with equal depth are read from left to right (0 _< w < n d) .
The probability vectors Pd,w have l + k components. Each component Pd,w(I)
denotes the probability of choosing instruction I E F U T at Nd,~. We maintain:

ZIeFUT Pd,w(I) = 1.
P r o g r a m G e n e r a t i o n . To generate a program PROG from PPT, an instruc-

tion I E F U T is selected with probability Pd,~(I) for each accessed node Nd,~
of PPT. This instruction is denoted Id,w. Nodes are accessed in a depth first
way, starting at the root node N0,0, and traversing PPTfrom left to right. Once
Id,w E F is selected, a subtree is created for each argument of Id,w. If Id,w = R,
then an instance of R, called Vd,w(R), replaces R in PROG. If Pd,w(R) exceeds
a threshold TR, then Vd,w(R) = Rd,w. Otherwise Vd,w(R) is randomly gener-
ated. Figure 2 illustrates the relation between the prototype tree and a possible
program tree. We denote the result of applying PaOG to data x PaOG(x).

T r e e S ha p ing . To reduce memory requirements we incrementally grow and
prune the prototype tree.

Growing. Initially the PPT contains only the root node. Nodes are created
"on demand" whenever Id,w E F is selected and the subtree for an argument of
Id,w is missing. Figure 3 shows a prototype tree after extraction of two programs.

Pruning. We prune subtrees of the PPT attached to nodes which contain at
least one probability vector component above a threshold Tp. In case of functions
we prune only subtrees that are not required as function arguments (see Figure
4). Pruning tends to discard old probability distributions that are irrelevant by
n O W .

215

PI,O
P(x) = 0.0t
P(R) = 0.01
P(+) = 0.04
P(-) = 0.02
P(*) = 0.05
P(%) = 0.01
P(sin) = 0.01
P(cos) = 0.02
P{exp)= 0.8
P(flog)= 0.03

R 1,o m 0.45

P 2,3 1

R 2,3 = 0.71

~ILO "'I~176 "

".~-" ILl

:':, : : , !o3i:, ' , x , ~ x ,
" - - " 12,0 " - - " [2,2 " ' - " 2,3

Fig. 2. Left: example of node Nl,0 's instruction probability vector P and random con-
stant R. Middle: probabiIistic prototype tree PPT with details of node N2,3. Right:
possible extracted program PaOG. At the time of creation of instruction 11,0 the dashed
part of PaoG did not exist yet. 12,3 = R is instantiated to Vd,w(R) = R2,3 ---- 0.71,
because probability P2,a(R) (not shown) exceeds the random constant threshold TR.

1st Program 2nd Program

Prototype Tree

Fig. 3. Left: prototype tree. Right: two generated programs. The highlighted parts of the
prototype tree were created during construction of the second program.

3 L e a r n i n g

O v e r v i e w . PIPE attempts to find better and better programs, program quality
being measured by a scalar, real-valued "fitness value". PIPE guides its search
to promising search space areas by incrementally building on previous solutions.
It generates successive program populations according to the underlying prob-
abilistic prototype tree P P T and stores in this tree the knowledge gained from
evaluating the programs.

P P T Ini t ia l izat ion . Each P P T node Nd,w requires an initial random con-
stant Rd,w and an initial probability Pd,w(I) for each instruction I E F U T.
We pick Ra,w uniformly random from the interval [0;1). To initialize instruction
probabilities we use a constant probability PT for selecting an instruction from
T and (1 - PT) for selecting an instruction from F. Pd,w is then initialized as

216

P(R) = 0.008
p(+) = 0.001
P(-) = 0.003
p(*) = 0 .006
p(%) = 0.002
P(sin) = 0.003
P(eos) = 0.001
P(exp) = 0.004

I P(r log)= 0.002 " "~ '-" -~, f - " i f " -", "

, . . , . " I j p j p I p a " " . . .
R = 0.23 . . - ' , ~ , , , , , . . .

P r o t o t y p e T r e e

P(x) = 0.O91
P(R) = 0.002
P(+) = 0.004
P(-) = 0.002
P(*) = 0.005
P(%) = 0.001
P (s i n) = o .gs
P(cos) = O.f102
F(exp} •O.03]
P(rlog) = 0.003

R = 0.77

Fig. 4. The dashed parts of the prototype tree can be pruned, because the probabilities
of the adjacent nodes exceed threshold value Tp = 0.9 and contain high probabilities for
a terminal (left) and a single function with one argument (right).

follows:

PT 1--PT VI : I F Pd,w(I) := - - , VI: I E T and Pd,w(I) := k , E (1)

Learning Framework . We combine two forms of learning: Generation-
Based Learning (GBL) and Elitist Learning (EL). GBL is PIPE's main learning
algorithm. EL's purpose is to make the the best program found so far an attrac-
tor. We execute:

1. GBL; 2. REPEAT { with probability Pel DO EL otherwise DO GBL }

Here Pel is a user-defined constant in [0;1].
Gene ra t i on -Based Learning. PIPE learns in successive generations, each

comprising 5 distinct phases: (1) creation of program population, (2) population
evaluation, (3) learning from population, (4) mutation of prototype tree and (5)
prototype tree pruning.

(1) Creation of Program Population. A population of programs PROGj
(0 < j < PS; PS is population size) is generated using the prototype tree P P T
as described in Section 2. The PPT is grown "on demand".

(2) Populat ion Evaluation. Each program PROGj of the current popu-
lation is evaluated and assigned a non-negative "fitness value" FIT(PROGj). If
FIT(PROGj) < FIT(PRoGi), then program PROGj is said to embody a better
solution than program PROGI. Among programs with equal fitness we prefer
shorter ones (Occam's razor), as measured by number of nodes. We define b to
be the index of the best program of the current generation, and preserve the best
program found so far in PROG el (elitist).

(3) Learning f rom Population. Prototype tree probabilities are modi-
fied such that the probability P(PROGb) of creating PROGb increases. We call
this procedure adapg_.PPT_towards(PROGb). Our experiments indicate that it
is beneficial to increase P(PROGb) regardless of PROGb'S length. To compute
P(PROGb) we look at all PPT nodes Nd,w used to generate PRO%:

P(PRO%) = H Pd,~(Id,~(PaOGb)),
d,w:Nd,~ used to generate FROG b

(2)

217

where Id,w(PROGb) denotes the instruction of program PROGb at node position
d, w. Then we calculate a target probability PTARGET for PROGb:

PTARGET = P(PROGb) + (1 -- P(PROGb))" lr.
+ FIT(PROG el)

E + FIT(PROGb) "
(3)

Here Ir is a constant learning rate and s a user defined constant. The fraction

e+FIT(PROG~I) implements fitness dependent learning (]dl). We learn more from e+FIT(PROGb)
programs with higher quality (lower fitness) than from programs with lower
quality (higher fitness). Constant e determines the degree of fd/'s influence. If V
FIT(PROGd): ~ < < FIT(PROG~t), then P IPE can use small population sizes,
as generations containing only low-quality individuals do not affect the P P T
much. Even learning with only one program per generation is then possible.

Given PTARGET, all single node probabilities Pd,w(/a,,~(PROGb)) are in-
creased iteratively (in parallel):

REPEAT UNTIL P(PROGb) >_ PTARGET :
Pd,~(Id,w(PROGb)) := Pd,w(Id,w(PROGb)) + Jr . lr. (1 -- Pd,w(Id,w(PROGb)))

Here c lr is a constant influencing the number of iterations. We use c lr -- 0.1,
which turned out to be a good compromise between precision and speed.

Finally each random constant in PROGb is copied to the appropriate node in
PPT: if Id,w(PROGb) = R then Rd,w := Vd,w(R).

(5) Mutation of Prototype Tree. Mutation is PIPE 's major exploration
mechanism. Mutation of PPT probabilities is guided by the current best solution
PaOgb. We want to explore the area "around" PROGb. Probabilities Pd,w(I)
stored in all nodes Nd,w that were accessed to generate program PROGb are
mutated with a probability PMp, defined as:

PM
PMp = (1 + k). ~ ' (4)

where PM is a free parameter setting the overall mutation probability and
IPROGbl denotes the number of nodes in program PaOGb. The justification of
the square root is empirical: we found that larger programs improve faster with
a higher mutat ion rate. Selected probability vector components are mutated as
follows:

Pd,~(I) := Pd,w(I) + mr. (1 -- Pd,w(I)), (5)

where mr is the mutation rate, another free parameter. All mutated vectors Pd,w
are then renormalized.

We see from assignment (5) that small probabilities (close to 0) are subject
to stronger mutations than high probabilities. Otherwise mutations would tend
to have little effect on the next generation.

(5) Prototype Tree Pruning. At the end of each generation we prune the
prototype tree as described in section 2.

218

El i t i s t Lea rn ing . During elitist learning (EL) we adapt P P T towards the
elitist program PROG e~ by calling adapt_PPT_towards (PRoGel), then we prune
PPT. However, we neither mutate the probabilities of P P T nor create and eval-
uate a population, making EL computationally cheap. It focuses search on pre-
viously discovered promising parts of the search space. EL is particularly useful
with small population sizes. It works efficiently in case of noise-free problems.

Termination Criterion. PIPE is run either for a fixed number of program
evaluations P E (time constraint) or until a solution with fitness better than
FIT8 is found (quality constraint).

4 Experimental Comparison with GP
In this section we compare our PIPE method to Koza's Genetic Programming
variant (GP) on two problems. First, we investigate a continuous function re-
gression problem. We use a non-trivial function to prevent either algorithm from
simply guessing it. We then compare both algorithms on the 6-bit parity prob-
lem, a discrete task which allows for only 65 distinct fitness values. The limited
number of fitness values permits us to test PIPE's built-in Occam's razor.

For both algorithms and problems we set F = {+, - , . , %, sin, cos, exp, flog}
and T = {x, R} (see Section 2). For GP R denotes a set of constants from [0;1)
("ephemeral random constant", see [Koza, 1992] for details).

4.1 Function Regression

The function to be approximated is:

f (x) = x 3. e - x . cos(x) , s in (x) . (sin2(x) �9 cos(x) - 1)

See Figure 5. The training (testing) data set D~r (Dte) samples f at 101 equidis-
tant points from the interval [0;10] ([0.05;10.05]). Dtr is used for learning, Dte to
test generalization. The fitness value for each program PROG is FIT(PROG) ----
~VxeD~. I f (x) - - PROG(X)I, its generalization performance GEN(PROG) =
~VxeD~ If(x) -- PROG(X)I. We set PE = 100000 for both algorithms and
tried many parameter settings for both PIPE and GP. Good parameters for
PIPE are: PT=0.8, c = 1, Pel=0.2, PS=IO, /r=0.2, PM=0.2, mr-=0.4, TR=0.3,
Tp=0.999999, FITs = O. Good parameters for GP are: population size = 2000,
crossover rate = 0.9, maximal tree depth = 10, initial depth = 2-6 with "half
and half population initialization" and "over-selection" - see [Koza, 1992].

Resu l t s . 21 independent test runs were conducted for each algorithm. To
obtain an idea how generalization performance relates to function approximation
quality, consider Figure 6. Note that generalization performance GEN(PROG)
20 can be obtained using a constant function.

PIPE's and GP's generalization performances are summarized in Figure 7.
Generalization performances w are plotted against numbers of programs with
G E N (P R o G) < w.

The top 24% of all PIPE runs led to better results than all GP runs. On the
other hand, the worst 33% of all PIPE runs led to worse results than all GP
runs. PIPE's best solutions are better than GP's, but variance is higher, too.

219

1 , , , ,
o.8

o .6

0.4

41.2

-0.4

-0.8

o 2 4 6 8 ID

0.8 G E N (P R O G) = 1.18 - -
0 .6 GEN(PROG)---9,89

0 .4 D _ ~ +

0 ,2

0 '
-0.2

-0.4 --"

-0.6

-0.8

-1
[) 2 4 6 8

Fig. 5. f (x) = x 3 �9 e -~ . cos(x) �9 s in(x) Fig. 6. Test data set Dt~ and approxima-
�9 (s in2(x) . cos(x) - 1)

PIPE

10 ~ 10

11 o
D 2 4 6 8 l0 I2 14 16 18 2O 22 0

genetal~a~oa perfi~maace

tions with G E N (P a o G) = 1.18 and 9.89.

G P I , , I

2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2

genera l i~ f ionp~o~ace

Fig. 7. Cumulat ive histograms of PIPE's (left) and GP's (right) generalization perfor-
mance on the funct ion regression problem�9 Each box indicates how often PIPE's (left)
and GP's (right) generalization performance was at least as good as the corresponding
o n e .

4.2 6 -Bi t Par i ty P r o b l e m

For this problem, Boolean values are represented by integers: 1 for true and 0
for false. The 6-bit parity function has 6 Boolean arguments; it returns 1 if the
number of non-zero arguments is odd and 0 otherwise.

The fitness of a program is the number of patterns it classifies incorrectly.
Best (worst) fitness for classifying all (no) patterns correctly is 0 (64). To fit the
Boolean nature of the problem the reaLvalued output of a program is mapped
to 0 if negative and to 1 otherwise. We set P E = 500000 for both algorithms.
After a coarse parameter search we found the following good parameter settings.
For PIPE: PT=0.6, ~ = 1, Pel=0.05, PS=12, lr=0.01, PM=0.4, mr=0.4, TR=0.3,
Tp=0.999999, F I T s = 0. For GP: population size = 2000, crossover rate = 0.9,
maximal tree depth = 10, initial depth = 2-6 with "half and hal f population
initialization" and "over-selection" - see [Koza, 1992]. The best GP parameters
we found turned out to be the same as for the function approximation task,
although we tried many combinations. PIPE was less robust with respect to
parameter settings.

Resu l t s . 50 independent test runs were conducted for each algorithm. The
shortest PIPE-program embodying a perfect solution was found after 5829 pro-
gram evaluations. It has 22 nodes and computes:

(x2- ((flog (flog (cos (0. 530687)))~,x2) %cos ((((x5-x3) - (xO+ (xl-x4)))
Y.rlog(O. 699001)))))

Table 1 summarizes all results.
On this task, PIPE performed better than GP. It solved the problem more

reliably (more often) and faster in the median (with fewer program evaluations).

220

6-bit parity
Program Evaluations

Algorithm solved min- med -max
PIPE 70 % 9,432-52,476-482,545
GP 60 % 64,000-120,000-396,000

Nodes
min-med-max

22- 61 -100
24- 90 -161

Table 1. Summary of 6-bit parity results.

PIPE also found less complex solutions (containing fewer nodes).

5 Conc lus ions

We introduced PIPE, a novel method for automatic program synthesis. Succes-
sive generations of programs are generated according to a probabilistic prototype
tree PPT. The P P T guides the search and is updated according to the search
results. PIPE performs better than GP on the 6-bit parity problem. It 's best
solutions to a function regression problem are better than GP's best solutions.
GP's results have lower variance though.

References

[Baluja and Caxuana, 1995] Baluja, S. and Caxuana, R. (1995). Removing the genetics
from the standard genetic algorithm. In Prieditis, A. and Russell, S., editors, Machine
Learning: Proceedings of the Twelfth International Conference, pages 38-46. Morgan
Kaufmann Publishers, San Francisco, CA.

[Cramer, 1985] Cramer, N. L. (1985). A representation for the adaptive generation
of simple sequential programs. In Grefenstette, J., editor, Proceedings of an Inter-
national Conference on Genetic Algorithms and Their Applications, Hillsdale NJ.
Lawrence Erlbaum Associates.

[Dickmanns et al., 1987] Dickmanns, D., Schmidhuber, J., and Winklhofer, A. (1987).
Der genetische Algorithmus: Eine Implementierung in Prolog. Fortgeschrittenen-
praktikum, Institut fiir Informatik, Lehrstuhl Prof. Radig, Technische Universits
Mfinchen.

[Koza, 1992] Koza, J. R. (1992). Genetic Programming - On the Programming of
Computers by Means of Natural Selection. MIT Press.

[Schmidhuber, 1997] Schmidhuber, J. (1997). A general method for incremental self-
improvement and multi-agent learning in unrestricted environments. In Yao, X.,
editor, Evolutionary Computation: Theory and Applications. Scientific Publ. Co.,
Singapore. In press.

