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Abstract. In spite of great advances in the automatic drawing of 
medium and large graphs, the tools available for drawing small graphs 
exquisitely (that is, with the aesthetics commonly found in professional 
publications and presentations) are still very primitive. Commercial tools 
such as Claris Draw or Microsoft's Powerpoint provide minimal support 
for aesthetic graph layout. At the other extreme, research prototypes 
based on constraint methods are overly general for graph drawing. Our 
system improves on general constraint-based approaches to drawing and 
layout by supporting only a small set of "macro" constraints that are 
specifically suited to graph drawing. These constraints are enforced by a 
generalized spring algorithm. The result is a usable and useful tool for 
drawing small graphs easily and nicely. 

1 I n t r o d u c t i o n  

Most small graphs (those with fewer than about 30 nodes) that appear in publi- 
cations or presentations are still drawn with the aid of fairly primitive commercial 
drawing tools like Microsoft's PowerPoint or Claris Draw. Why do these tools not 
incorporate some of the advanced techniques that have been developed by either 
the graph-drawing or constraint-based-layout communities? One reason is that 
most graph-drawing algorithms cannot support the exquisite symmetries, spac- 
ings, and alignments that graphic designers utilize in professional-grade work. 
This kind of layout detail can be achieved in some constraint-based drawing 
systems, but the very general capabilities of such systems tend to make them 
cumbersome for the specific task of graph drawing. 

Our system is based on constraints, but ones that are designed specifically 
for drawing graphs, not general graphics. These "macro" constraints, or Visual 
Organization Features (VOFs) [2], are listed in Figure 1; the application of each 
VOF is illustrated by "before" and "after" layouts. In our drawing tool, VOFs 
can be applied and removed interactively. Furthermore, the tool enforces syntac- 
tic constraints, such as preventing nodes overlapping other nodes and edges. The 
VOF and syntactic constraints are enforced by a generalized spring algorithm, 
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Fig. 1. Visual organization features (after [2]). 

Fig. 2. Scanned diagram on which the example was based (from [3]). 

an improved version of the one described by Dengler et al. [1]. We describe below 
how our toot can be used to replicate the drawing in Figure 2 [3]. The sample in- 
teractions shown illustrate the aptitude and convenience of our tool for drawing 
small graphs. 

2 E x a m p l e  I n t e r a c t i o n  

Figures 3-9 show snapshots at various stages in the process of drawing a given 
graph. A screen dump of the entire interface to our system is shown in Figure 9; 
other figures show only the canvas area. The existence of active VOFs is indi- 
cated visually in our system by a user-responsive highlighting mechanism that 
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Fig. 3. The initial layout, with labeled nodes and edges. 

cannot be replicated in static images. We therefore use shades of gray to indicate 
different VOFs in the figures. 

The first step in the drawing process is typically to place the desired number 
of nodes in approximately the desired layout. To create a node, the user clicks 
the middle mouse button on the canvas area. Node characteristics (label, shape, 
font, background color, foreground color, border color, dimensions) can be mod- 
ified via an edit dialog window. If a node's label becomes larger than the node 
itself, the system will automatically enlarge the node to accommodate its new 
label. Edges are added by dragging with the left mouse button from origin to 
destination node. Edges can be undirected, unidirectional, or bidirectional; they 
can also be direct or orthogonal. Figure 3 shows the layout after an initial node- 
and edge-placement phase. 

To add a VOF to the layout, the user first selects a set of nodes using standard 
mouse techniques such as clicking or region-dragging. The user may then apply 
one or more VOFs to the set by pressing the appropriate push buttons, located 
on the right of the window in Figure 9. In Figure 4, the user has applied a 
horizontal Alignment VOF to the second, third, and fourth rows of nodes. 

The system converts each VOF instance into a set of constraints, which it 
attempts to satisfy using a generalized spring algorithm. For example, an Align- 
ment VOF mandates a set of zero-rest-length springs connecting each node to 
an axis-parallel line through the centroid of the points; a Cluster VOF places 
springs pairwise among the nodes with a short rest length. The physical simu- 
lation of the mass-spring model is continuously animated, indicating to the user 
the influence of the chosen VOFs. The user may move nodes and groups of nodes 
while the simulation proceeds in order to aid the system in finding better global 
solutions to the implicit constraint-satisfaction problem. 

The use of a constraint-satisfaction scheme (mass-spring simulation) that 



390 

Fig. 4. User adds an Alignment VOF to each row. 
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Fig. 5. A stable configuration, satisfying the Alignment VOFs. 

is intuitive and predictable, rather than one better at finding global solutions, 
is deliberate. The tool is not intended to be good at globally satisfying the 
VOFs by itself. Rather, it is intended to provide an interface that  allows a useful 
collaboration between user and computer in solving the layout problem. For this 
purpose predictability, simplicity, and the compelling nature of the animation 
are far more importan~ than globa~ optimality. 

Figure 5 shows the stable configuration that  ensues after the three Alignment 
VOFs have been satisfied. 

Continuing with the example, the user adds three more VOFs, as illustrated 
in Figure 6. On the right, the user has added a Hub Shape VOF, indicated in 
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Fig. 6. The user adds three more VOFs: Symmetry, Alignment, and Hub Shape. 

Fig. 7. The system satisfies both new and old constraints. 

light gray. The center two nodes (dark gray) are to be vertically aligned. Finally, 
the four nodes on the left have had a Symmetry VOF applied to them. 

Once again, the system converts each VOF instance into a set of constraints. 
It  a t tempts  to satisfy all constraints, both  old and new, in determining node 
placement. Figure 7 shows the updated  node positions. Each row is still aligned, 
and the new VOFs have been satisfied as well. 

As a final step, the user adds text  labels to the layout. Text labels are nodes 
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Fig. 8. The user adds three text labels, and three more VOFs: Clustering, Even Spacing, 
and Alignment. 

Fig. 9. The final layout (showing full system interface). 

that have no background or border color, so that  only the text string is visible. 
Any node can be designated a text label by selecting it and then pressing the Text 
Label push button. Text labels can also participate in VOFs, just like regular 
nodes. In Figure 8, the user has added three text labels, and applied a VOF to 
each one. The light-gray nodes on the left are subject to a Cluster VOF. The 
dark-gray nodes on the bot tom are to be horizontally aligned. The middle three 
nodes, shaded medium gray, are to be evenly spaced. Figure 9 shows the final 
layout embedded in the system interface. 
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As an example of the flexibility of the system, Figure 10 presents successive 
snapshots of quiescent states of the interface as a user develops an alternative 
layout starting from the same initial layout (a) of the previous example graph. 
The user imposes a T-shape VOF on four nodes at the top. After the simulation 
stabilizes (b) the T-shape has been enforced. The user adds another T-shape 
VOF (c). The user moves the two root nodes of the T's roughly as indicated in 
(d) in order to invert the direction of the T's; the system maintains the T-shape 
constraints generating the layout in (e). The user swaps two nodes (f), and adds 
a Vertical Alignment and a Symmetry VOF (g), and two Horizontal Alignment 
VOFs (h). Finally, four nodes are specified to have Equal Spacing (i) to generate 
the final layout (j). 

3 Conclusion 

The VOFs supported by our system provide a natural and powerful vocabulary 
whereby users can express easily the desired characteristics of a graph layout, 
and the intuitive constraint-satisfaction method allows for a collaborative inter- 
action between user and computer in solving graph-layout problems. An informal 
comparison with commercial drawing programs shows our system to be markedly 
superior for drawing small, aesthetic graphs. 
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Fig. 10. Development of an alternative layout. 


