
An Interactive System for Drawing Graphs

Kathy Ryall 1, Joe Marks 2, and Stuart Shieber 1

1 Aiken Computation Lab
Harvard University

Cambridge, MA 02138, U.S.A.
E-mail: {kryall, shieber}~eecs .harvard. edu

2 MERL
201 Broadway

Cambridge, MA 02139, U.S.A.
E-maih marks@merl, cora

Abstract. In spite of great advances in the automatic drawing of
medium and large graphs, the tools available for drawing small graphs
exquisitely (that is, with the aesthetics commonly found in professional
publications and presentations) are still very primitive. Commercial tools
such as Claris Draw or Microsoft's Powerpoint provide minimal support
for aesthetic graph layout. At the other extreme, research prototypes
based on constraint methods are overly general for graph drawing. Our
system improves on general constraint-based approaches to drawing and
layout by supporting only a small set of "macro" constraints that are
specifically suited to graph drawing. These constraints are enforced by a
generalized spring algorithm. The result is a usable and useful tool for
drawing small graphs easily and nicely.

1 I n t r o d u c t i o n

Most small graphs (those with fewer than about 30 nodes) that appear in publi-
cations or presentations are still drawn with the aid of fairly primitive commercial
drawing tools like Microsoft's PowerPoint or Claris Draw. Why do these tools not
incorporate some of the advanced techniques that have been developed by either
the graph-drawing or constraint-based-layout communities? One reason is that
most graph-drawing algorithms cannot support the exquisite symmetries, spac-
ings, and alignments that graphic designers utilize in professional-grade work.
This kind of layout detail can be achieved in some constraint-based drawing
systems, but the very general capabilities of such systems tend to make them
cumbersome for the specific task of graph drawing.

Our system is based on constraints, but ones that are designed specifically
for drawing graphs, not general graphics. These "macro" constraints, or Visual
Organization Features (VOFs) [2], are listed in Figure 1; the application of each
VOF is illustrated by "before" and "after" layouts. In our drawing tool, VOFs
can be applied and removed interactively. Furthermore, the tool enforces syntac-
tic constraints, such as preventing nodes overlapping other nodes and edges. The
VOF and syntactic constraints are enforced by a generalized spring algorithm,

&

r - - - - 1
i i

E - - - - - 7

L- I

S e q a e n t i a ! .
Placement

Clustering

Zoning

T S h ~ o

%

ibq-- 5-7 [K.J l i % ~ , %.M %JI L _ _ / [

0%

388

A l i g r ~ m e ~ t

Even Spacing

SyrtLraetry

Hub Shape

Fig. 1. Visual organization features (after [2]).

Fig. 2. Scanned diagram on which the example was based (from [3]).

an improved version of the one described by Dengler et al. [1]. We describe below
how our toot can be used to replicate the drawing in Figure 2 [3]. The sample in-
teractions shown illustrate the aptitude and convenience of our tool for drawing
small graphs.

2 E x a m p l e I n t e r a c t i o n

Figures 3-9 show snapshots at various stages in the process of drawing a given
graph. A screen dump of the entire interface to our system is shown in Figure 9;
other figures show only the canvas area. The existence of active VOFs is indi-
cated visually in our system by a user-responsive highlighting mechanism that

389

J GaussianRandomNum J

Fig. 3. The initial layout, with labeled nodes and edges.

cannot be replicated in static images. We therefore use shades of gray to indicate
different VOFs in the figures.

The first step in the drawing process is typically to place the desired number
of nodes in approximately the desired layout. To create a node, the user clicks
the middle mouse button on the canvas area. Node characteristics (label, shape,
font, background color, foreground color, border color, dimensions) can be mod-
ified via an edit dialog window. If a node's label becomes larger than the node
itself, the system will automatically enlarge the node to accommodate its new
label. Edges are added by dragging with the left mouse button from origin to
destination node. Edges can be undirected, unidirectional, or bidirectional; they
can also be direct or orthogonal. Figure 3 shows the layout after an initial node-
and edge-placement phase.

To add a VOF to the layout, the user first selects a set of nodes using standard
mouse techniques such as clicking or region-dragging. The user may then apply
one or more VOFs to the set by pressing the appropriate push buttons, located
on the right of the window in Figure 9. In Figure 4, the user has applied a
horizontal Alignment VOF to the second, third, and fourth rows of nodes.

The system converts each VOF instance into a set of constraints, which it
attempts to satisfy using a generalized spring algorithm. For example, an Align-
ment VOF mandates a set of zero-rest-length springs connecting each node to
an axis-parallel line through the centroid of the points; a Cluster VOF places
springs pairwise among the nodes with a short rest length. The physical simu-
lation of the mass-spring model is continuously animated, indicating to the user
the influence of the chosen VOFs. The user may move nodes and groups of nodes
while the simulation proceeds in order to aid the system in finding better global
solutions to the implicit constraint-satisfaction problem.

The use of a constraint-satisfaction scheme (mass-spring simulation) that

390

Fig. 4. User adds an Alignment VOF to each row.

I GaussksnPdndomNum J

Fig. 5. A stable configuration, satisfying the Alignment VOFs.

is intuitive and predictable, rather than one better at finding global solutions,
is deliberate. The tool is not intended to be good at globally satisfying the
VOFs by itself. Rather, it is intended to provide an interface that allows a useful
collaboration between user and computer in solving the layout problem. For this
purpose predictability, simplicity, and the compelling nature of the animation
are far more importan~ than globa~ optimality.

Figure 5 shows the stable configuration that ensues after the three Alignment
VOFs have been satisfied.

Continuing with the example, the user adds three more VOFs, as illustrated
in Figure 6. On the right, the user has added a Hub Shape VOF, indicated in

391

Fig. 6. The user adds three more VOFs: Symmetry, Alignment, and Hub Shape.

Fig. 7. The system satisfies both new and old constraints.

light gray. The center two nodes (dark gray) are to be vertically aligned. Finally,
the four nodes on the left have had a Symmetry VOF applied to them.

Once again, the system converts each VOF instance into a set of constraints.
It a t tempts to satisfy all constraints, both old and new, in determining node
placement. Figure 7 shows the updated node positions. Each row is still aligned,
and the new VOFs have been satisfied as well.

As a final step, the user adds text labels to the layout. Text labels are nodes

392

iiiiiiii~ii!i!iiil

I GsusslanRandomNum I

1

Fig. 8. The user adds three text labels, and three more VOFs: Clustering, Even Spacing,
and Alignment.

Fig. 9. The final layout (showing full system interface).

that have no background or border color, so that only the text string is visible.
Any node can be designated a text label by selecting it and then pressing the Text
Label push button. Text labels can also participate in VOFs, just like regular
nodes. In Figure 8, the user has added three text labels, and applied a VOF to
each one. The light-gray nodes on the left are subject to a Cluster VOF. The
dark-gray nodes on the bot tom are to be horizontally aligned. The middle three
nodes, shaded medium gray, are to be evenly spaced. Figure 9 shows the final
layout embedded in the system interface.

393

As an example of the flexibility of the system, Figure 10 presents successive
snapshots of quiescent states of the interface as a user develops an alternative
layout starting from the same initial layout (a) of the previous example graph.
The user imposes a T-shape VOF on four nodes at the top. After the simulation
stabilizes (b) the T-shape has been enforced. The user adds another T-shape
VOF (c). The user moves the two root nodes of the T's roughly as indicated in
(d) in order to invert the direction of the T's; the system maintains the T-shape
constraints generating the layout in (e). The user swaps two nodes (f), and adds
a Vertical Alignment and a Symmetry VOF (g), and two Horizontal Alignment
VOFs (h). Finally, four nodes are specified to have Equal Spacing (i) to generate
the final layout (j).

3 Conclusion

The VOFs supported by our system provide a natural and powerful vocabulary
whereby users can express easily the desired characteristics of a graph layout,
and the intuitive constraint-satisfaction method allows for a collaborative inter-
action between user and computer in solving graph-layout problems. An informal
comparison with commercial drawing programs shows our system to be markedly
superior for drawing small, aesthetic graphs.

References

1. E. Dengler, M. Friedell, and J. Marks. Constraint-driven diagram layout. In Pro-
ceedings o] the 1993 IEEE Symposium on Visual Languages, pages 330-335, Bergen,
Norway, August 1993.

2. C. Kosak, J. Marks, and S. Shieber. Automating the layout of network diagrams
with specified visual organization. IEEE Transactions on Systems, Man, and Cy-
bernetics, 24(3):440-454, March 1994.

3. C. D. Norton, B. K. Szymanski, and V. K. Decyk. Object-oriented parallel compu-
tation for plasma simulation. CACM, 38(10):88-100, October 1995. Figure 3.

394

(a)

(c)

(e)

(g)

(i)

(b)

(d)

(f)

(h)

(J)

Fig. 10. Development of an alternative layout.

