
A New Minimum Cost Flow Algorithm
with Applications to Graph Drawing*

Ashim Garg and Roberto Tamassia

Department of Computer Science
Brown University

Providence, RI 02912-1910, USA
{ag, r t }@cs. brown, edu

Abstract. Let N be a single-source single-sink flow network with n
nodes, m arcs, and positive arc costs. We present a pseudo-polynomial
algorithm that computes a maximum flow of minimum cost for N in
time O(x3/%nvq--d~), where X is the cost of the flow. This improves
upon previously known methods for networks where the minimum cost
of the flow is small. We also show an application of our flow algorithm to
a well-known graph drawing problem. Namely, we show how to compute
a planar orthogonal drawing with the minimum number of bends for an
n-vertex embedded planar graph in time O(n TM x/[-d~. This is the first
subquadratic algorithm for bend minimization. The previous best bound
for this problem was O(n ~ log n) [19].

1 I n t r o d u c t i o n

Minimum cost flow is a fundamental problem in network optimization, and a
large body of literature exists on theoretical and practical methods for solving
it [1].

While sophisticated polynomial and strongly-polynomial algorithms for min-
imum cost flow have been recently devised [1], their complexity is .Q(emlog n),
where n and m denote the number of nodes and arcs, respectively, of the flow net-
work, and they may perform worse than some of the simpler pseudo-polynomial
algorithms when the magni tude and/or cost of the flow are small. For exam-
ple, let the magni tude of the opt imal flow be r One can achieve running t ime
O (r m log n) with a simple min imum cost flow algorithm based on successive flow
augmentat ions along a min imum cost path determined with Dijkstra 's method.

This paper is organized as follows: In Section 2, we provide background ma-
terial on network flow algorithms and present some preliminary results. In Sec-
tion 3, we present our new pseudo-polynomial algori thm that computes a mini-
m u m cost flow for a flow network with positive arc costs in t ime O(xa/4rnvqog n),

* Research supported in part by the National Science Foundation under grant CCR-
9423847.

202

where)C is the cost of the flow. This improves upon all previously known meth-
ods for networks with positive arc costs such that ;~ = o(n4/aloxAT~) and

X = o (r
In Section 4, we give an application of our min imum cost flow algorithm

to an important graph drawing problem. Namely, we show how to compute a
planar orthogonal drawing with the min imum number of bends for an n-vertex
embedded planar graph in t ime O (n r / 4 ~) . This is the first subquadratic
algorithm for bend minimization. The previous best bound for this problem
was O(n 2 log n) [19]. Improving the t ime complexity of bend minimizat ion was
mentioned as one of the major open problems of graph drawing in a s tandard
bibliographic survey of the field [3].

2 P r e l i m i n a r i e s

In this section, we review some basic concepts and definitions related to network
flows. We also give a brief description of Algorithms AugPath, BlockFlow and
PrimDua, which embody three well-known techniques for computing flows in
flow networks. The notation followed is generally the one of [15].

2 . 1 D e f i n i t i o n s

A]low network N is a directed graph such that N has two disjoint non-empty
sets of distinguished nodes, called its sources and sinks, and each arc e of N
has a cost c(e) and a capacity u(e) associated with it, where c(e) is an integer
and u(e) is a positive integer. Let m and n be the number of arcs and nodes,
respectively, of N. We assume that N is connected so that m > n - 1. N is a
flow network with positive arc costs if the cost of each arc is at least 1. N is a
single-source single-sink flow network if it has only one source and only one sink.

Let inarc(v) and outarc(v) be the set of incoming and outgoing arcs of a node
v of N. A flow f in N is an assignment of a non-negative integer label f(e) to
each arc e of N such that:

- for each arc e, f (e) _< u(e);
- for each node v, where v is not a source or a sink,

f(e) = ~ f(e) (]tow conservation);

- for each source s,

f(e) _< /(e); and
~ i ~ (~) ~e o~,t~(~)

- for each sink t,

S(e)>_ Z S(e).
eEinarc(t) ee outarc(t)

203

(1 ~ 1 , 5)

..... "~(1,4)

Y
S ~~'~(1'2(1,1) j

,2)

(a)

t

(-1,1)

s ~ 1 , 1)

(-1,1)

Co)

11W.(1,4))

(c) (d)
Fig. 1. (a) A flow network N with source s and sink t. (b) The shallowest layered
network L(N, 0) of N with respect to zero flow; L is also the admissible flow network
of N with respect to zero flow because each are of N has cost 1. (e) A Blocking flow f
of L. (d) Residual network R(N, f) of N with respect to f . In parts (a), (b), and (d)
we have labeled each arc e by the pair (c(e), u(e)). In part (c) we have labeled each arc
by the amount of flow in it, and have shown only the arcs with non-zero flow.

We say tha t f (e) is the flow in arc e due to flow f . For nota t ional convenience,
we do not distinguish between a flow in an arc and its magni tude . An arc e is
saturated by flow f if f (e) = u(e). Let 5' be the set of the sources of N. The
magnitude of flow f , denoted by IZf, is defined as I l l =

~ei~arc(s) f(e)), i.e., the "net" flow going out of the sources of N.

The cost of a flow f , denoted by c(f), is defined as the sum of the costs
of the flows due to f in the arcs of N. A maximum flow of N is a flow with
m a x i m u m magn i tude among all the flows of N. A minimum cost flow of N is a
m a x i m u m flow with m i n i m u m cost among all the m a x i m u m flows of N. A zero
flow, denoted by 0, is a flow with zero magni tude . A non-zero flow is a flow with
non-zero magni tude . For simplicity of discussion, we assume in the rest of this
section tha t N is a flow network with a single source s and a single sink t.

The cost of a directed pa th of N is equal to the sum of the costs of its ares.
A shortest directed pa th f rom a node u to a node v is a directed pa th with the
least number of ares a m o n g all the directed paths f rom u to v.

The residual flow network R(N, f) of N with respect to a flow f (see Fig-
ure l (c -d)) is the flow network such tha t for every arc e(u, v) of N, it con-

204

sists of arcs e' = e(u,v) and e" = (v,u) such that c(e') = - c (e ") = c(e),
u(e') = u(e) - f(e), and u(e") = f(e) (notice that from the definition of a
flow network, R(N, f) can only have arcs with non-zero capacities, hence if e ~
or e" has zero capacity, then we delete it from R(N, f)) . A directed path of
R(N,f) from s to t is an augmenting path of N with respect to flow f . A
flow g in R(N, f) corresponds to a flow f* in N as follows: for every arc e of
N, i f (e) = f(e) + g(e') -g(e"); we say that flow g is the new flow pushed
in N (and also in R(N, f)). Notice that because u(e") = f(e) , we have that
g(e") < u(e") <_ f(e) , and hence, if(e) > O. It can also be shown easily that f*
satisfies the capacity and demand-supply constraints, and the flow conservation
property. Therefore, from a high-level perspective, the concepts of residual flow
networks and augmenting paths give us a convenient way of introducing more
flow in the original flow network by reducing flow in certain arcs and increasing
it in others.

A layered flow network L(N, f, d) of N with respect to a flow f is the maximal
subgraph of the residual flow network R(N, f) such that L(N, f, d) contains both
s and t, all the directed paths of L(N, f, d) from s to t have the same length
d, and each arc of L(N, f,d) is in a directed path of L(N, f,d) from s to t.
The depth of L(N, f, d) is equal to d. Figure l(b) shows a layered network with
depth 3. L(N, f, d) is the shallowest layered network of N with respect to flow
f if all the layered networks of N with respect to f have depth at least d (see
Figure l(b)). A blocking flow g of L(N, f, d) is one that saturates at least one
are of every directed path from s to t, i.e., every directed path from s to t has
an arc e such that g(e) = u(e)(see Figure 1(c)). Notice that a blocking flow
of a flow network may not be a maximum flow of the network. For example,
the layered flow network of Figure 1 (b) admits a maximum flow of magnitude 3
and also admits a blocking flow of magnitude 2 (which is shown in Figure l(c)).
The concept of layered flow networks allows us to introduce more flow in a flow
network by pushing it through the augmenting paths with smallest lengths.

Let p be a directed path of R(N, f) from s to t with least cost among all
the directed paths of R(N, f) from s to t. Let c(Ni f) be the cost of p. The
admissible flow network A(N, f) of N with respect to a flow f is the maximal
subgraph of the residual flow network R(N, f) such that A(N, f) contains both
s and t, all the directed paths of A(N, f) from s to t have the same cost, equal
to c(N, f), and each arc of A(N, f) is in a directed path of A(N, f) from s to
t(see Figure l(b)). Hence the concept of an admissible flow network is similar to
that of a layered flow network except that we consider the costs of directed paths
instead of their lengths. For the flow network of Figure l(a), the admissible and
layered flow networks are the same (shown in Figure l(b)), but for a general
flow network, they may be different. The concept of admissible flow networks
allows us to introduce more flow in a flow network by pushing it through the
augmenting paths with least costs.

L e m m a 1. Let R(A(N, f),g) be the residual flow network of A(N, f) with re-
spect to a flow g. All the directed paths of R(A(N, f), g) from s to t have the
same cost, namely, c(N, f).

205

Proof. Our proof is based on the proof of Lemma 8.4 of [21](chapter 8, pg. 110).
Let p be a directed path of R(A(N, f), g) from s to t, and v be a node of p.

Let c(v, p, g) denote the cost of the subpath from s to v of p. It follows from the
definition of A(N, f) that in A(N, f), all the paths from s to a node w have the
same cost, which we denote by c(w), and that c(t) = c(N, I). It is also easy to
see that if (u, w) is an arc of A(N, f), then c(w) - e(u) = c(u, w) (recall that
c(u, w) denotes the cost of the arc (u, w)).

We claim that if p is a directed path of R(A(N, f) ,g) from s to t and v
is a node of p, then c(v, p, g) = c(v), and if (u, v) is an arc of p, then c(u, v) =
c(v)-e(u). This will give immediately that all the directed paths of R(A(N, f), g)
from s to t have the same cost, which is equal to c(t) = c(N, f). We prove our
claim using induction over the magnitude of flow g.

If Igt = 0, our claim is trivially true. Let h be a flow in N with magnitude
]g] - 1 such that pushing a flow with unit magnitude through a directed path
p' of R(A(N, f), h) from s to t gives us flow g in A(N, f). From the inductive
hypothesis, it follows that if (u, v) is an arc of p', then c(u, v) = c(v) - c(u). The
only arcs of R(A(N, I), g) that are not arcs of R(A(N, I), h) also are all of the
form (y, x) where (x, y) is an arc of p~, and c(y, x) = -c(x , y) = c(x) - c(y).

Let p be a directed path of R(A(N, f), g) from s to t. Let v be a node of p.
Let (u, v) be an arc ofp. We first show that c(u, v) = c(v) -c(u) , and then using
this show that e(v, p, g) = e(v).

If (u, v) was an arc of R(A(N, f), h) also then from the inductive hypothesis,
c(u, v) = c(v) - c(u). However, if (u, v) was not an arc of R(A(N, f), h) then also
from the above discussion it follows that c(u, v) = c(v) - c(u).

A simple argument based on induction over the length of the subpath from
s to v of p shows that c(v, p, g) = c(v). []

2.2 Three Basic Flow Algor i thms

Research in the area of network flows has a rich tradition (see [t] for an extensive
survey). A number of algorithms have been proposed for finding maximum flows
and minimum cost flows in flow networks. In this section, we review three well-
known basic flow algorithms, which we call AugPath, BlockFlow and PrimDua,
respectively.

Algorithm AugPath (see Figure 2) is the classic method developed by Ford
and Fulkerson [10] that finds a maximum flow in a single-source single-sink flow
network by successively pushing flow through augmenting paths.

L e m m a 2 [10]. Let N be a single-source single-sink flow network with n nodes
and m arcs. Algorithm AugPath computes a maximum flow for N in time 0 (r
rn), where r is the maximum flow magnitude.

Figure 3 shows Algorithm BlockFlow, which computes a maximum flow in
a single-source single-sink flow network N. Each phase of Algorithm BlockFlow
computes a blocking flow in the shallowest layered network of N with respect to
the flow already computed. See [15] for further details about this algorithm.

206

Algori thm Augpath(N):/*N is a flow network with a single source s and a single sink t*/
begin

R1 +-- N; F1 +-- 0; i 4- 1;
while N has an augmenting path with respect to flow Fi
begin (Phase i)

Using Ri, find an augmenting path pi of N with respect to flow Fi;
Push a non-zero flow f~ from s to t through p~
Let Fi+i be the total flow in N after pushing flow fl in Ri;
Let R~+I be the residual flow network of N with respect to flow Fi+i;
i + - i + 1 ;

end
end

Fig. 2. Algorithm AugPath.

Algor i thm BlockFlow(N):/*N is a single-source single-sink flow network */
begin

L1 +- N; i 4-- 1;
while Li admits a non-zero blocking flow
begin (Phase i)

Find a blocking flow fi of L~;
Let Fi+i be the total flow in N after pushing flow fi in L~;
Let Li+l be the shallowest layered network of N with respect to flow Fi+l;
i + - i + 1 ;

end
end

Fig. 3. Algorithm Blocl~Flow.

L e m m a 3 [15] (c h a p t e r IV, S e c t i o n 9). The following properties hold for
each phase i of Algorithm BtockFlow:

I. The magnitude of flow in N is increased by at least one, i.e., IF~I >]F~_I]+I.
2. The depth of L~ is strictly greater than the depth of Li-1.
3. Phase i can be executed in time O(mlogn), where n and m denote the num-

ber of nodes and arcs, respectively, of N.

Algorithm PrimDua, shown in Figure 4, reduces the problem of computing a
min imum cost flow in a single-source single-sink flow network N to the problem
of computing max imum flows in a sequence of intermediate flow-networks. Each
of these m a x i m u m flows can be computed using any algorithm for computing
m a x i m u m flows. Algorithm PrimDua (short for primal-dual) was developed first
by Ford and Fulkerson [9, 10]. This algorithm computes f in a sequence of stages,
where each stage computes a m ax i m um flow in the admissible network of N with
respect to the flow already pushed in it. See [1, 9, 10] for details.

207

Algorithm PrimDua(N):/*N is a single-source single-sink flow network*/
begin

Let A1 be the admissible network of N with respect to a zero-flow;
i +-- 1;
while Ai admits a non-zero maximum flow
begin (Stage i)

Find a maximum flow fi of Ai;
Let F~'+I be the total flow in N after pushing flow f~ in Ai;
Let A~+I be the admissible network of N with respect to flow ~)+1;
i e - i + l ;

end
end

Fig. 4. Algorithm PrimDua.

Notice that from the definition of an admissible flow network, all the directed
paths of Ai from s to t have the same cost, which we denote by cl (if Ai has
no directed path from s to t, then ci is c~). Lemma 4 follows directly from the
discussion on the primal-dual algorithm in [1].

L e m m a 4 . For each stage i of Algorithm PrimDua, Ci+l > ci + 1.

The following corollary is immediate.

C o r o l l a r y 5 . If N is a flow network with positive arc costs, then for each stage
i of Algorithm PrimDua, ci > i.

3 A New Minimum Cost Flow Algorithm

Let N be a single-source single-sink flow network with n nodes, m arcs, and posi-
tive arc costs. Let s and t be the source and sink, respectively, of N. Theorem 10,
which is the main result of this section, shows that a minimum cost flow in N
can be computed in O(x3/4rnlov/i-O-~) time, where X is the cost of the flow. This
computation is done using Algorithm AugBlock shown in Figure 5. Algorithm
AugBlock is a variation of Algorithm PrimDua described in Section 2. The main
feature of Algorithm AugBlock is that, in each stage i, it computes fi by running
algorithms AugPath and BlockFlow in parallel. Flow fi is the flow computed by
the algorithm terminating first.

Let X be the cost of the minimum cost flow f computed by Algorithm Aug-
Block. Let r and Xi be the magnitude and cost, respectively, of flow fi. Let
S = {fi l l < r < v 'x logn} . Let B = {filr > v/-xlog n}. We call the stages of S
as the light stages and the stages of B as the heavy stages. Let t s = ~j '~es r
and r = E f l e B r Let Xs = E f l e S Xi, and XB = ~] ,eB Xi. Therefore, r
and Xs (r and XB) denote the total magnitude and total cost, respectively, of
the flow pushed in the light (heavy) stages.

208

A l g o r i t h m AugBlock(N):/*N is a single-source single-sink flow network
with positive arc costs*/

beg in
Let A~ be the admissible network of N with respect to a zero-flow;
i e - 1 ;
whi le Ai admits a non-zero maximum flow
b e g i n (Stage i)

To find a maximum flow of A~, run AugPath(N 0 and BlockFlow(N~) in
parallel. Go to the next step when one of them terminates after
computing a maximum flow fi;
Let Fi+~ be the total flow in N after pushing flow fi in Ai;
Let Ai+~ be the admissible network of N with respect to flow F~+~ ;
i ~ i + 1 ;

e n d
end

Fig. 5. Algorithm AugBlock.

L e m m a 6. The total flow pushed in the light stages of Algorithm AugBlock is
O (~ / ~ r i.e., Cs = 0 (~ / 4 ~ o , / ~) .

Proof. Suppose set S consists of flows f i l , f i~ , . . . , fi,, where 1 < il < i 2 . . . < il.
F rom the definition of e s , e s = ~l_<j<l r and each r is at mos t v ~ l o g n .
From the definition of flow network ~4Tj, all the directed pa ths of Aij f rom s
to t have the same cost cij. Therefore, Xij = cij �9 r Since N is a flow net-
work with posi t ive arc costs, f rom Corollary 5, it follows t h a t Xij = e~j �9 r >_

_ _ _j_ Xi~ > ~<lJr In other words, ijr > jr Therefore, X > ;gs = Y'~4<=<l j - ~1___,_ J"
X >_ r + 2~i2 + "'" + lr Since r is at mos t v ~ l o g n , it follows tha t for a
given X, Cs is m a x i m u m when the values of 1 and the r are such tha t r =
r r = v / x l o g n and X = ~ i < j < ~ j v ~ l o g n = (l(1 + 1) / 2) v ~ l o g n .
From some m a t h e m a t i c a l manipu la t ion , i-t follows tha t when Cs is m a x i m u m ,
t is such tha t l ~ + l = 2 v / ~ / l o g n , and hence, if we denote by I*, the value

of 1 for which Cs is m a x i m u m , we have t ha t I* = O 0 / 1 / 4 / x / I ~) . Therefore,

< V21og, = = o(x'/ /&)v logn =
[]

L e m m a 7. Let k(a,13), where 0 < a < 1 and ~ > O, be the number of stages of
Algorithm AugBlock for which r > X~i 3. Then we have

<

Proof. Let f i l , f i 2 , . . . , f i~ , where t < il < i 2 . . . < il and 1 = k((~,/3), be the
set of all the flows for which r > X~/3- From the definition of flow network
Aij , all the directed pa ths of A~j f rom s to t have the same cost cij. There-
fore, Xir = cij �9 r Since N is a flow network with posi t ive arc costs, f rom
Corol lary 5, it follows tha t Xij = c~j �9162 >_ ijr > jr We have tha t ,

209

X >_ EI<_j<_~Xij = El<j<_zJr > E~<_j<~Jx~Z = (l(1 + 1)12))r From
some mathematical manipulation, we get that (2/fl)X 1-~ > l 2 + I > 12. Hence,

= l < vr x(1-)l []

Since IBI = k(W2, logn), by Lemma 7 we have,

C o r o l l a r y 8 . The total number of heavy stages of Algorithm AugBlock is less
than ~ X a14, i.e., IRi <

Lemma 9 yields an upper bound on the time used by Algorithm BlockFlow
for computing the maximum flow fi of Ai.

L e m m a 9. In Stage i of Algorithm AugBlock, Algorithm BlockFlow computes
the maximum flow fi of Ai in time O(v~rni log ni), where ni and mi are the
number of nodes and arcs, respectively, of Ai.

Proof. Let r be the number of phases used by Algorithm BlockFlow to compute
f~. We now show that r is at most 3v/~. From Lemma 3 (Property 3) it will then
follow that Algorithm BlockFtow computes f~ in time O(v/-~m ~ log n~).

We consider two cases:

Case 1. r < v/-~: From Lemma 3 (Property 1), each phase of Algorithm Block-
Flow increases flow in Ai by at least 1. Therefore, r _< r < v @

Case 2. r _> v ~ : Let 1 be the phase that increases the flow in Ai to at least
8i - v~" From Lemma 3 (Property 1), each phase of Algorithm BlockFlow in-
creases the flow in Ai by at least 1. Therefore, the number of phases after phase
l is at most v/-~. Hence, if we show that 1 < 2V~ , we are done. From Lemma 3
(Property 2), each phase of Algorithm BlockFlow increases the depth of the
shallowest layered network used for pushing more flow by at least 1. Therefore,
if we can show that the depth d of the shallowest layered network Ll of Ai used
for phase 1 is at most 2 v ~ , it will follow that l < 2v/~. Now we show that
d<2 .

Our proof follows this approach: We first compute the cost of the new flow
pushed in Ai in the phases l, 1 + 1 , . . . , r. Using the costs of this new flow, we
compute the cost c(Fi+l) of the total flow in N at the end of stage i. Then we
show that because c(Fi+l) is at most X, d is less than 2v~ . We now give the
details of the proof.

Let g be the total flow pushed in Ai in phases 1, 2 , . . . , l - 1. Let R(Ai, g) be
the residual flow network of Ai with respect to flow g. Let h be the total flow
pushed in R(Ai,g) in phases 1,1 + 1, . . . , r. Let it be the magnitude of flow h.
From the definition of phase l, we have that # _> v/~. Flow h can be decomposed
into # flows hi, h2 , . . . , hu where each hj has unit magnitude. From Lemma 1
and Corollary 5, it follows that the cost of each hj is greater than 0. Also, since
the depth of Ll is d, we have that the length of each directed path of R(AI,g)
from s to t is at least d, and therefore, each hj uses at least d arcs of R(Ai, g).

210

Let Wj and Zj be the sets consisting of the arcs of hj with positive and
negative costs, respectively. Let e(Wj) = ~ e w j e(e), i.e., the total cost of the

arcs of hj with positive costs. Similarly, let c(Zj) = ~ c z j e(e). We now show

that e(Wj) > d/2. We have shown earlier that hj uses at least d arcs of R(AI, g).
Therefore, I WjI+I&I >_ d. Since each are of N and therefore, each are of R(Ai, g)
has non-zero cost, we have that c(Wj) >_ IWjl and Ic(Zj)l = -c(Zj) >_ Izjl.
Hence, c(Wj) + Ic(Zj)l _> I%t + Izjl _ d. We have shown earlier that the cost
of hj is greater than 0. Since the cost of hj is equal to c(Wj) + e(Zj), we have
that c(Wj) + c(Zj) > 0. It follows that c(Wj) > -c(Zj) = Ic(Zj)]. Therefore,
2e(Wj) > c(Wj) + Ic(Zj)l >_ d. Hence, c(Wj) > d/2.

Recall that F/ denotes the total flow pushed in N by Algorithm AugBlock
(since the beginning of its execution) at the end of Stage i - 1 (See Figure 5).
Let K be the set of the arcs of R(Ai, g) with negative costs. Also recall that h
is the total flow pushed in R(Ai,g) in phases l, l + 1 , . . . , r. We have that

c(Fi+l) ~- c(Fi) -t-c(g) ~- E c(hj)
l<_j<#

> c(F~) + c(~) + ~ (c(W~) + c(Z~))
t<_j<_t,

>_ ~ c(ws) + e(~) + e(g) +
l< j<_#

>_ ~ e(w~) + e(e~) + c(g) +
l<_j<#

e(&)
l<_j<~

E Ee(e)
l< j< ,~ez j

c(Ws) + c(F~) + e(g) + ~ h(e)c(e)
l<j<_# e6K

(1)

Let e = (y, x) be an arc of R(Ai, g) with negative cost. Arc e corresponds
to an arc e* = (x,y) of N such that u(e) = F i (e*)+g(e*) and c(e) = -c(e*).
The cost of the flow in e* due to flows /~) and g is F~(e*)c(e*) + g(e*)e(e*) =
(Fi(e*) + g(e*))c(e*) = -u(e)c(e) >_ -h(e)c(e). Summing both the sides of
the inequality over all the arcs of R(Ai, g) with negative costs, it follows that
c(ri) + c(g) >_ - E~eg h(e)c(e), and hence, c(Fi) + c(g) + E~eg h(e)c(e) >_ O.
Informally speaking, this means that the (negative) costs of the flows due to flow
h in the arcs of R(Ai, g) with negative costs is "accounted for" by the (positive)
cost of the flows due to Fi and g in the arcs of N.

We have shown earlier that c(Wj) > d/2. Hence, El<j<p c(Wj) > #d/2. We
have also shown that # > v @ Therefore, ~ l < j < , e(Wj)-~>-v'~d/2"

From Eq. 1 it follows-now that e(F;+I) > ~j~B/2. Since X _ c(Fi+l), we have
that ~ >_ c(Fi+l) > v~d/2, and therefore, d < 2v ~ . []

The following theorem summarizes the main result of this section.

T h e o r e m 10. Let N be a single-source single-sink flow network with n nodes,
m arcs, and positive arc costs. Algorithm AugBlock computes a minimum cost
flow f of N in time o(xa/4m lov/i-O-~), where X is the cost o f f .

211

Proof. The proof is based on the following idea: We can bound the running-
time of a stage of Algorithm AugBlock by the running-time (for that stage) of
either of Algorithm AugPath and Algorithm BlockFlow. We can do this because
the flow computed in a stage is the one given by the algorithm that terminates
first. Suppose we bound the running time for a light stage by the running-
time of Algorithm AugPath, and for a heavy stage by the running-time of Algo-
rithm BlockFlow. From Lemma 6, the total flow computed in the light stages is
O(x3/4v/[o--~). Therefore, from Lemma 2, it follows that the total running-time
of light stages is bounded by O((Xa/a~/i-@)m). As for the heavy stages, from
Corollary 8, we have that the number of heavy stages is at most v/2/log rtX 1/4.
Since from Lemma 9, Algorithm BlockFlow takes time O(v~rnlog n) for com-
puting a flow in a stage of Algorithm AugBIock, the total running time of the
heavy stages is bounded by ~ X a / 4 . 0 (v / - ~ r n l o g n) = O(xa/4rno~1-~).
This gives the total time-comple• of O(xa/%nlovq~) for Algorithm AugBlock.

We now give the details of the proof.
Let r be the total number of stages used by Algorithm AugBlock to compute

the optimal flow f. Consider stage i, where 1 < i < r. Stage i increases the
amount of flow in N by at least 1. Therefore, r _> 1. Let n~ and rni be the
number of nodes and arcs, respectively, of Ai. Clearly, ni _< n and rni _< 2rn (the
factor of 2 appears because there may be some backward arcs in Ai). Let 2~,
T&, and TB~ be the time taken by algorithms AugBlock , AugPath and BlockFlow,
respectively, for computing fi in Ai. Flow fi is the one computed by the algorithm
that terminates first. Therefore, T~- = min(Ts,,TB,). Hence, T~ = T& if fi E S,
and Ti = TB, if fi E B are valid upper bounds for Ti.

Let T be the total time taken by Algorithm AugBlock to compute f. We have:

l<_i<r

l iES f , EB

From Lemma 2, Ts, = O(r and from Lemma 9, TB, = O(v~rni log hi).
Therefore,

: r= + o (w m , Iog, ,)
liES' f iEB

f i 6 S fi@B

: o(m) + [el. o(v-2,,,log n)

From Lemma6, we have that Cs = o(xa/4~g-~), and from Corollary 8,
we have that IB] < ~ n x l / 4 . Therefore, T = o(xa/4 lov/i-5~, m) +
o(, /571og xl/4 �9 log = o(x3/% logi). []

212

4 Faster Bend Minimization

Orthogonal drawings of graphs, where the edges are drawn as polygonal
chains with alternating horizontal and vertical segments, are widely used in
visualization applications, and they have been extensively studied (see, e.g.,
[2, 4, 6, 8, 11, 12, 13, 14, 16, 18, 20, 22]).

An important quality measure for orthogonal drawings is the total number
of bends along the edges. Bend minimization is the core of a practical drawing
technique [5] for general graphs, called Giotto, which performs a preliminary
planarization followed by bend-minimization. Giotto has has been widely used
in software and data visualization systems [5, 7]. A sample drawing is shown in
Figure 6(d)). The extensive experiments conducted by Di Battista et al. [4] on
general-purpose orthogonal drawing algorithms, which use 11,582 graphs derived
from "real-life" software engineering and database applications, show that Giotto
outperforms all other known orthogonal drawing algorithms in quality measures
such as area, number of bends, and aspect-ratio. However, the bottleneck in the
running time of Giotto is the execution of the bend minimization step.

Let G be an embedded planar graph with maximum degree 4. As shown
in [19], a drawing of G with the minimum number of bends can be computed by
an algorithm consisting of the following two main phases:

1. computation of an orthogonaI shape for G, where only the bends and the
angles of the orthogonal drawing are defined;

2. assignment of integer lengths to the segments of the orthogonal shape.

Phase 1 uses a transformation into a network flow problem (Figure 6(a-c)),
where each unit of flow is associated with a right angle in the orthogonal drawing.
Hence, angles are viewed as a commodity that is produced by the vertices, trans-
ported across faces by the edges through their bends, and eventually consumed
by the faces. It is easier to to describe this flow problem on a network with lower
bounds on flows in arcs (in addition to arc-capacities) and supplies/demands on
the sources and sinks. From the embedded graph G we construct such a flow
network N as follows. The nodes of network N are the vertices and faces of
G. Let deg(f) denote the number of edges of the circuit bounding face f. Each
vertex v supplies ~r(v) = 4 units of flow, and each face f consumes r(f) units of
flow, where

2 deE(f) - 4 if f is an internal face
r(f) = 2 deg(f) + 4 if f is the external face

By Euler's formula, ~v ~r(v) = ~ I r(f), i.e., the total supply is equal to the
total consumption.

Network N has two types of arcs:

- arcs of the type (v, f), where f is a face incident on vertex v; the flow in
(v, f) represents the angle at vertex v in face f, and has lower bound l,
capacity 4, and cost 0;

213

- arcs of the type (f ,g) , where face f shares an edge e with face g; the flow
in (f, g) represents the number of bends along edge e with the right angle
inside face f , and has lower bound O, capacity +ec, and cost 1.

The conservation of flow at the vertices expresses the fact that the sum of
the angles around a vertex is equal to 2~r. The conservation of flow at the faces
expresses that fact that the sum of the angles at the vertices and bends of an
internal face is equal to ~r(p- 2), where p is the number of such angles. For the
external face, the above sum is equal to ~'(p + 2).

It can be shown that every flow r in network N corresponds to an admissible
orthogonal shape for graph G, whose number of bends is equal to the cost of
flow r Hence, an orthogonal shape for G with the minimum number of bends
can be computed from a minimum cost flow in G.

Phase 2 uses a simple compaction strategy derived from VLSI layout, where
the lengths of the horizontal and vertical segments are computed independently
after a preliminary refinement of the orthogonal shape that decomposes each
face into into rectangles.

The best previous time bound for bend minimization is O(n21og n) [19],
which is achieved with standard flow-augmentation techniques. Our new mini-
mum cost flow method yields a faster bend minimization algorithm:

T h e o r e m 11. Let G be an embedded planar graph with n vertices and maximum
vertex degree 4. An orthogonal drawing of G with the minimum number of bends
can be computed in O(nT/41v~n) time.

S k e t c h o f P r o o f : Modify the flow network N associated with G to a get a new
single-source single-sink flow network N ~ with positive arc costs by

- assigning unit cost to all the arcs of the type (v, f) ,
- adding two new nodes s and t, designating them the source and sink, respec-

tively,
- for every vertex v, adding an arc (s, v) with capacity or(v) and cost 1, and
- for every face f , adding an are (f, t) with capacity ~-(f) and cost 1.

It is easy to see a flow f is of minimum cost in N if and only if it is of minimum
cost in Nq Network N t has O(n) nodes and arcs. Also, since the minimum
number of bends for G is O(n) (see, e.g., [20]), the minimum cost of the flow in
N ~ is O(n). Hence, we can use Algorithm AugBlock to compute a minimum cost
flow for N ' in time 0 (n 7 / 4 ~ (see Theorem 10).

[]

214

(a)

(c)

r
|

.L

T

\

(b)

(d)

E]-q

[]

Fig. 6. (a) Embedded graph G. (b) Minimum cost flow in network N associated with
G: the flow is shown next to each arc; arcs with zero flow are omitted; arcs with unit
cost are drawn with thick lines; a face f is represented by a box labeled with r(f) (c)
Planar orthogonal grid drawing of G with minimum number of bends. (d) Orthogonal
grid drawing of a nonplanar graph produced by Giotto.

215

References

1. R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows: Theory, Algorithms,
and Applications. Prentice Hall, Englewood Cliffs, N J, 1993.

2. T. Biedl and G. Kant. A better heuristic for orthogonal graph drawings. In Proc.
2nd Annu. European Sympos. Algorithms (ESA '94), volume 855 of Lecture Notes
in Computer Science, pages 24-35. Springer-Verlag, 1994.

3. G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algorithms for drawing
graphs: an annotated bibliography. Comput. Geom. Theory Appl., 4:235-282, 1994.

4. G. Di Battista, A. Garg, G. Liotta, R. Tamassia, E. Tassinari, and F. Vargiu. An
experimental comparison of three graph drawing algorithms. In Proc. 11th Annu.
ACM Sympos. Comput. Geom., pages 306-315, 1995.

5. G. Di Battista, A. Giammarco, G. Santucci, and R. Tamassia. The architecture
of Diagram Server. In Proc. IEEE Workshop on Visual Languages (VL '90), pages
60-65, 1990.

6. G. Di Battista, G. Liotta, and F. Vargiu. Spirality of orthogonal representations
and optimal drawings of series-parallel graphs and 3-planar graphs. In Proc. Work-
shop Algorithms Data Struct., volume 709 of Lecture Notes in Computer Science,
pages 151-162. Springer-Verlag, 1993.

7. G. Di Battista, G. Liotta, and F. Vargiu. Diagram Server. J. Visual Lang. Corn-
put., 6(3):275-298, 1995. (special issue on Graph Visualization, edited by I. F.
Cruz and P. Eades).

8. S. Even and G. Granot. Grid layouts of block diagrams - - bounding the number of
bends in each connection. In R. Tamassia and I. G. Tollis, editors, Graph Drawing
(Proc. GD '94), volume 894 of Lecture Notes in Computer Science, pages 64-75.
Springer-Verlag, 1995.

9. L.R. Ford and D.R. Fulkerson. A primal-dual algorithm for the capacitated hitch-
cock problem. Naval Research Logistics Quarterly, 4:47-54, 1957.

10. L.R. Ford and D.R. Fulkerson. Flows in Networks. Princeton University Press,
Princeton, N J, 1962.

11. U. FS~meier and M. Kaufmann. On bend-minimum orthogonal upward drawing
of directed planar graphs. In R. Tamassia and I. G. Tollis, editors, Graph Drawing
(Proc. GD '94), volume 894 of Lecture Notes in Computer Science, pages 52-63.
Springer-Verlag, 1995.

12. A. Garg and R. Tamassia. On the computational complexity of upward and rec-
tilinear planarity testing. In R. Tamassia and I. G. Tollis, editors, Graph Drawing
(Proc. GD '94), volume 894 of Lecture Notes in Computer Science, pages 286-297.
Springer-Verlag, 1995.

13. G. Kant. Drawing planar graphs using the canonical ordering. Algorithmica, 16:4-
32, 1996. (special issue on Graph Drawing, edited by G. Di Battista and R. Tamas-
sia).

14. Y. Liu, P. Marchioro, R. Petreschi, and B. Simeone. Theoretical results on at most
1-bend embeddability of graphs. Technical report, Dipartimento di Statistica,
Univ. di Roma "La Sapienza", 1990.

15. K. Mehlhorn. Graph Algorithms and NP-Completeness, volume 2 of Data Struc-
tures and Algorithms. Springer-Verlag, Heidelberg, West Germany, 1984.

16. A. Papakostas and I. G. Tollis. Improved algorithms and bounds for orthogonal
drawings. In R. Tamassia and I. G. Tollis, editors, Graph Drawing (Proc. GD '94),
volume 894 of Lecture Notes in Computer Science, pages 40-51. Springer-Verlag,
1995.

216

17. D.D. Sleator. An O(nm log n) Algorithm for Maximum Network Flow. PhD thesis,
Dept. Comput. Sci., Stanford Univ., Palo Alto, California, 1980.

18. J. A. Storer. On minimal node-cost planar embeddings. Networks, 14:181-212,
1984.

19. R. Tamassia. On embedding a graph in the grid with the minimum number of
bends. SIAM Y. Comput., 16(3):421-444, 1987.

20. R. Tamassia and I. G. Tollis. Planar grid embedding in linear time. IEEE Trans.
Circuits Syst., CAS-36(9):1230-1234, 1989.

21. R. E. Tarjan. Data Structures and Network Algorithms, volume 44 of CBMS-NSF
Regional Conference Serie.s in Applied Mathematics. Society for Industrial Applied
Mathematics, 1983.

22. L. Valiant. Universality considerations in VLSI circuits. IEEE Trans. Comput.,
C-30(2):135-140, 1981.

