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Abstract. Clustered graphs are graphs with recursive clustering struc- 
tures over the vertices. This type of structure appears in many systems. 
Examples include CASE tools, management information systems, VLSI 
design tools, and reverse engineering systems. Existing layout algorithms 
represent the clustering structure as recursively nested regions in the 
plane. However, as the structure becomes more and more complex, two 
dimensional plane representations tend to be insufficient. In this paper, 
firstly, we describe some two dimensional plane drawing algorithms for 
clustered graphs; then we show how to extend two dimensional plane 
drawings to three dimensional multilevel drawings. We consider two con- 
ventions: straight-line convex drawings and orthogonal rectangular draw- 
ings; and we show some examples. 

1 I n t r o d u c t i o n  

Graph drawing algorithms are widely used in graphical user interfaces of soft- 
ware systems. As the amount of information that we want to visualize becomes 
larger, we need more structure on top of the classical graph model. Graphs with 
recursive clustering structures over the vertices are called clustered graphs (see 
Fig. 1). This type of structure appears in many systems. Examples include CASE 
tools [16], management information systems [8], and VLSI design tools [7]. 

In two dimensional representations, the clustering structure is represented by 
region inclusions, i.e. a cluster is represented by a simple region that contains 
the drawing of all the vertices which belong to that  cluster (see Fig. 2). For 
such drawings, some heuristic methods have been developed by Sugiyama and 
Misue [13, 101, by North [11], and by Madden et al. [12, 9]. Algorithms for planar 
straight-line convex drawings have been developed by Eades, Feng and Lin [6, 4]. 
An algorithm for planar orthogonal rectangular drawings is presented by Eades 
and Feng in [3]. However, as the clustering structure becomes more and more 
complex, two dimensional representations tend to be insufficient. A common 
strategy for visualizing large graphs with recursive clusterings is to visualize 
the graph at multiple abstraction levels. A natural method for such multiple 
level representations is a three dimensional drawing with each level drawn on a 
plane at different z-coordinate; and with the clustering structure drawn as a tree 
in three dimensions. This type of representation not only facilitates visualizing 
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Fig. 1. An Example of a Clustered Graph 

the graph at different depth of abstractions, but also keeps the track of the 
abstractions from one level to another. This is useful in preserving the mental 
map between abstraction levels. 

In this paper, firstly, we describe some two dimensional drawing algorithms 
for clustered graphs; then we show how to extend two dimensional plane drawings 
to three dimensional multilevel drawings. We consider two conventions: straight- 
line convex drawings and orthogonal rectangular drawings; and we show some 
examples. 

2 T e r m i n o l o g y  

A clustered graph C = (G, T) consists of an undirected graph G and a rooted 
tree T such that  the leaves of T are exactly the vertices of G. Each node t+ of 
T represents a cluster V(~) of the vertices of G that  are leaves of the subtree 
rooted at ~. Note that  tree T describes an inclusion relation between clusters. 
The height of a cluster ~, denoted by h(t+), is defined as the depth of the subtree 
of T rooted at t+. The span of an edge (ul, t+2) of T is ]h(vl) - h(t+2)]. If the span 
of an edge of T is greater than one, we say it is long. In the rest of the paper, 
we assume every edge of T has a span of one. We consider long edges of T as a 
sequence of edges, each has a span of one. 

For a clustered graph C = (G, T), its view at level i is a graph G+ = (~ ,  E~), 
where 17/ consists of the set of nodes of height i in T. There is an edge (g, t+) in 
El if there is an edge (u, v) of G where u belongs to cluster #, and v belongs to 
cluster v; in other words, edge (p, ~) of Ei is the  abstraction of all edges between 
cluster p and cluster t+ in G. 

In a plane drawing of a clustered graph C = (G,T), graph G is drawn as 
points and curves in the plane as usual. For each node t/ of T, the cluster is 
drawn as a simple closed region R that  contains the drawing of G(~), such that:  
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Fig. 2. A 2D Representation of a Clustered Graph 

- the regions for all sub-clusters of R are completely contained in the interior 
of R; 

- the regions for all other clusters are completely contained in the exterior of 
R; 

- if there is an edge e between two vertices of V(u), then the drawing of e is 
completely contained in R. 

We say that  the drawing of edge e and region R have an edge-region crossing 
if the drawing of e crosses the boundary of R more than once. A plane drawing 
of a clustered graph is c-planar if there are no edge crossings or edge-region 
crossings. If a clustered graph C has a c-planar drawing, then we say it is c- 
planar (see Fig. 2). An edge is said to be incident to a cluster V(u) if one end 
of the edge is a vertex of that  cluster but the other end is not in V(u). An 
embedding of a clustered graph consists of the circular ordering of edges around 
each cluster which are incident to that  cluster. 

In a plane drawing of a view (see Fig.3), each node is drawn as a simple region 
in the plane, each edge is drawn as a curve between the region boundaries of its 
two ends. A plane drawing of a view is c-planar if there are no edge crossings or 
edge-region crossings. 

A multilevel drawing (see Fig. 4) of a clustered graph C = (G, T) consists of: 

�9 

Fig. 3. The Drawing of a View 
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Fig. 4. A Multilevel Drawing 

- A sequence of plane drawings of views from the leaf level (level O) to the 
root level. The view at level i is drawn on the plane z = i. 

- A three dimensional drawing of tree T, with each node u of height i drawn 
as a point on the plane z = i, and within the region of u in the drawing of 
the view at that  level. 

A multilevel drawing of a clustered graph is c-planar if the plane drawings of 
views at all levels are c-planar. 

3 Plane Drawings 

In this section we describe algorithms which produce c-planar plane drawings of 
clustered graphs. From these plane drawings, c-planar multilevel drawings can 
be constructed. We consider two conventions: straight-line convex drawings and 
orthogonal rectangular drawings. 

3.1 Straight- l ine Convex  Drawings  

One of the basic graph drawing convention consists of representing edges as 
straight-line segments. In a straight-line convex drawing of a clustered graph 
C = (G, T), edges of G are drawn as straight-line segments, regions for clusters 
are drawn as convex polygons. We use two approaches for such drawings. 

An  a p p r o a c h  based on T u t t e ' s  a l g o r i t h m .  This approach from [6] ap- 
plies a well known algorithm of Tutte  [15], which creates a straight-line planar 
drawing of a triconnected planar graph G such that  every face is a convex poly- 
gon. To apply Tutte 's  algorithm, we construct a skeleton F(~,) for each cluster ~. 
The skeleton F ( , )  is the subgraph of G(~,) consisting of the vertices and edges 
on the outer faces of the child clusters of u. Intuitively, a child cluster/2 is rep- 
resented by the outer face of G(#) in the skeleton F(v)  . We recursively apply 
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Tut te ' s  algori thm to every skeleton graph, and compute a convex polygon for 
the outer face of each cluster, hence obtain a straight-line convex drawing. How- 
ever, since Tut te ' s  algorithm works on triconnected planar graphs, this approach 
is restricted to clustered graphs whose skeletons have the required connectivity 
property. 

A n  a p p r o a c h  b a s e d  on  h i e r a r c h i c a l  d r a w i n g s .  This approach uses the 
technique of drawing hierarchical graphs. Hierarchical graphs are directed graphs 
where vertices are assigned to layers. In a straight-line drawing of a hierarchical 
graph, vertices assigned to layer i are drawn on the horizontal line y = i, arcs 
are drawn as straight-line segments. If no pair of nonincident arcs intersect, in 
the drawing, we say it is hierarchical planar (h-planar). 

In this approach, we transform a clustered graph to a hierarchical graph by 
computing an st numbering 1 of the vertices of G, such that  the vertices which 
belong to the same cluster are numbered consecutively. We call this numbering 
c-st numbering. We use this numbering as a layer assignment to t ransform a 
clustered graph to a hierarchical graph, then apply the algori thm presented 
in [4] to produce a h-planar straight-line drawing. 

The e-st numbering ensures that  each cluster occupies consecutive layers in 
the drawing. For every cluster, we draw a convex hull of  its vertices. It can be 
shown that  in this drawing, there are no edge crossings; and there are no edges 
that  cross the region (the convex hull) of a cluster where they do not belong. 
Note tha t  if we draw regions as rectangles instead of convex hulls, edge-region 
crossings are still possible. In fact, by this algorithm, vertices of every cluster 
are bounded inside a trapezoid region which is formed by two horizontal lines 
for the highest layer and lowest layer of the cluster, and two straight lines (but 
not necessarily vertical) on the left and right of the the cluster. 

3.2 Orthogonal Rectangular Drawings 

In this section, we consider a drawing convention known as orthogonal rect- 
angular drawings. In an orthogonal rectangular drawing of a clustered graph 
C = (G,T) ,  edges of G are drawn as sequences of horizontal and vertical seg- 
ments, vertices of G are drawn on grid points and regions for clusters are drawn 
as rectangles. We use a method in [3] which produce such drawings with O(n 2) 
area, and with constant number  of bends on every edge. 

Roughly speaking, this method works as follows. First, we transform a clus- 
tered graph to a planar st-graph 2, taking into account the clustering structure. 

1 Given any edge (s, t) in a biconnected graph G with n vertices, a st numbering for 
G is defined as follows. The vertices of G are numbered from 1 to n so that vertex 
s receives number 1, vertex t receives number n, and any vertex except s and t is 
adjacent both to a lower-numbered and a higher-numbered vertex. Vertices s and t 
are called the source and the sink respectively. Such a numbering is an st numbering 
for G. An st numbering of a bicormected graph can be computed in linear time [5]. 

2 A planar st-graph [1] is a planar directed graph with one source s and one sink t; 
and both source and sink above can be embedded on the boundary of the same face, 
say the external face. 
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Then we produce a visibility representation of the planar st-graph. Finally, we 
use orthogonalization method to produce our orthogonat rectangular drawing 
from the visibility representation. 

Here again, we compute a c-st numbering of G. Then we apply a direction for 
each edge of G according to the c-st numbering, and therefore obtain a planar 
st-graph. We use the technique in [2] of producing visibility representations of 
planar st-graphs. To obtain a rectangle for each cluster ~, we add 4 dummy ver- 
tices, each represents one side of a rectangle. We also add some dummy edges to 
obtain the two vertical sides of a rectangle. Then, using the algorithm in [2], we 
obtain a visibility representation of the graph. Finally, we construct an orthogo- 
nal rectangular drawing from the visibility drawing using some local operations 
similar to [14]. 

4 M u l t i l e v e l  D r a w i n g s  

In this section we discuss methods of producing multilevel drawings of clustered 
graphs. We take the two dimensional plane drawings produced by the algorithms 
described in the previous section, and we show how to construct three dimen- 
sional multilevel drawings from the plane drawings. 

To extend plane drawings of clustered graphs to multilevel drawings, we need 
to consider the following issues: 

- Construct the drawing of the view at every level. 
- Construct the drawing of the inclusion tree. 

To construct the drawing of a view graph, we need to construct the regions 
for each node of the view, and route every edge between the boundaries of the 
regions of its two ends. For every node ~ of a view at level i, we simply use 
its representation in the two dimensional plane drawing, and translate them 
to the plane where z = i. Note that  every edge (#, v) in the view of level i 
is the abstraction of all the edges that  connect between vertices of cluster /2 
and cluster v. Therefore, an edge (#, ~) in the view graph may correspond to 
multiple edges in G. We choose one edge (u, v) between cluster # and cluster 

as a representative edge, and derive the drawing of edge (#, y) in the view 
from the drawing of edge (u,v). Suppose that  in the two dimensional plane 
drawing, cluster # and u are drawn as regions R(#) and R(u) respectively; the 
drawing of edge (u, v) crosses the boundaries of R(/z) and R(u) at points x and y 
respectively (see Fig. 5). To construct the drawing of edge (#, u) in the view, we 
use the segment between x and y and translate it to the plane where z = i. It can 
been shown that  if the two dimensional plane drawing is c-planar, i.e. with no 
edge crossings or edge-region crossings, then the drawing derived for each view 
also has no edge crossings or edge-region crossings. It can also be shown that  the 
derived drawing for each view preserves the convention of the two dimensional 
plane drawing. 

To form the drawing of the inclusion tree T, we need to decide the position 
of every node, and route the edges between the nodes. Note that  a node ~ of 
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Fig. 5. Forming an Edge in the View 

level i has to be positioned on the plane z = i and in the corresponding region of 
the view. Here, we compute the position of each node recursively from bot tom 
to top of T, as follows: 

FOR i = 0 to h (the depth of tree T )  DO 
| I f  i = O, then for each node of level 0 (leaf node), we simply place it at 

the position where it is drawn in the two dimensional plane drawing. 
�9 For every node u of level i, we compute the average of the xy-coordinates 

of its children (at level i - 1), and use them as the xy-coordinates for u. 
END 

It is easily shown that  by this method, every node u is positioned within the 
corresponding region in the drawing of the view. 

To route the edges of T, we simply draw a straight-line segment between 
the two nodes. Since we have replaced long edges of T by a sequence of edges, 
crossings between the edges of T cannot occur. Note that  we use the average 
xy-coordinates of the children as the coordinates of a node. This will put  a node 
right above most of its children and therefore let, the edges between a node and 
most of its children drawn at a large angle to the xy-plane. If a node has only 
one child, then the edge is strictly vertical. Consequentially, by this method, a 
long edge of span k is drawn as a line with only one bend. The first segment is 
strictly vertical and spans k - 1 levels. The second segment spans one level. 

5 E x a m p l e s  

In this section, we show some examples of drawings produced by our method. 
Figure 6 shows a straight-line convex drawing produced using the approach 

based on Tutte 's  algorithm. Figure 7 shows the same drawing of Figure 6, but has 
a viewing direction almost orthogonal to the z axis; this shows the inclusion tree. 
Figure 8 shows a straight-line convex drawing produced using the approach based 
on hierarchical drawings. Figure 9 shows the same drawing of Figure 8, but 
focuse on a certain part. This reveals the detail of some substructures. Figure 10 
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shows an orthogonal rectangular drawing we produced. Figure 11 shows a view 
inside the orthogonal rectangular drawing of Figure 10; this emphasizes a single 
level of the abstraction hierarchy. 

Fig. 6. Example t 

Fig, 7. Example 2 
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Fig. 8. Example 3 

Fig~ 9. Example 4 
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Fig. 10. Example 5 

]Pig. 11. Example 6 
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6 Conclusion and Future Work 

This paper represents the first a t tempt  to investigate methods for visualizing 
clustered graphs at multiple abstraction levels and in three dimensions. Particu- 
larly, we have considered two drawing conventions: straight-line convex drawings 
and orthogonal rectangular drawings. We have described some algorithms for two 
dimensional plane drawings and have shown how to extend them to multilevel 
three dimensional drawings. 

In this paper, every view that  we consider is at a specific abstraction level. 
However, in many applications, we need to visualize a graph at an arbitrary 
cross-section. For example, sometimes we need to visualize a view with some 
portions in very detail, and other portions in abstract. This seems an interesting 
topic for our future research. Further, it will be interesting to investigate the 
methods of making smooth changes between views based on three dimensional 
drawings. This would be helpful to some mental map issues in human computer 
interface design. 

Although some of the methods described in this paper may look naive and 
straightforward, we hope, with the increasing interest in compound structure 
visualization, more and more results could come forward. 
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