
Multilevel Visualization of Clustered Graphs*

Peter Eades and Qing-Wen Feng

Department of Computer Science and Software Engineering,
University of Newcastle, NSW 2308, Australia
Emaih {eades, qwfeng}@cs.neweastle.edu.au

Abstract. Clustered graphs are graphs with recursive clustering struc-
tures over the vertices. This type of structure appears in many systems.
Examples include CASE tools, management information systems, VLSI
design tools, and reverse engineering systems. Existing layout algorithms
represent the clustering structure as recursively nested regions in the
plane. However, as the structure becomes more and more complex, two
dimensional plane representations tend to be insufficient. In this paper,
firstly, we describe some two dimensional plane drawing algorithms for
clustered graphs; then we show how to extend two dimensional plane
drawings to three dimensional multilevel drawings. We consider two con-
ventions: straight-line convex drawings and orthogonal rectangular draw-
ings; and we show some examples.

1 I n t r o d u c t i o n

Graph drawing algorithms are widely used in graphical user interfaces of soft-
ware systems. As the amount of information that we want to visualize becomes
larger, we need more structure on top of the classical graph model. Graphs with
recursive clustering structures over the vertices are called clustered graphs (see
Fig. 1). This type of structure appears in many systems. Examples include CASE
tools [16], management information systems [8], and VLSI design tools [7].

In two dimensional representations, the clustering structure is represented by
region inclusions, i.e. a cluster is represented by a simple region that contains
the drawing of all the vertices which belong to that cluster (see Fig. 2). For
such drawings, some heuristic methods have been developed by Sugiyama and
Misue [13, 101, by North [11], and by Madden et al. [12, 9]. Algorithms for planar
straight-line convex drawings have been developed by Eades, Feng and Lin [6, 4].
An algorithm for planar orthogonal rectangular drawings is presented by Eades
and Feng in [3]. However, as the clustering structure becomes more and more
complex, two dimensional representations tend to be insufficient. A common
strategy for visualizing large graphs with recursive clusterings is to visualize
the graph at multiple abstraction levels. A natural method for such multiple
level representations is a three dimensional drawing with each level drawn on a
plane at different z-coordinate; and with the clustering structure drawn as a tree
in three dimensions. This type of representation not only facilitates visualizing

* This work was supported by a research grant from the Australian Research Cotmcil.

102

. ~ . 2 u

Fig. 1. An Example of a Clustered Graph

the graph at different depth of abstractions, but also keeps the track of the
abstractions from one level to another. This is useful in preserving the mental
map between abstraction levels.

In this paper, firstly, we describe some two dimensional drawing algorithms
for clustered graphs; then we show how to extend two dimensional plane drawings
to three dimensional multilevel drawings. We consider two conventions: straight-
line convex drawings and orthogonal rectangular drawings; and we show some
examples.

2 T e r m i n o l o g y

A clustered graph C = (G, T) consists of an undirected graph G and a rooted
tree T such that the leaves of T are exactly the vertices of G. Each node t+ of
T represents a cluster V(~) of the vertices of G that are leaves of the subtree
rooted at ~. Note that tree T describes an inclusion relation between clusters.
The height of a cluster ~, denoted by h(t+), is defined as the depth of the subtree
of T rooted at t+. The span of an edge (ul, t+2) of T is]h(vl) - h(t+2)]. If the span
of an edge of T is greater than one, we say it is long. In the rest of the paper,
we assume every edge of T has a span of one. We consider long edges of T as a
sequence of edges, each has a span of one.

For a clustered graph C = (G, T), its view at level i is a graph G+ = (~ , E~),
where 17/ consists of the set of nodes of height i in T. There is an edge (g, t+) in
El if there is an edge (u, v) of G where u belongs to cluster #, and v belongs to
cluster v; in other words, edge (p, ~) of Ei is the abstraction of all edges between
cluster p and cluster t+ in G.

In a plane drawing of a clustered graph C = (G,T), graph G is drawn as
points and curves in the plane as usual. For each node t/ of T, the cluster is
drawn as a simple closed region R that contains the drawing of G(~), such that:

103

f ~ ~-~':-~--~.~. ~.-'---,...~.

f.(" (i;

Fig. 2. A 2D Representation of a Clustered Graph

- the regions for all sub-clusters of R are completely contained in the interior
of R;

- the regions for all other clusters are completely contained in the exterior of
R;

- if there is an edge e between two vertices of V(u), then the drawing of e is
completely contained in R.

We say that the drawing of edge e and region R have an edge-region crossing
if the drawing of e crosses the boundary of R more than once. A plane drawing
of a clustered graph is c-planar if there are no edge crossings or edge-region
crossings. If a clustered graph C has a c-planar drawing, then we say it is c-
planar (see Fig. 2). An edge is said to be incident to a cluster V(u) if one end
of the edge is a vertex of that cluster but the other end is not in V(u). An
embedding of a clustered graph consists of the circular ordering of edges around
each cluster which are incident to that cluster.

In a plane drawing of a view (see Fig.3), each node is drawn as a simple region
in the plane, each edge is drawn as a curve between the region boundaries of its
two ends. A plane drawing of a view is c-planar if there are no edge crossings or
edge-region crossings.

A multilevel drawing (see Fig. 4) of a clustered graph C = (G, T) consists of:

�9

Fig. 3. The Drawing of a View

104

.~_'_ . _':~

Fig. 4. A Multilevel Drawing

- A sequence of plane drawings of views from the leaf level (level O) to the
root level. The view at level i is drawn on the plane z = i.

- A three dimensional drawing of tree T, with each node u of height i drawn
as a point on the plane z = i, and within the region of u in the drawing of
the view at that level.

A multilevel drawing of a clustered graph is c-planar if the plane drawings of
views at all levels are c-planar.

3 Plane Drawings

In this section we describe algorithms which produce c-planar plane drawings of
clustered graphs. From these plane drawings, c-planar multilevel drawings can
be constructed. We consider two conventions: straight-line convex drawings and
orthogonal rectangular drawings.

3.1 Straight- l ine Convex Drawings

One of the basic graph drawing convention consists of representing edges as
straight-line segments. In a straight-line convex drawing of a clustered graph
C = (G, T), edges of G are drawn as straight-line segments, regions for clusters
are drawn as convex polygons. We use two approaches for such drawings.

An a p p r o a c h based on T u t t e ' s a l g o r i t h m . This approach from [6] ap-
plies a well known algorithm of Tutte [15], which creates a straight-line planar
drawing of a triconnected planar graph G such that every face is a convex poly-
gon. To apply Tutte 's algorithm, we construct a skeleton F(~,) for each cluster ~.
The skeleton F (,) is the subgraph of G(~,) consisting of the vertices and edges
on the outer faces of the child clusters of u. Intuitively, a child cluster/2 is rep-
resented by the outer face of G(#) in the skeleton F(v) . We recursively apply

105

Tut te ' s algori thm to every skeleton graph, and compute a convex polygon for
the outer face of each cluster, hence obtain a straight-line convex drawing. How-
ever, since Tut te ' s algorithm works on triconnected planar graphs, this approach
is restricted to clustered graphs whose skeletons have the required connectivity
property.

A n a p p r o a c h b a s e d on h i e r a r c h i c a l d r a w i n g s . This approach uses the
technique of drawing hierarchical graphs. Hierarchical graphs are directed graphs
where vertices are assigned to layers. In a straight-line drawing of a hierarchical
graph, vertices assigned to layer i are drawn on the horizontal line y = i, arcs
are drawn as straight-line segments. If no pair of nonincident arcs intersect, in
the drawing, we say it is hierarchical planar (h-planar).

In this approach, we transform a clustered graph to a hierarchical graph by
computing an st numbering 1 of the vertices of G, such that the vertices which
belong to the same cluster are numbered consecutively. We call this numbering
c-st numbering. We use this numbering as a layer assignment to t ransform a
clustered graph to a hierarchical graph, then apply the algori thm presented
in [4] to produce a h-planar straight-line drawing.

The e-st numbering ensures that each cluster occupies consecutive layers in
the drawing. For every cluster, we draw a convex hull of its vertices. It can be
shown that in this drawing, there are no edge crossings; and there are no edges
that cross the region (the convex hull) of a cluster where they do not belong.
Note tha t if we draw regions as rectangles instead of convex hulls, edge-region
crossings are still possible. In fact, by this algorithm, vertices of every cluster
are bounded inside a trapezoid region which is formed by two horizontal lines
for the highest layer and lowest layer of the cluster, and two straight lines (but
not necessarily vertical) on the left and right of the the cluster.

3.2 Orthogonal Rectangular Drawings

In this section, we consider a drawing convention known as orthogonal rect-
angular drawings. In an orthogonal rectangular drawing of a clustered graph
C = (G,T) , edges of G are drawn as sequences of horizontal and vertical seg-
ments, vertices of G are drawn on grid points and regions for clusters are drawn
as rectangles. We use a method in [3] which produce such drawings with O(n 2)
area, and with constant number of bends on every edge.

Roughly speaking, this method works as follows. First, we transform a clus-
tered graph to a planar st-graph 2, taking into account the clustering structure.

1 Given any edge (s, t) in a biconnected graph G with n vertices, a st numbering for
G is defined as follows. The vertices of G are numbered from 1 to n so that vertex
s receives number 1, vertex t receives number n, and any vertex except s and t is
adjacent both to a lower-numbered and a higher-numbered vertex. Vertices s and t
are called the source and the sink respectively. Such a numbering is an st numbering
for G. An st numbering of a bicormected graph can be computed in linear time [5].

2 A planar st-graph [1] is a planar directed graph with one source s and one sink t;
and both source and sink above can be embedded on the boundary of the same face,
say the external face.

106

Then we produce a visibility representation of the planar st-graph. Finally, we
use orthogonalization method to produce our orthogonat rectangular drawing
from the visibility representation.

Here again, we compute a c-st numbering of G. Then we apply a direction for
each edge of G according to the c-st numbering, and therefore obtain a planar
st-graph. We use the technique in [2] of producing visibility representations of
planar st-graphs. To obtain a rectangle for each cluster ~, we add 4 dummy ver-
tices, each represents one side of a rectangle. We also add some dummy edges to
obtain the two vertical sides of a rectangle. Then, using the algorithm in [2], we
obtain a visibility representation of the graph. Finally, we construct an orthogo-
nal rectangular drawing from the visibility drawing using some local operations
similar to [14].

4 M u l t i l e v e l D r a w i n g s

In this section we discuss methods of producing multilevel drawings of clustered
graphs. We take the two dimensional plane drawings produced by the algorithms
described in the previous section, and we show how to construct three dimen-
sional multilevel drawings from the plane drawings.

To extend plane drawings of clustered graphs to multilevel drawings, we need
to consider the following issues:

- Construct the drawing of the view at every level.
- Construct the drawing of the inclusion tree.

To construct the drawing of a view graph, we need to construct the regions
for each node of the view, and route every edge between the boundaries of the
regions of its two ends. For every node ~ of a view at level i, we simply use
its representation in the two dimensional plane drawing, and translate them
to the plane where z = i. Note that every edge (#, v) in the view of level i
is the abstraction of all the edges that connect between vertices of cluster /2
and cluster v. Therefore, an edge (#, ~) in the view graph may correspond to
multiple edges in G. We choose one edge (u, v) between cluster # and cluster

as a representative edge, and derive the drawing of edge (#, y) in the view
from the drawing of edge (u,v). Suppose that in the two dimensional plane
drawing, cluster # and u are drawn as regions R(#) and R(u) respectively; the
drawing of edge (u, v) crosses the boundaries of R(/z) and R(u) at points x and y
respectively (see Fig. 5). To construct the drawing of edge (#, u) in the view, we
use the segment between x and y and translate it to the plane where z = i. It can
been shown that if the two dimensional plane drawing is c-planar, i.e. with no
edge crossings or edge-region crossings, then the drawing derived for each view
also has no edge crossings or edge-region crossings. It can also be shown that the
derived drawing for each view preserves the convention of the two dimensional
plane drawing.

To form the drawing of the inclusion tree T, we need to decide the position
of every node, and route the edges between the nodes. Note that a node ~ of

107

Fig. 5. Forming an Edge in the View

level i has to be positioned on the plane z = i and in the corresponding region of
the view. Here, we compute the position of each node recursively from bot tom
to top of T, as follows:

FOR i = 0 to h (the depth of tree T) DO
| I f i = O, then for each node of level 0 (leaf node), we simply place it at

the position where it is drawn in the two dimensional plane drawing.
�9 For every node u of level i, we compute the average of the xy-coordinates

of its children (at level i - 1), and use them as the xy-coordinates for u.
END

It is easily shown that by this method, every node u is positioned within the
corresponding region in the drawing of the view.

To route the edges of T, we simply draw a straight-line segment between
the two nodes. Since we have replaced long edges of T by a sequence of edges,
crossings between the edges of T cannot occur. Note that we use the average
xy-coordinates of the children as the coordinates of a node. This will put a node
right above most of its children and therefore let, the edges between a node and
most of its children drawn at a large angle to the xy-plane. If a node has only
one child, then the edge is strictly vertical. Consequentially, by this method, a
long edge of span k is drawn as a line with only one bend. The first segment is
strictly vertical and spans k - 1 levels. The second segment spans one level.

5 E x a m p l e s

In this section, we show some examples of drawings produced by our method.
Figure 6 shows a straight-line convex drawing produced using the approach

based on Tutte 's algorithm. Figure 7 shows the same drawing of Figure 6, but has
a viewing direction almost orthogonal to the z axis; this shows the inclusion tree.
Figure 8 shows a straight-line convex drawing produced using the approach based
on hierarchical drawings. Figure 9 shows the same drawing of Figure 8, but
focuse on a certain part. This reveals the detail of some substructures. Figure 10

108

shows an orthogonal rectangular drawing we produced. Figure 11 shows a view
inside the orthogonal rectangular drawing of Figure 10; this emphasizes a single
level of the abstraction hierarchy.

Fig. 6. Example t

Fig, 7. Example 2

109

Fig. 8. Example 3

Fig~ 9. Example 4

110

Fig. 10. Example 5

]Pig. 11. Example 6

111

6 Conclusion and Future Work

This paper represents the first a t tempt to investigate methods for visualizing
clustered graphs at multiple abstraction levels and in three dimensions. Particu-
larly, we have considered two drawing conventions: straight-line convex drawings
and orthogonal rectangular drawings. We have described some algorithms for two
dimensional plane drawings and have shown how to extend them to multilevel
three dimensional drawings.

In this paper, every view that we consider is at a specific abstraction level.
However, in many applications, we need to visualize a graph at an arbitrary
cross-section. For example, sometimes we need to visualize a view with some
portions in very detail, and other portions in abstract. This seems an interesting
topic for our future research. Further, it will be interesting to investigate the
methods of making smooth changes between views based on three dimensional
drawings. This would be helpful to some mental map issues in human computer
interface design.

Although some of the methods described in this paper may look naive and
straightforward, we hope, with the increasing interest in compound structure
visualization, more and more results could come forward.

References

1. G. Di Battista and R. Tamassia. Algorithms for plane representations of acyclic
digraphs. Theoretical Computer Science, 6h175-198, 1988.

2. G. Di Battista, R. Tamassia, and I.G. Tollis. Constrained visibility representations
of graphs. Information Processing Letters, 41:1-7, 1992.

3. Peter Eades and Qing-Wen Feng. Orthogonal grid drawing of clustered graphs.
Technical Report 96-04, Department of Computer Science, The University of New-
castle, Australia, 1996.

4. Peter Eades, Qing-Wen Feng, and Xuemin Lin. Straight-fine drawing algorithms
for hierarchical graphs and clustered graphs. Technical Report 96-02, Department
of Computer Science, The University of Newcastle, Australia, 1996.

5. S. Even and R. E. Tarjan. Computing an st-numbering. Theoretical Computer
Science, 2:339-344, 1976.

6. Qing-Wen Feng, Robert F. Cohen, and Peter Eades. How to draw a planar clus-
tered graph. In COC00N'95, volume 959 of Lecture Notes in Computer Science,
pages 21-31. Springer-Verlag, 1995.

7. D. Harel. On visual formalisms. Communications of the ACM, 31(5):514-530,
1988.

8. J. Kawakita. The KJ method - a scientific approach to problem solving. Technical
report, Kawakita Research Institute, Tokyo, 1975.

9. Brendan Madden, Patrick Madden, Steve Powers, and Michael Himsolt. Portable
graph layout and editing. In GD'95, volume 1027 of Lecture Notes in Computer
Science, pages 385-395. Springer-Verlag.

10. K. Misue and K. Sugiyama. An overview of diagram based idea organizer: D-
abductor. Technical Report IIAS-RR-93-3E, ISIS, Fujitsu Laboratories, 1993.

112

11. Stephen C. North. Drawing ranked digraphs with recursive clusters. In Proc.
ALCOM Workshop on Graph Drawing '93, September 1993.

12. Tom Sawyer Software. Graph layout toolkit, available from bmad-
den@TomSawyer. COM.

13. K. Sugiyama and K. Misue. Visualization of structural information: Automatic
drawing of compound digraphs. IEEE Transactions on Systems, Man and Cyber-
netics, 21(4):876-892, 1991.

14. R. Tamassia, G. Di Battista, and C. Batini. Automatic graph drawing and read-
ability of diagrams. IEEE Transactions on Systems, Man and Cybernetics, SMC-
18(1):61-79, 1988.

15. W. T. Tutte. How to draw a graph. Proceedings of the London Mathematical
Society, 3(13):743-768, 1963.

16. C. Williams, J. Rasure, and C. Hansen. The state of the art of visual languages
for visualization. In Visualization 92, pages 202 - 209, 1992.

