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Abstract. The problem of recognizing a straight line in the discrete 
plane 2 2 (resp. a plane in 7/3) is to find an algorithm deciding wether a 

given set of points in 7/2 (resp. 7/3) belongs to a line (resp. a plane). In 
this paper the lines and planes are arithmetic, as defined by Reveilles 
[Rev91], and the problem is translated , for any width that is a linear 
function of the coefficients of the normal to the searched line or plane, 
into the problem of solving a set of linear inequalities. This new 
problem is solved by using the Fourier's elimination algorithm. If there 
is a solution, the family of solutions is given by the algorithm as a 
conjunction of linear inequalities. This method of recognition is well 
suited to computer imagery, because any traversal algorithm of the 
given set is possible, and also because any incomplete segment of line 
or plane can be recognized. 

Key Words : Discrete plane, discrete line, recognition algorithm, 
Fourier's algorithm. 

1. Introduction 
The recognition of discrete straight lines or planes is a classical problem in 

computer imagery. It has been treated by numerous authors (see [Kro-Toc89, Kov90, 
Sto-Tos91, Deb-Rev94a, Deb-Rev94b, Deb95] and their references). In this paper, we 
consider that the adequate framework of this problem is the arithmetic geometry 
introduced by Reveilles [Rev91, Deb-Rev94c]. This theory leads to original and 
particularly interesting geometric solutions for the recognition problem of naive 
planes and of lines of several width [Deb-Rev94a, Deb-Rev94b, Deb95]. In this paper, 
we obtain algebraic solutions for a wider class of arithmetic lines and planes. 

An arithmetic plane is the set of points (x, y, z) of 7/3 satisfying the inequalities 

0 <~ a x  + by  + cz  + d < o ) ,  where all parameters are integers and a~ > 0. For z = 0 it 

defines an arithmetic line in 7/2. For a line, the rational -a/b is called the slope. The 

parameter oo is called the (arithmetic) width of the plane or the line. The triplet 
(a, b, c) for a plane, (resp. the pair (a, b) for a line), is called the normal; the integers 
a, b, c, d are called the coefficients of the plane or line. 
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If  c o = l a l + l b l + l c l  f o r a p l a n e ( r e s p ,  o9 = [ a l + t b l  f o r a l i n e )  then the plane 

(resp. line) is called standard. If  o9 = max(lal,lbl,lcl) for a plane (resp. 02 = max(lal,lbl) 
for a line) then the plane (resp. line) is called naive. 

Naive lines are classical 8-connected straight lines. Naive planes are their 3D 
extension, and are essentially the discrete planes of the litterature. Standard lines are 
essentially the 4-connected "digital straight lines" of  [Kov90]. Standard planes are 
their 3D extension; they are studied in [Fra96]; note that the surfel boundary of a 
voxel object is locally a segment of  a standard plane. The interest of  the concept of  
width lies in the unification of several notions. 

In this paper, the recognition problem is the following : assume we are given a set 
P = {Pl, Pz ..... p,,} of  n points of 77 2 (resp. 713), does it exist an arithmetic line (resp. 

plane) of  width 02, a given linear function of the coefficients, in which P is included ? 
If  the answer is positive, what are the normals of  the solutions? This statement of  the 
problem is more general than the classical one. For lines, the classical assumption is 
that we are given a sequence of 8-connected or 4-connected points, and not a set. The 
non usual linear condition on the width wilt be explained later. 

The solution we propose consists in translating the problem into a system of linear 
inequalities whose unknowns are the coefficients; in fact, a system of 2n + 2 (resp. 2n 
+ 3) inequalities with 3 (resp. 4) unknowns a, b, d (resp. a, b, c, d). The geometric 
problem is equivalent to the existence of a solution of this system. If  a solution exists, 
then the normals of  the solutions are obtained by eliminating the unknown d, thus 
obtaining a set of  linear inequalities to be satisfied by the coefficients. The existence 
problem is solved by an elimination algorithm, due to Joseph Fourier, also known as 
Fourier-Motzkin algorithm, analogous to the classical Gauss elimination algorithm for 
linear equalities. If  this process ends with a contradiction, then the system has no 
solution; if it ends without contradiction in ~,  then the system of inequalities has a 

solution in 77. 
The use of  linear inequations for the recognition problem is also that of  [Sto- 

Tos91] for a restricted problem. In this paper, other methods of resolution are used. 
Fourier algorithm was also used by [Ver94] for a connected problem on discrete 
planes. The possibility of  a linear algorithm was pointed out in these papers. Here we 
do not study the complexity, leaving it for another paper together with some 
developments. 

In section 2, we translate the geometric problem into the aigebric problem. In 
section 3 we describe the Fourier algorithm and related algorithmic questions. The 
results of  several examples are given in section 4, before a short conclusion. 

2. The linear inequations system 
First, we explain the method for lines; then we give the result for planes. 

Without loss of  generality, we search for an arithmetic line D of width 6o defined by 

the inequalities : 
0 <~ ax  + by + d <  02, 0<~ a ~ b .  

Thus, we are searching for D in one octant of  the (a, b) space. 
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Let P = {(xl, 7'1), (x2, Y2) ..... (xn, Yr.)} be a set o f n  points in 7/2. Then P is included in 

D iff all the inequations 0 <~ ax i + byi + d < 03 hold. Thus, the searched line D 

exists iff the following system of 2n + 2 inequalities of  unknowns a, b, d has a 
solution : 

(*) 0 <~ a <~ b ,  0 <~ax i + by i + d < 0 2 ,  1 <~i <~n. 

Assume now that 02 is a linear function of a and b. For example, 02 = b if we are 

searching for a naive line, or 02 = a + b for a standard line. That is, we fix a family 

of  lines of  given width. The system (*) can now be solved by known methods. It has 
a solution iff the system (**) obtained by eliminating d has a solution : 

(**) 0 <~ a <<. b ,  - a x i  - byi < 02 - axj  - b3~] , 1 <~i,j  <~n. 

This system has n z + 2 inequalities and 2 unknowns. In numerous examples, it is 
very redundant. If  a solution exists for (*), then the set of normals of  all the solutions 
is characterized by the inequations (**). 

Example 
The simplest example is the search for a naive line joining two given points : (0, 0) 
and (x, y). Assume x > 0. Then the system (*) is 

O < ~ a < ~ b ,  O < ~ d < b ,  0<~ a x + b y + d  < b .  

It has a solution iff the system (**), obtained by elimination of d ,  has one : 
O<~a<~b,  0 < b ,  O < b - a x - b y ,  - a x - b y < b .  

This can be written in a more familiar form, by using the slope -a/b of  D : 

0 ~ < a ~ < b ,  0 < b ,  O , - 1 ) / x < - a / b < ( y + t ) / x .  

This system defines the set of solutions in the (a, b) space. 

For the recognition of  a plane, we search for a plane D in the cone 0 ~< a ~< b ~< c 

and of  width 02, a given linear function of  a, b, and c. We are given a set of  n points 

in ?73. We obtain a system of 2n + 3 linear inequalities with unknowns a, b, c, d. If  a 

solution exists, then by eliminating d we get the set of  solutions defined by n z + 3 

linear inequalities linking a, b and c which caracterize the normals. 

3. Fourier's elimination algorithm 
3. 1. An outline of  history of  Fourier's method and its extensions 
Fourier's method was published 1826. It has been rediscovered a number of  times by 
different authors: Motzkin [Mot36] (the name Fourier-Motzkin's elimination algo- 
rithm is often used for this method ) Fan [Fan56], Dantzig [Dan63], Kuhn [Kuh56]. 
(Some authors also refered to this method as Kuhn-Fourier elimination algorithm). 

The Fourier's method is used for solving a system of linear constraints of  the form 
ajxl  + . . .+a~n >" b on the set of  real numbers (or more generally on an ordered field ) 

where >- is > ,  ~> or = ,  and a~ ..... a,,, b are real numbers. 

The Fourier's method is a special case of  the Tarski's algorithm [Tar 51] which 
considers any sentence of  first order logic with atomic formula of  the form : P(xl  . . . . .  

xn) >- 0 where P(Xl . . . . .  xn) is a polynomial over ~. 
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An integer Fourier's elimination algorithm (for solving linear constraints in 22) can 
be obtained as a special case of the Presburger's algorithm [Pre29] which considers 
any sentence of  first order logic with linear constraints over 7/as atomics formulas. If  

we replace linear constraints by polynomial constraints over 7/ as in the Tarski's 

algorithm, the problem is undecidable as it has been proved by Matiiassevitch 
[MatT0]. 

3.2. The Algorithm : 
Below, we assume that the relation >- is > or >/. 

Let Sn be a system of the form : 

al,lXl + ...+ al,nXn >'-1 bl 

a2 jx i  + ...+ a2,nXn >"2 b2 

am, lXl + ...+ am,nXn >"m bm 

where aij, bi are real numbers and >-i is > or >/, for 1 ~< i ~< n and 1 ~< j ~< m.  

The Fourier's elimination algorithm consists in successive eliminations of  the 
unknowns. Each step transforms the constraints system S. with the unknowns xl .... , xn 
to a new system Sn-i in which one of  the unknowns, say Xn, does not occur anymore : 

x n has been eliminated. Sn.1 is obtained from Sn by using the following combination of  

the constraints : 
�9 All the constraints of  S,, in wich x, does not occur (ai, n= 0) are in S._I. 

�9 For all 1 ~< i, j ~< m such that ai, n > 0 and ai,,~ < 0, the constraint 

(ai, na/,l - ai, nai, I) Xl + ... + (ai, nai, n-i - a/.nai.n-l) xn-I >'i,/ ai, nbi - aj.nbi , 

where >i,j is >~ if >'i and >-j are >/, and > otherwise, is in Sn. I. 

The system S n and S..t are linked together by the fact that the set of  solutions of  S,,_l 

is the projection over I~ nl of  the set of solutions of  S., It results that S. has a solution 

iff S~_l has a solution. 

Finally, all the unknowns are eliminated : the system So (eventualy empty) does not 
depend anymore on any unknown. It results from this that all the constraints in So are 
inequalities over the real numbers and can only be true or false. It becomes trivial to 
prove the existence or inexistence of  solutions for So, and, consequently for S.. 

3.3. Some facts about Fourier's elimination algorithm 
�9 If  for some i, Si contains a constraint of  the form (0 > /d  or 0 > d) where d is a 

strictly positive number or a constraint (0 > 0), then the initial system (Sn) is 

unsolvable; thus S~ is unsolvable iff S O contains a constraint of  the last type. 

�9 If  for some i, in all the constraints of  Si the coefficients of  xi have the same 

sign, or if Si = qb, then S n is solvable in ~. 

�9 The set of solutions of S n is a polyhedral set of ~ .  

�9 If  S. is a homogeneous system of linear constraints (bi = 0 for 1 ~< i ~< m), then 

the set of solutions of S~ is a cone of  I~ n. In this case, if (q  ..... c.) is a solution of  Sn 
and A is a strictly positif number then (A ci ..... A cn) is also a solution of  S. ; so, if S n 

is solvable in I~ then S n has a solution in 71n. 
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Example 1. 

S 3 S2 

X 1 + X 2 + x 3 > O  X I + X  2 > 0  

-x3>~0 x i > 0  

- X 2 - X  3 > / 0  X 2 > 0  

-xi  -x3 > 0  

All coefficients of x2 in $2 are >I 0, thus the initial system ($3) is solvable in I~. 

Example 2. 

$3 $2 Sl 
x l +  x 3 > 0  x 1 > 0  x I > 0  

X2+ X3 >/ 0 - X  2 > 0  - X  1 > 0  

-x3>~O x2  > 1 0  0 > 0  

- x l - x 2 - x 3 > O  - x  I > 0  
The system S 1 contains a contradiction (0 > 0), thus the initial system ($3) is 

unsolvable in ~. 

Definitions 
Let E be a subset of ~ . Let S be a set of  linear constraints and C be a linear 

constraint, we say that C is a consequence of  S in E, which we denote by S I=e C, if 

the set of solutions of  S in U'  is a subset of  the set of solutions of  C in E n. 
Let S, S' be two sets of  linear constraints, we say that S and S' are equivalent in E 

which we denote by S I=IES', if VC E S', S I=E C and V C  E S,  S '  I=E C hold.  

A set S of  linear constraints is said to be minimal over E if for all C in S, C is not a 
consequence of  S - { C} in E .  S is said minimal if it is minimal over I~. 

Proposition 1 
�9 S I=~ C iff the application of  the Fourier's elimination algorithm to S tO {-~(C)} 

leads to contradiction (i.e. S to {-~(C)} is unsolvable ) ,  where 

-~(C)  = - a l x l  - . . .  - a s , ,  >~ 0 if C = a l x l +  ...  +a, ,x , ,  >1 0 else - a l x l  - . . .  - a, ,x , ,  > 0 .  

�9 If E' c E, then (S I= E C ~ S I=E, C),  thus (S I=R C ~ S I=~z C ) .  

�9 If  S I=1~ S' and S I=1~ S" and S', S" are minimals then Card(S3 = Card(S"), 

actually, S' defines the boundary of  the set of  solutions of  S in 1~. 

3.4. Integer Fourier's elimination algorithm 
Fourier's elimination algorithm can be adapted for solving a system of linear 

inequalities in 7/. At each step the introduction of  the "or" connector can be necessary 
and the size of the new system depends on the value of  the coefficients. 

Below, we present an algorithm for solving special systems of  linear inequalities in 
77 which do not necessite the introduction of  the "or" connector. This algorithm will be 
used for the study of  the properties of  the naive planes. 
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Proposition 2 
Consider the system S, : 

al,lXl + ...+ at,nXn >'1 0 

a2,1xl + ...+ a2,nXn >'2 0 

am, lXl + " '+ am,nXn ~'m 0 

such that for l <~i<~n and 1 <~j<m,  ai, j a r e  integers, >'i is > or >i, and ai, n E {- 1,0,1 }. 

Let S'n4 be the system on the unknowns xl . . . . .  x.-i obtained from S. by using the 

following combination of the constraints : 
�9 all the constraints of  S~ in wich x,, does not occur (ai,.= 0) are in S'~.I; 

�9 for all 1 ~< i, j < m such that aim = 1 and aj, n = - 1, 

the constraint (aLl + ai,1)Xl + ... + (aj, n-I + ai, n-l)Xn-I >-ij rid,  

where ~-ij is >/ if >'i, >-j are both >/, otherwise >'ij is > ,  

a n d  ri j  = 1 if ~-i, > ' /are both >, otherwise ri, j = 0 

is in S'n_ 1. 

Then, the set of  solutions of  S' 2~ ~4 .-I in is the projection of  the set of  solutions of  S. 

in 7/n. 

Proof 
Let (cl ..... co) be a solution of  S. in 2~", then it is trivial that (cl ..... Cn-l) is a solution 

of S'n-I in 7/~4 (Sn ~ S' , .O.  

Let (Cl, ..., c..1) be an integer solution of  S'~_~, then the last fact (in 3.3) implies that 

there exists c n in l~ such that (cl ..... cn-l, c,,) is a solution of S~ in l~ ~ (S'~_1~S~_1). 

We will prove that we can choose for c,, an integer value. 

I f  ai, n=i and aj, n=  -1, then a / j c l  +...+ ai, n.lcn.1 >-j c n >i - (ai, lCl +'"+  Ci, n-lbn-1). 

Let l, l', a, b such that a = - (at, lcl +...+ al,nqcn.1) = max{- (a i jQ+. . .+ai ,  n-lcn-O)l ai, n =1 }, 

b = ar, lCl +...+ ar,,t.lCn, l = min{ ai, lc 1 +...+ ai, n_lCn.llai.n=-I } . 
Then, we have b ~t cn >'r a ,  so, if >'t and >-r are > then b-a > 1, thus c, = a+l  is 

suitable, else c n = a or c, = b is suitable. 

4. Results 
The Fourier's algorithm has been programmed and it produced the following results 

(the simplest ones can be checked by hand). 

4.1. Lines 

4.1.1.Example of recognition of naive lines 
Let Pj = {(0, 0), (1, 0), (4, -1), (6, -2), (8, -3)}. Then using the Fourier's elimination 

algorithm, we prove the existence of naive lines (with ~ = b) containing Pl, and 

caracterize it by the minimal conditions c>~0, -a+b-c>O, -4a+2b-c>O, 8a-3b+c>~O 
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4.1.2.Example of recognition of standard lines 
Let P2 = {(0, 0), (1, 0), (3, 0), (4, -1), (5, -1), (6, -2), (8, -3)}. Then using the Fourier's 

elimination algorithm, we prove the existence of standard lines (with 09 = a+b) 
containing P2, and caracterize it by the minimal conditions : 

c>~O, -2a+b-c>O, 8a-3b+c>O . 
4.1.3.Example of recognition of thick lines 
Let P3 = {(0,0), (i,0), (3, 0), (4, -1), (5, -!),  (6, -2), (8, -3), (0, -1), (8, -4)}. Then 

using the Fourier's elimination algorithm, we prove the existence of thick lines (with 
09 = a+2b, O<~a<~b) containing P3, and caracterize it by the minimal conditions : 

-2a + 2b-c>O, -b+c>_-0, 8a-4b+c >~O . 

4.2. Planes 
We always assume that the coefficients of the searched plane satisfy the inequalities 
O<~a<~b<~c. 
4,2.1. Naive planes 

Let us recall that a naive plane is functional, that is, for any (x, y) in 272 there 

exists one and only one z such that (x, y, z) belongs to the plane. 
Let us call bicube a set of 4 points of a naive plane of the form 

{ (x,y, Zj), (x+l,y, z2), (x+l, 3'+1, z3), (x, 3,+1, Z4)}- 

Proposition 3. In the set of naive planes of normal (a, b, c) there exist only 5 distinct 
bicubes (up to a translation), and at most 4 in a given plane; i.e. : 

(i) {(x,y,z), (x+l,y,z), (x+l,y+l,z), (x,y+l,z)} iff 
(ii) {(x,y,z), (x+l,y,z), (x+l,y+l,z-l), (x,y+l,z)} iff 
(iii) {(x,y,z), (x+l,y,z), (x+l,y+l,z-1), (x,y+l,z-l)} iff 
(iv) {(x,y,z), (x+l,y,z-1), (x+l,y+l,z-1), (x,y+l,z-l)} iff 
(v) {(x,y,z), (x+l,y,z-l), (x+l,y+l,z-2), (x,y+l,z-1)} iff 

a + b < c ,  
0 < a  and a + b < 2 c ,  
a<b,  
0 < a  and b<c,  
a + b > c .  

A tricube [Deb95] is a set of 9 points of a naive plane whose projection onto the 
(x,y) plane is a point together with its 8-neighbours. It has been shown [Deb95] that, 
in the set of naive planes, there exist only 40 distinct tricubes (up to a translation), and 
[Rev95] at most 9 in a given plane. These concepts have some importance because of 
the following result (see [Fra95, Fra96] for definitions and an analogous theorem for 
standard planes). 

Proposition 4. 
A naive plane has the structure of a 2-dimensional combinatorial manifold without 

boundary, whose faces are bicubes and whose umbrella are tricubes. 

The table in the Appendix gives, for each of the forty tricubes, the necessary and 
sufficient conditions on the normals of the planes containing these tricubes, computed 
by Fourier's elimination algorithm. The 3•  table of integers of this Appendix are to 
be read as follows : the value z in column x (x is increasing by one from left to right) 
and line y (y is increasing by one from bottom to top) is such that (x, y, z) belongs to a 
tricube. 
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4.2.2.Example of recognition of standard planes 
Let P = { (0, 0, 0), (0, 1, 0), (0, l, 1), (0, 0, 1), (I, 0, 0), (1, 1, 0), (1, 0, 1), (2, 0, 

0), (2, 1, 0), (2, 0, 1), (3, 0, 0), (3, l, 0), (3, 0, 1), (4, 0, 0), (4, 1, 0), (4, 0, 1), (5, 0, 0), 

(5, 1, 0), (5, 0, 1) }. Then by using the Fourier's elimination algorithm, we prove the 
existence of standard planes (with 03 = a+b+c) containing P, and caracterize it by the 
minimal conditions : d~>0, a-d>O, -4a+b-d>O, -4a+c-d>O. 

5. Conclusion 
We have shown how to recognize an arithmetic straight line or plane, given a set 

of its points. This method works under the only restriction of a width depending 
linearly on the coefficients of the normal. Thus, it works for partially known segments 
of lines or planes, of any width (naive, standard or other). Furthermore, the data being 
a set of points, any order of traversal of these points can be used in an incremental 
recognition algorithm. 

It is now possible to answer numerous theoretical, algorithmic, and practical open 
questions. First, how to facetize the boundary of a voxel object (see [Bor-Fr94] for the 
precise statement). This problem will be solved soon. 
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Appendix : the forty tricubes 

tricube 2 
-I -i -I 
0 0 0 
0 0 0 

tricube 5 
0 0 -I 
0 0 0 
0 0 0 

tricube 8 
- 1  - 1  - 1  

0 0 - 1  
1 0 0 

tricube 11 
0 -i -i 
0 0 -I 
1 0 0 

tficube 14 
0 0 0 
0 0 0 
1 0 0 

tricube 17 
- 1  - 1  - 1  

0 0 0 
1 1 0 

tricube 20 
0 -i -i 
0 0 0 
1 1 0 

a>=O 
-2a+b>O 

-2a-b+c>O 

-a+b>=O 
a>O 

-a-2b+c>O 

-2a+c>O 
-a-2b+2c>O 

2a+b-c>O 
2b-c>O 

-a+b>=O 
-a-2b+2c>O 

2a-b>O 
a-2b+c>O 
2a+b-c>O 
-a+b>=O 

-a-2b+c>O 
a>O 

-2a+b>O 
-b+c>O 

-a+2b-c>O 
a>O 

-2a+c>O 
2a-2b+c>O 

2b-c>O 

tricube 3 
0 -I -I 
0 0 -i 
0 0 0 

tricube 6 
0 0 0 
0 0 0 
0 0 0 

tricube 9 
-i -i -i 
0 0 0 
1 0 0 

tricube 12 
0 - 1  - 1  
0 0 0 
1 0 0 

tricube 15 
- 1  - 1  - 2  

0 0 - 1  
1 1 0 

tricube 18 
0 - 1  -2  
0 0 - 1  
1 1 0 

tricube 21 
0 0 -1 
0 0 0 
1 1 0 

-a+b>=O 
2a-b>O 

-2b+c>O 

a>=O 

-a+b>=O 
-2a-2b+c>O 

-2a+b>O 
-a-b+c>O 

2b-c>O 
a>O 

-a+b>O 
-a-b+c>O 
a-2b+c>O 
a+2b-c>O 
-b+c>=O 

a+2b-2c>O 
-a+2b-c>O 

2a-c>O 
-b+c>O 

a+2b-2c>O 
-a+b>O 

-a-b+c>O 
a-2b+c>O 
a+2b-c>O 

-a+b>O 

tricube 1 
- 1  - 1  - 1  

0 0 - 1  
0 0 0 

tricube 4 
0 -i -I 
0 0 0 
0 0 0 

tricube 7 
-i -i -2 
0 0 -i 
1 0 0 

tricube 10 
0 - 1  - 2  
0 0 - 1  
1 0 0 

tricube 13 
0 0 -i 
0 0 0 
1 0 0 

tricube ! 6 
-i -i -i 
0 0 -i 
1 1 0 

tricube 19 
0 -i -i 
0 0 -I 
1 1 0 

tricube 22 
0 0 0 
0 0 0 
1 1 0 

a>O 
-a+b>O 

-a-b+c>O 

-a+b>O 
-2a-b+c>O 

a>O 
-2b+c>O 
a+b-c>O 
-a+b>O 
-b+c>O 

-a+b>=O 
2a-c>O 

a-2b+c>O 

-a+b>=O 
-2b+c>O 

2a+2b-c>O 

-b+c>O 
-2a+c>O 
a+b-c>O 

-a+2b-c> 0 
-2a-b+2c>O 

2a-b>O 
a+b-c>O 
-a+b>O 

-2a-b+c>O 
-2b+c>O 
-a+b>O 

a>O 
tricube 23 
0 -i - 2  
1 0 -i 
1 1 0 

tricube 26 
0 0 -i 
1 0 0 
1 1 0 

tricube 29 
0 -I -i 
1 0 -I 
2 1 0 

tricube, 32 
-i -i -i 
0 0 0 
1 1 1 

tricube 35 
0 0 0 
0 0 0 
1 1 1 

tricube 38 
0 0 0 
1 0 0 
1 1 1 

-a+bs 
2a+b-2c>O 

-b+c>O 

-a+b>=O 
-a-2b+2c>O 

a-2b+c>O 
2a+b-c>O 

2a-b>O 
-a+b>:O 
-b+c>O 

2a+b-2c>O 

a>=O 
-b+c>=O 

-2a+2b-c>O 

a>=O 
-2a-b+c>O 

-2a+b>O 

-a-'b+c>o 
a>O 

-a+b>O 

tricube 24 
0 -i -i 
1 0 -I 
1 1 0 

tricube 27 
0 0 0 
1 0 0 
1 1 0 

tricube 30 
0 -i -i 
1 0 0 
2 1 0 

tricube 33 
0 -i -i 
0 0 0 
1 1 1 

tricube 36 
0 -i -i 
1 0 0 
1 1 1 

tricube 39 I 
0 -i -i I 

-a+b>:O 
-2a-2b+3c>O 

2a-c>O 

-a+b>:O 
-2b+c>O 
2a-b>O 

-a+b>O 
-b+c>O 

a+2b-2c>O 
2a7c>0 

a>O 
-b+c>O 

-a+2b-c>O 
-2a+b>O 
a+b-c>O 
-b+c>O 

-a+2b-c>O 
?2a+ckO 
-b+c>=O 

a+2b-2c>O 
1 0 0 ~ -a+2b-c>O 
2 1 ii 

t r icube25 -a+b>O 
I 

0 -i -i;-2a-b+2c>O 
1 0 Ol a+b-c>O 
1 1 OI 2a-b>O 

t r icube28 I "-a+b>:O 
I -b+c>=O 0 -i -2 l 

1 0 -if 2a+2b-3c>O 
2 1 Ol 

t r i cube3l  ' -a+b>:O 
0 0 -i I i a-2b+c>O 
1 0 0 
2 1 0 

tricube 34 
0 0 -i 
0 0 0 
1 1 1 

tricube 37 
0 0 -i 
1 0 0 
1 1 1 

tricube 40 
I 

0 0 -i i 
1 0 O! 
2 1 ii 

2a-c>O 

a>O 
-a-b+c>O 

2b-c>O 
, - 2 g + b t , O  

-a-2b+2c>O 
2a+b-c>O 

2b-c>O 
-2a+q>O 
-b+c>O 

a+b-c>O 
-a+b>O 


