
Server-Supported Signatures

N. Asokan 1'2, G. Tsudik l's, M. Waidner 1

1 IBM Ziirich Research Laboratory, CH-8803 Rii~chlikon, Switzerland
email: { aso,wmi} Qzurich.ibm.com

2 Department of Computer Science, University of Waterloo, Waterloo, Canada.
3 Information Sciences Institute, University of Southern California, USA.

email: gtsGisi.edu

Abst rac t . Non-repudiation is one of the most important security ser-
vices. In this paper we present a novel non-repudiation technique, called
Server-Suppor ted Signatures, S ' . It is based on one-way hash rune.
tions and traditional digital signatures. One of its highlights is that for
ordinary users the use of asymmetric cryptography is limited to signature
verification. S 3 is efficient in terms of computational, communication and
storage costs. It also offers a degree of security comparable to existing
techniques based on asymmetric cryptography.

Keywords: digital signatures, non-repudiation, electronic commerce,
network security, distributed systems, mobility.

1 Introduction

Computers and communication networks have become an integral part in the
daily lives of many people. Systems to facilitate commercial and other transac-
tions have been built on top of large open computer networks. Oftentimes these
transactions must have some legal significance if they are to be useful in real life.
Non-repudiation is one of the essential services that must be provided in order
to at tach legal significance to transactions and information transfer in general.

Existing techniques for non-repudiation are based primarily on either sym-
metric or asymmetric cryptography. Practically secure symmetric techniques are
computationally more efficient but require unconditional trust in third parties.
"Unconditional" means that if such a third party cheats, the victim cannot prove
this to an arbitrator (e.g., a court). Practically secure asymmetric techniques
(which we refer to as "traditional digital signatures") are computationally less
efficient but can be constructed in a way that allows one to prove cheating by
third parties. We call a third party whose cheating can be proven to an arbitrator
a ve r i f i ab le t h i r d pa r t y .

We present a novel non-repudiation technique, called S e r v e r - S u p p o r t e d
S i g n a t u r e s , S s. It is based on one-wait hash functions and traditional digital
signatures. Like well-constructed asymmetric techniques, S s uses only verifiable
third parties. However, for ordinary users, S s limits the use of asymmetric cryp-
tographic techniques to signature verification. All signature generations are done

132

by third parties, called signature servers. For some signature schemes, e.g., RSA
with a public exponent of 3, verifying signatures is significantly more efficient
than generating them [Sch96].

This paper is organized as follows. We begin in the next section by briefly
reviewing the standardization activities in the area of non-repudiation. Section 2
provides some more motivation for alternative non-repudiation techniques. The
actual design of S s is described in Sections 3 and 4. Some variations are addressed
in Section 5 and Section 6 discusses performance and storage costs. The paper
concludes in Section 7 with a brief review of related work.

2 B a c k g r o u n d a n d M o t i v a t i o n

The International Standardization Organization (ISO) is in the process of stan-
dardizing techniques to provide non-repudiation services in open networks. Cur-
rent versions of the draft ISO standards [ISO95a, ISO95b, ISO95c I identify var-
ious classes of non-repudiation services. Two of these are of particular interest:

- N o n - r e p u d i a t i o n of Origin (N R O) guarantees that the originator of a
message cannot later deny having originated that message.

- N o n - r e p u d l a t l o n of Rece ip t (N R R) 4 guarantees that the recipient of a
message cannot deny having received that message.

Non-repudiation for a particular message is obtained by constructing a non-
r e p u d i a t i o n token. The non-repudiation token must be such that it can be
verified by:

- the intended recipients of the token (e.g., in the case of NRO, the recipient
of the message; in the case of NRR, the originator of the message), and

- in case of a dispute, by a mutually acceptable arbitrator.

The draft ISO standards divide non-repudiation techniques into two classes:

- Asymmetric non-repudiation techniques are based on digital signatures schemes,
i.e., on public-key cryptography. The main (and likely the only) difficulty
in using digital signature schemes is the computational cost involved. This
is a particularly serious issue when "anemic" portable devices (like mobile
phones) are involved.
Non-repudiation is based on certification of the signer's public key by a cer-
tification authority. Trust in this certification authority can be minimized
by an appropriate registration procedure, e.g., if the signer and the authority
have to sign a paper contract listing the signer's and certification authori-
ty's public keys, responsibilities, and liabilities, maybe in front of a notary
public. In the worst case the certification authority could cheat the user by

4 The ISO documents call this "non-repudiation of delivery (NRD)" We use the term
"receipt" since we feel that the term "delivery" is more appropriate to describe t h e

function performed by the message transport system.

133

issuing a certificate with a public key chosen by a cheater. But the supposed
signer could deny all signatures based on this forged certificate, by citing the
contract signed during registration. Thus, trust is reduced to trust in the
verifiability of the registration procedure.

- Symmetric non-repudiation ~echniques are based on symmetric message au-
thentication codes (MACs) and trusted third parties that act as witnesses.
Generating and verifying message authentication codes are typically lightweight
operations, compared to digital signature operations.
The signer has to trust the third party unconditionally, which means that the
third party could cheat the user without giving the user any chance to deny
forged messages. One could reduce this trust by using several third parties
in parallel or by putting the third party in tamper resistant hardware. Both
approaches increase bith cost and complexity while none of them solves the
problem completely.

In the following we present a new, light-weight technique for non-repudiat:ion
services, server-supported signatures. It uses both traditional digital signatures(based
on asymmetric cryptographic techniques) and one-way hash functions, in order
to minimize the computational costs for ordinary users. Our main motivation
arises from the typical mobile computing environments where the mobile entities
have considerably less computing power than the static entities.

3 Server-Supported Signatures for Non-repudiation of
Origin

3.1 Pre l iminar ies : One-way Hash Func t ions

Intuitively, a one-way function f 0 is a function such that given an input string z
it is easy to compute f(z) , but given a randomly chosen y it is computationally
infeasible to find an z' such that f (z ') = y. A one-way hash function is a one-way
function h 0 that operates on arbitrary-length inputs to produce a fixed length
value, z is called the pre-image of h(~).

A large number of practically secure and efficient one-way hash functions
have been invented, e.g., SHA or MD5 [Sch96].

One-way hash functions can be recursively applied to an input string. The
notation h~(~) denotes the result of applying h 0 i times recursively to an input
�9 . That is,

h~(~) = h(h(h(... (i times).., h(x)...)))

Such recursive application results in a hash-chain that is generated from the
original input string:

=

3.2 M o d e l and N o t a t i o n

134

We distinguish three types of entities in the system:

- Users - participants in the system who wish to avail themselves of the non-
repudiation service while sending and receiving messages among themselves.

- Signature Servers - special entities responsible for actually generating the
non-repudiation tokens on behalf of the users.

- Certification Authorities - special entities that are responsible for linking
public keys with identities of users and servers.

Signature servers and certification authorities will be verifiable third parties,
from the users' point of view.

All entities agree on a one-way hash-function h 0 and a digital signature
scheme. Entities should "personalize" the hash function by always including their
unique name as an argument. Therefore , eve ry occu r r ence of h(z) be low
real ly means h(O, z), where O is t he en t i t y c o m p u t i n g t h e one -way
hash.

The result of digitally signing a message z with signature key S K is denoted
by (z)SK. The users' security depends on the one-way property of h0, i.e., the
one-way property must hold even against the servers. ~

In order to minimize the computational overhead for users, h 0 must be ef-
ficiently computable, and digital signatures must be efficiently ver/flable. Only
signature servers and certification authorities must be able to generate signa-
tures. MD5 as hash function and RSA with public exponent 3 as signature
scheme would be reasonable choices.

Each user, O (O as in Originator) generates a secret key, K o , randomly
chosen from the range of h 0. Based on K o , user O computes the hash-chain

o 1 " h ' (K o) h(K~-i). P K o g o , g o , . . . g ~ , where K ~ = K o , g 'o = = = g ~
constitutes O's root public key. Root public key K~ will enable 0 to authenticate
n messages 6 .

Each signature server, S, generates a pair of secret and public keys, (S K s , P K s) ,
of the digital signature scheme. Each certification authority, CA, does the same.
C A is responsible for verifiably binding a user O (server S) to her root public
key P K o (its public key P K s) . We assume that the registration procedure is
constructed in a way such that C A becomes a verifiable third party.

5 Hash functions such as SHA or MD5 are one-way for allparties, i.e., practically this is
no problem. But note that usually so-called cryptographically strong hash-fimctions
are invertible for the party that generated the hash-function.

e This is no real limitation: Before the old root public key is consumed completely a
new root public key can be generated and authenticated using the old root public
key.

135

N o t a t i o n S u m m a r y
h 0 - one-way hash function

S K x - secret key known only to entity X
K~ - user O's (n - i)-th public key

(z)SK - digital signature on message z with secret key S K

3.3 I n i t i a l i z a t i o n

To participate in the system, a user 0 chooses a signature server S that shall be
responsible for generating signatures on O's behalf, generates a random secret
key Ko, and constructs the hash-chain. As will be described below, O can cause
S to transfer the signature generation responsibility to another signature server
S t, if required (e.g., because O is a mobile user who wishes to always use the
closest server available).

O submits the root public key PKo = K~ to a CA for certification. A
certificate for O's root public key is of the form 7 (O, n, PKo, S)SKoA. The
registration performed by O and CA must be verifiable, as discussed earlier.
CA may make the certificate available to anyone via a directory service. O then
deposits the certificate received from CA with S.

Each signature server S acquires a certificate on P K s from a certification
authority. Since these are ordinary certificates for digital signatures we do not
need to describe them here.

For the sake of simplicity, we do not include the certificates in the following
protocols. They might be attached to other messages, or retrieved using a direc-
tory service. We assume that the necessary certificates are always available to
anyone who needs to verify a signature.

3.4 G e n e r a t i n g N R O Tokens

The basic idea is to exploit the digital signature generation capability of a sig-
nature server to provide non-repudiation services to ordinary users. The basic
protocol, providing non-repudiation of origin, is illustrated in Figure 1. We as-
sume that a user O wants to send a message m along with an NRO token to
some recipient R. The first protocol run uses i = n; i is decreased during each
r u n .

1. 0 begins by sending (0, m, i) to its signature server S along with O's current
public key K~ in the first protocol flow. s

We ignore all information typically contained in a certificate but not relevant t o the
discussion at hand; e.g., organizational data such as serial numbers, expiration dates,
etc .

s In case 0 does not want to reveal the message to S for privacy reasons, m can be
replaced by a hash of m.

136

2. S verifies the received public key based on O's root public key (and O's
certificate obtained from CA), i.e., checks that h'~-~(Kio) = P K o . The sig-
nature server S has to ensure that only one NRO can be created for a given
(O, i, Z~) . If a message on behalf of O containing gio has not yet been
signed, S signs (0, m, i, g~) , records g ~ as consumed, and sends the signa-
ture back to O in the second flow.

3. O verifies the received signature and records K b as consumed, i.e., replaces
i by i - 1. The NRO token for R consists now of

(O , m, i, ~ K~o - i K o) S K s ,

O produces this token, i.e., actually authenticates m, by revealing K~ -1.
In Figure 1 we assumed that the NRO token is sent to R via S is the third
flow. Alternatively, O can send the token to R directly.

0 S R

O , m , i , K ~

(0, m, i, K~o)SKs

K,o-1 m, (0, re, i, K~)SKs, K~ -~

Fig. I. Protocol providing non-repudiation of origin

K~ is referred as the token publ ic key of the (n - { ~- 1)st non-repudiation
token, (O,m, i ,K~o)SKs ,K~o -1.

Note that O must consume the token public keys in sequence, i.e., must not
skip any of them. In particular, O must not ask for a signature using K~-1 as
token public key unless she has received S's signature under K~. Otherwise, S
could use that to create a fake non-repudiation token.

3.5 D i s p u t e Reso lu t i on

In case of a dispute, R can submit the NRO to an arbitrator. The arbitrator will

verify the following:

- the public keys are certified by CA,
- the signature in the token by the signature server is valid,
- the token public key is in fact a hash alleged pre-image in the token, and

137

- the root public key can be derived from the token public key by repeated
hashing.

If these checks are successful, then the originator is allowed the opportunity
to repudiate the token by

- proving that CA cheated:
�9 If O has registered with CA, 0 can show a certificate on a different root

public key.
�9 Otherwise CA will be asked to prove that root public key was registered

by O (i.e., showing the signed contract with O).
- proving that S cheated by showing a different token corresponding to the

same token public key.

Note that in case CA is honest, to falsely claim that O has sent a message
m', a cheating R has to produce an NRO token of the form:

(O , m , i , i i-1 ' K o)SKs ,K o

If 0 has not revealed K~-t yet, it is presumed that anyone else will find it
computationally infeasible to generate this NRO token, even if K~ is known. If

K~_I 0 has already revealed "~o she must have sent K~ to S before. According to
the protocol, O reveals K~ -1 only if she has received a signature from S under
K~ which satisfied her. Therefore, 0 can show a different token corresponding
to the same token public key.

4 Server-Supported Signatures for Non-repudiation of
Origin and Receipt

Non-repudiation of receipt (NRR) can be easily added to the basic protocol.
Before sending m to R, S can ask R for an NRO token for ("NRR", h(m)) which
is then passed on to O. This is illustrated in Figure 2. The NRR token consists
of:

(R, ("NRR", h(rn)), j, K~)SKs, K~ -1

Since this protocol is just two interleaved instances of the basic NRO protocol,
it still guarantees that O and R can repudiate all forged NRO and NRR tokens,
respectively.

Notice that the present protocol actually implements fair.exchange of m
(NRO token) and its receipt (NRR token), based on S as trusted third party. If
S behaves dishonestly, no fairness can be guaranteed, i.e., O might not receive
the NRR token or R might not receive m or the NRO token.

Depending on the application R might request to receive m already in the
second flow. This allows R to refuse generating the NRR token after he has
actually received m, but avoids the problem that R has to trust that he will
receive m a~er he has already acknowledged having received it.

138

0

O,~n,i,K~,R

(0, re, i, K'o)SKs
+ - -

(R, ("NRR", h(m)), j, K~)SK$

K~o-~

(R, ("NRR', h(m)), j, K~)SK$
)

K~ -1 m, (0, rn, i, K~)S K $, K~o -1

R

Fig. 2. Protocol providing non-repudiation of origin and receipt

5 V a r i a t i o n s o n t h e T h e m e

5.1 Reducing Storage Requirements

In order to deny forged non-repudiation tokens, 0 has to store all signatures
received from S, which might be a bit unrealistic for a device that is not even able
to compute signatures. One can easily avoid this storage problem by including an
additional field in S's signature that serves as a commitment on all the previous
signatures made by S for that hash-chain;i.e., an NRO token looks like

N R O i := ((0 , m , i, i i K o , H) S K s , K oi - 1)

Value H i is recursively computed by H n := K~ and H ~-1 := f (H i, N R O i) .
f 0 is a one-way hash function (it may be the same as h0).

0 has to store the last value H i and the last signature received from S only.
S has to store all signatures, and has to provide them to 0 in case of a dispute. If
S cannot provide a sequence of signatures that fits to the hash value contained
in the last signature received by O, the arbitrator allows 0 to repudiate all
signatures and assumes that S cheated.

This idea of chaining previous signatures was used by Haber and Stornet ta [HS]
for the construction of a time-stamping service, based on the observation that the
sequence of messages in H i cannot be changed afterwards. One could combine
their protocols with ours, using S as time-stamping sever.

5.2 Increasing Robustness

As mentioned above, a signature server will sign exactly one message for a given
user per public key (K~) in the hash-chain. However, anyone can send a signature
request in the form of the first flow, i.e., (O, m, i, K~o).

139

If the signature server does not subsequently receive the corresponding pre-
image of the current public key (K~-1), the current public key is rendered invalid
regardless. This implies that an attacker can succeed in invalidating an entire
chain of a user by generating fake signature requests in her name.

An obvious solution would be to require O and S to share a secret key to be
used for computing (and verifying) message authentication code over the first
protocol flow.

An alternative solution is to give users the ability to invalidate token public
keys without having to create a new chain. The construction is only slightly
more complicated than the basic protocol: instead of one chain, each user gen-
erates two chains (computed with two different hash functions): K ~ , . . . , K ~
and R ~ , . . . , ~o.

i ^j Each token public key is now a pair of hash values, say, (Ko,Ko). If O
receives (0, m, i, g~, RJo)Sgs, she can either accept or reject that:

- O accepts by revealing K~ -1. The next token public key is (K ~ - I , / ~) .
- O rejects by r e v e a l i n g / ~ - 1 The next token public key is (K~,K~-I) .

On receiving K~ -x o r / ~ - 1 , server S creates

the n o n - r e p u d i a t i o n t oken (O,m, " i ^j i-1
- ~,K o,K o,K o)SKs or
- the inva l ida t ion token (O,m,i,K~o,_fCJo,kJo-1)SKs

respectively. The new token public key is (K ~ - I , / ~) o r (K~,~:~-I) , respec-
tively.

The additional signature by S is necessary since for one signature

(O,m,i,K~,KJo)Sgs

it can easily happen that both K~ -1 a n d / ~ - x become public, i.e., the combi-
nation of the first signature with one pre-image would not be unambiguous and
recipient R could not depend on what he receives. Note that a cheating S could
generate both tokens for the same token public key, but 0 could easily prove
that S cheated by showing the token received.

5.3 S u p p o r t for R o a m i n g Users

In the basic protocol, the trust placed on the signature server is quite limited - it
is trusted only to protect its secret key from intruders and to generate signatures
in a secure manner. This limited trust enables a mobile user to make use of a
signature server in foreign domains while roaming (or travelling). Normally the
signature server in the user's home domain will be in charge of the user's hash-
chain. Whenever the user requests to be transferred to a signature server in a
different domain, an agreement could be signed by the two signature servers
involving the transfer of the user's current public key.

140

In other words, instead of having a single root public key certificate (which
includes the identity of the "home" signature server), a chain of public key
certificates could be used. The chain consists of the root public key certificate
signed by the home CA and one hand-o~f certificate every time the charge for
the user's public key has changed hands:

(0, n, K~, S)SKcA

(0, n~, K~', S~)SKs,_~, for 0 < n~ < n, ~ > 0

To effect a change in charge, the following procedure is carried out:

1. The user O sends a request for change of charge to both the current signature
server S~-1 and the intended signature server St. Since this request must
be non-repudiatable, this step is essentially a run of the basic protocol to
generate a NRO token with a message that means "change of charge from
S;_ 1 to S~ requested" for token public key K~ ~-;.

2. When the NRO token is received and verified by S;_ 1, it generates a corre-
sponding hand-off certificate described in the previous paragraph and sends
it to both O and S;. It will no longer generate signatures on behalf of O
for that hash-chain unless charge is explicitly transferred back to it at some
point. In addition, it will store both the hand-off certificate and the corre-
sponding NRO token.

3. When Sl has received both the NRO token and the hand-off certificate, it
wilt be ready to generate signatures on behalf of O.

5.4 Key R e v o c a t i o n

As with any certificate-based system, there must be a way for any user O to
revoke her hash-chain 9. If the currently secret portion O's hash-chain (say K~,
for i = p - 1 , p - 2, . . .1) has been compromised, O will detect the fact when she
attempts to construct an NRO the next time for the token public key K~: S
will return an error indicating the current token public key K~(q < p) from S's
point of view. O can attempt to limit the damage by doing one of the following:

1. invalidate all remaining token public keys K~o (i = q, q - 1 , . . . 1) by requesting
NRO tokens for them, or

2. notifying S to invalidate the remaining hash-chain by sending it a non-

repudiatable request to that affect and receiving a non-repudiatable state-
ment from S stating that the hash-chain has been invalidated�9 This can be
implemented similar to the invalidation tokens described in Section 5.2 -
except in this case the token would invalidate the entire chain and not just
a single key.

"~'Revocation by authorities is not an issue in this system since the user has to interact
with the signature server for the generation of every new NIR token anyway.

141

5.5 Similar C o n s t r u c t i o n s

In a more general light, the signature server in S a can be viewed as a "transla-
tor" of signatures: it translates one-time signatures based on hash-~nctions into
traditional digital signatures. The same approach can be used to combine other
techniques in such a way that the result provides some features that are not
available from the constituent techniques by themselves.

For example, one could select a traditional digital signature scheme (say D1)
where signing is easier than verification (e.g. DSS) and one (say 02) where
verification is easier than signing (e.g. RSA with a low public exponent) and
construct a similar composite signature scheme. The signature key of an entity
X in digital signature scheme D is denoted by S K D . To sign a message m, an
originator O would compute (m)SKDo ' and pass it along with the message m
to the signature server S. If the server can verify the signature, it will translate
it to (m, (m)SgDo ') S K D2 . In other words, the composite scheme allows digital
signatures where both signing and verification are computationally inexpensive.

6 A n a l y s i s

Computation: Users need to be able to compute one-way hashes, and to verify
digital signatures. Only the signature servers and CAs are required to generate
signatures.

Storage: Using the improvement described in Section 5. i, users need to store
only the last signature received from S, the pre-image of the current token public
key and the sequence number, and the public keys needed to verify certificates.

Signature servers need to store all generated signatures in order to provide
them to the users in case they request them. The stored signatures are necessary
only in case of a dispute. Therefore, they can be periodically down-loaded to a
secure archive.

Communication: The communication overhead of S s is comparable to that
of standard symmetric non-repudiation techniques, since a third party, S, is
involved in each generation of a non-repudiation token.

Using traditional digital signatures, the involvement of third parties can be
restricted to exception handling, while the token generation is a two-party proto-
col. The price to be paid for this gain in efficiency is that revocation of signature
keys becomes more complicated. Note that in S 3, revoking a key is trivial. O
just has to invalidate the current chain.

Security: In the preceding sections, we demonstrated that as long as the
registration procedure, digital signature scheme and one-way hash function are
secure, both users and signature servers are secure with respect to their re-
spective objectives. Furthermore, the security of originators depends on the
strength of the one-way hash function and not on the security of the digital
signature scheme.

142

7 Re l a t ed Work

Although non-repudiation of origin and receipt are among the most important
security requirements, only a few basic protocols exist. See [For94] for a summary
of the standard constructions. We are not aware of any previous work that aims
to minimize the computational costs (on the protocol level) for ordinary users
while providing the same security as standard non-repudiation techniques based
on asymmetric cryptography.

The efficiency problem as addressed by specific designs of signature schemes
was mainly motivated by the limited computing power of smart cards and smart
tokens. [Sch96] lists most known proposals. Typically they are based on pre-
processing or on some asymmetry in the complexity of signature generation and
verification (i.e., either sender or recipient must be able to perform complex
operations, but not both.) Note that although server-supported signatures use
a signature scheme that is asymmetric with respect to signature generation and
verification, ordinary users arc never required to generate signatures; thus, both
sender and recipient are assumed to be computationally weak.

There had been other proposals to use one-way hash functions to construct
signatures. Merkle's paper [Mer87] includes an overview of these efforts. The
original proposals in this category were impractical: A proposal by Lamport/Diffie
requires a "public key" (i.e. an object that must be bound to the signer be-
forehand) and two hash operations to sign every bit. Using an improvement
attributed to Winternitz, with a single public key and (which is the n th hash
image of the private key) and n hash operations, one can sign a single message of
size log2 n bits. Merkle introduced the notion of using a tree structure [Mer87];
in one version of his proposals, with just a single public key~ it is possible to sign
an arbitrary number of messages. But, it still took either a large number of hash
operations or a large amount of storage in order to sign more than a handful of
messages corresponding to the same public key.

Motivated by completely different factors, Pfitzmann et aL [PPW91, Pfi] pro-
posed a fail-stop signature protocol which uses the same ideas as S 3. There, the
signature server is also the recipient of the signature, and the goal is to achieve
unconditional security for the signer against the server (in the sense of fail-stop
signatures). The protocol has a similar structure as the one in Section 1.1~ Be-
cause of the specific security requirements, all parties have to perform complex
cryptographic operations, and signatures are not easily transferable.

10 It uses a so-called bundling function h 0 instead of the conceptionally simpler hash
function used in S s. A value h(x) is used as O's current public key. To give a NRO
token for message m to S, the signer O sends m to S, which answers by (m, h(z))SKs.
Finally 0 sends x to S, which terminates the protocol. The NRO token for ~r is
(rn, h(x))SKs, x. The consumed public key h(x) can be renewed by including a new
public key h(x') in m.

143

8 Acknowledgments

We are indebted to Michael Steiner for his perceptive feedback on previous ver-
sions of this paper. We would also like to thank Didier Samfat for making us
interested in the original problem.

References

[For94] Warwick Ford. Computer Communications Security - Principles, Standard
Protocols and Techniques. Prentice Hall, New Jersey, 1994.

[HS] Stuart Haber and W. Scott Stornetta. How to time-stamp a digital document.
Journal of Cryptology 3/2 (t991) 99-111.

[ISO95a] ISO/IEC JTC1, Information Technology, SC 27. 2nd ISO/IEC CD 13888-
1 Information Technology - Security Techniques - Non-repudiation - Part1:
General Model. ISO/IEC JTC 1/SC 27 N 1105, May 1995.

[ISO95b] ISO/IEC JTC1, Information Technology, SC 27. 2nd ISO/IEC CD 13888-
2 Information Technology - Security Techniques - Non-repudiation - Part2:
Using symmetric encipherment algorithms. ISO/IEC JTC 1/SC 27 N 1106,
July 1995.

[ISO95c] ISO/IEC JTC1, Information Technology, SC 27. ISO/IEC CD 13888-3 In-
formation Technology - Security Techrfiques - Non-repudiation - Part3: Using
asymmetric techniques. ISO/IEC JTC 1/SC 27 N 1107, September 1995.

[Mer87] Ralph C. Merkle. A digital signature based on a conventional encryption
function. In Carl Pomerance, editor, Advances in Cryptology - CRYPTO
'87, number 293 in Lecture Notes in Computer Science, pages 369-378, Santa
Barbara, CA, USA, August 1987. Springer-Verlag, Berlin Germany.

[Pfi] Birgit Pfitzmann. Fail-stop signatures; principles and applications. Proc.
Compsec '91, 8th world conference on computer security, audit and control,
Elsevier, Oxford 1991, 125-134.

[PPW91] Andress Pfitzmarm, Birgit Pfitzmarm, and Michael Waidner. Prac-
tical signatures where individuals are unconditionally secure. Unpub-
lished manuscript, availsble from the authors (pfit~b@informatik.uni-
hildesheim.de), 1991.

[Sch96] Bruce Schaeier. Applied Cryptography: Protocols, Algorithms, and Source
Code in C. John Wiley & Sons Inc., New York, second edition, 1996.

