
Structured Dagger: A Coordination Language
for Message-Driven Programming

Laxmikant V. Kal6 and Milind A. Bhandarkar

Department of Computer Science
University of, Illinois, UrbarLa IL

{kale, milind} @cs.uiuc.edu

Abstract. Message-Driven Programming style, used in l~nguages such
as Charm, avoids the use of blocking receives and allows adaptive overlap
of computation and communication by scheduling objects depending on
availability of messages. Charm supports objects whose methods can
be triggered by remote objects asynchronously, which enables Charm
programs to tderate communication latencies in an ad~ptive manner.
However, many parallel object-based applications require the object to
coordinate the sequencing of the execution of their methods. Structured
Dagger is a coordination language built on top of Charm that supports
such applications by facilitating a dear expression of the flow of control
within the object without losing the performance benefits of adaptive
message-driven execution.

1 Introduction

One of the daunting tasks for parallel programmers is to tolerate message latency
and unpredictable delays in remote response. Message-driven style of parallel
programming attempts to tolerate such latencies by disallowing any process to
block the processor when trying to receive messages and scheduling computation
depending upon availability of messages. Message-driven parMlel programming
languages provide constructs for attaching code blocks to availability of specific
messages. In object-oriented systems these blocks correspond to methods of par-
alld objects. These blocks are scheduled for execution by the run-time system
when the specified messages arrive. This scheme minimizes the performance im-
pact of communication latency by scheduling a ready process for execution while

other processes are waiting for data.
Charm [6] is one of the first object-based portable parallel programming lan-

guages that embodies message-driven execution and promotes modularity while
exhibiting latency tolerance, The order of execution of processes is determined
by the order of messages received. Due to unpredictable delays in remote re-
sponse times, the messages may arrive in any order and the programmer must
deal with all possible message orderings. However, imposing an order on the
arrival of messages, as is done in the traditional message-passing systems, tends
to make the parallel program inefficient by letting the communication latency

affect its performance.

647

To solve this problem, a coordination language called Dagger [3] was de-
veloped on top of the Charm programming system. However, the structure of
Dagger programs still does not clearly express the flow of control in certain situa-
tions. We propose a new coordination language called Structured Dagger, which
reduces the complexity of message-driven objects further by providing constructs
to express control flow as a series-parallel graph.

2 C h a r m

Charm is a machine independent parallel programming system [6]. Charm pro-
grams are written in C with a few syntactic extensions. Charm currently runs
on many distributed and shared memory parallel machines, as well as worksta-
tion networks. Charm programs consist of potentially medium grained objects
(chafes), and a special type of replicated objects, called branch-office chafes.
Charm supports dynamic creation of chares, by providing dynamic (as well as
static) load balancing strategies. Chafes interact by sending messages to each
other and via specific information sharing modes.

The runtime system is message-driven. It repeatedly selects an available mes-
sage from a pool of messages, switches to the context of the chare to which it is
directed, and initiates execution of the method specified by the message.

A Charm program consists of chare definitions, message definitions, and dec-
larations of specifically shared objects in addition to regular C language con-
structs (except global variables). A chare definition consists of local variable
declarations, entry-point definitions and private function definitions. Local vari-
ables of a chare are shared among the chare's entry-points and private functions.
Calls are provided to create chares and send messages to existing chafes.

A branch office chare (BOC) represents a group of chares. An instance of a
BOC has a branch chafe on every processor. A BOC definition is similar to a
chafe definition. All the branches of a single BOC instance share a global ID. One
can send a message to a specific branch chare of a BOC, on a particular processor,
or broadcast it to all its branches. BOC's are useful for some computations
such as reduction operations, expressing static load balancing, and SPMD style
programs.

In addition to messages, Charm provides other ways in which objects share
information. The information sharing abstractions supported include readonly
variables, monotonic variables, accumulators and distributed tables. Charm also
provides a sophisticated module system that facilitates reuse, and large-scale
programming. Details about these features can be found in [9].

Consider an algorithm for matr ix multiplication that is dynamically load
balanced. Matrix A is stored as a collection of entries where each entry is a block
of contiguous rows. Similarly, the matr ix B is stored as a collection of colmnns.
The f au l t_cha fe used in this algorithm (Figure la) is responsible for multiplying
a block of rows of A, and a block of columns of B. The entry in i l ; is executed
when an instance of the chare is created. The message msg contains indices of
the row and column blocks that are to be multiplied. First, the chare requests

648

the row and columns from the tables Atable and B t a b l e (these tables store
the matrices A and B) by calling F ind which is supported by the distributed
tables mechanism in Charm. Note that the Find call is non-blocking, and it
immediately returns. Eventually, the row (and column) data will be sent in a
message to the entry-point recv_row (recv_column), and these messages may
arrive in any order.

The multiplication depends on availability of both rows and columns. The de-
pendence (i.e. the flow of control within mult_chare) must therefore be enforced
using mechanisms such as counters and message buffers. Here, a chare-private
variable, count , is initially set to 2, and is decremented with arrival of each
message. When count becomes zero, the buffered messages are fetched and mul-
tiplication is performed. This example has been chosen to be a simple one in
order to demonstrate the necessity of counters and buffers. In general, a parallel
algorithm may have more interactions leading to the use of many counters, flags,
and message buffers, which complicates the program development significantly.

chare mult_chare {
in t count, *row, *col;
ChareIDType chareid;
e n t r y i n i t : (message MSG *msg) {

count = 2; MyChareID(&chareid) ;
Find(Atable, msg->row_index, recv_row, &chareid,NOWAIT) ;
Find (Btable, msg->col_index, recv_col, ~chareid,NOWAIT) ; }

en t ry recv_row: (message TBL_MSG *msg) {
row = msg->data; i f (- -count == 0) mu l t ip ly (row,co l) ;)

en t ry recv_col:(message TBL_MSG *msg){
col = msg->data; i f (- -count == 0) mul t ip ly(row,co l) ;}

Fig. l (a) Matrix multiplication chare in Charm

:hare mult_chare {
struetentry init : (message MSG *msg){

atomic {
Find(Arable, msg->row_index) ;
Find(Btable, msg->col_index) ; }

when recv_row(TBL-MSG ,row), recv_col(TBL-MSG *col) {
atomic{ multiply(row->data,col->data) }}

}

Fig. l (b) Matrix multiplication chare in Structured Dagger

649

3 S t r u c t u r e d D a g g e r : T h e L a n g u a g e

Structured Dagger hides the details of counters, buffers, and tests mentioned
in the last section from the programmer while clarifying the flow of control by
providing structured constructs discussed below.
S t r u c t u r e d E n t r y - M e t h o d s : The Structured Dagger language is defined by
augmenting Charm with structured entry-methods, which specify pieces of com-
putations (when-blocks) and dependences among computations and messages.
A when-block is guarded by dependences that must be satisfied before it can
be scheduled for execution. These dependences include arrival of messages or
completion of other constructs. Before describing the language in detail, let us
consider the matrix multiplication example once again.

Figure lb shows the matrix multiplication written using Structured Dag-
ger. Whenever the entries recv_ro~ and recv_column receive messages, the
mu l t i p ly function is called with the rows and columns that have been received.
Structured Dagger takes care of the bookkeeping functions such as incrementing
counters, flags and buffering the messages. Therefore, the resulting code is more
readable (and easy to program).
When-Blocks: When-blocks specify dependence between computation and mes-
sage arrival at an entry-point. In general, a when-block may specify its depen-
dence on more than one entry-point. When all constituent entry-points receive
messages, computation corresponding to the when-block may be triggered.

When-blocks combined with the ordering constructs are adequate for spec-
ifying computations where multiple iterations of the same computations may
not overlap. However, in many practical problems, such as Jacobi Relaxation in
numerical methods, such overlap may occur. Then messages for different itera-
tions must be matched separately. In order to handle this problem, Structured
Dagger provides reference numbers attached to messages to distinguish between
messages belonging to different phases of computation. A when-block optionally
specifies the reference numbers for the messages triggering its constituent entry-
points. Messages that belong to the same phase of the computation are given
specific reference numbers by the user. Structured Dagger matches the messages
with those reference numbers to activate a when-block.
Atomic Cons t ruc t : The atomic construct is a wrapper around C statements
and specifies that no Structured Dagger constructs appear inside it. further, it
does not contain code executed depending on the arrival of remote messages and
is therefore executed atomically.

Order ing Cons t ruc ts : Receiving a message at an entry-point is not sufficient
to trigger a computation. The computation must be in a state where it is ready to
process the message. Even if all the entry-points specified in a when-block have
received messages, the computation specified in the when-block is not triggered
until other constructs occurring previously in the program order may not have
completed. The program order may be specified in Structured Dagger using the
ordering constructs, seq and overlap.

The seq construct is written as s e q { c o n s t r u c t - l i s t } and ensures that each
of the constructs in the list is enabled only after its predecessor completes. Note

650

IBranchOffice Harlow_Welch{
~//chare-local va r iab les dec la ra t ions
s t r u c t e n t r y init:(MSGINIT *msg){

seq {
a tomic { i n i t i a l i z e () ; f o r (i = 0 ; i<Z; i++) convdone[i] = FALSE; }
fo ra l l (i=0 ,Z- l , i) {

whi le(!convdone[i]){
a tomic { fo r (dir=0; dir<4; dir++){

m[i][dir] = copy~oundary(i,dir);

SendMsgBranch(en t ry~o[d i r l ,m[i J [d i r] ,nbr [i] [d i r]) ;}}
when North(Bdry *n),South(Bdry *s) ,East(Bdry *e),West(Bdry *w){

a tomic { upda te (i , n, s, e, w);
reduction(my_cony, i , Converge, &mycid);}}

when [i] Converge (Cony *c) {atomic{convdone [i] = c->done ; }}
}

}
a tomic { p r i n t _ r e s u l t s () ; }

}
.}

Fig. 1. Harlow-Welch Program

that , s e q construct is not the same as a tomic construct because it may contain
other Structured Dagger constructs. The seq construct completes when the last
of its component constructs reaches completion.

The o v e r l a p construct enables all its component constructs concurrently and
can execute these constructs in any order. Actual execution of these component
constructs may be dependent on arrival of messages that they use. An o v e r l a p
construct reaches its completion only after each of its component constructs has

completed.
C o n d i t i o n a l a n d L o o p i n g C o n s t r u c t s : In many situations, one may need
to conditionally enable the Structured Dagger constructs, or to iterate over a
set of constructs. Since a tomic construct cannot include any Structured Dagger
constructs, the C statements such as i f , whi le , and f o r cannot be used for
this purpose. Therefore, Structured Dagger provides the equivalent constructs.
If more than one component constructs appear inside such a construct, they are
implicitly enclosed by a seq construct. The constructs supported include:

i f (condition) {construct-llst} e lse {construct-list}
wh i l e (condition) {construct-list}
f o r (strut; condition; strut) {construct-list)
fo ra l l (var=const, coast, coast) {construct-list)

A f o r a l l construct enables its component constructs for the entire iteration
space as opposed to the whi le and f o r constructs, which enable their component
constructs for each element of the iteration space in strict sequence.

651

Example P rogram: We present an example Structured Dagger program that
implements the Harlow-Welch scheme in Computational Fluid Dynamics. The
control flow is expressed in Figure 1. Each iteration in this scheme consists of
communicating the boundary elements with neighbors in the 2-D grid followed
by a global reduction to check whether the scheme has converged. (The reduction
is carried out asynchronously by a separate object and is not shown here.) This
is done concurrently for all the planes and each of the planes could converge
independently of each other.

4 S t r u c t u r e d D a g g e r : I m p l e m e n t a t i o n

Structure Dagger is implemented on top of Charm as a translator and a run-time
library. The translator transforms the program to an equivalent Charm program,
by splitting a structured entry-point into a number of Charm entry-methods
and chare-private functions, inserting counters and flags to specify dependences
between different component constructs of the structured entry-point.

For each construct, the translator generates code for enabling the construct
and for the completion of the construct. Code generated for completion of the
construct contains code to free the message buffers occupied by the messages
arrived during its execution as well as to enable the constructs that may be
dependent on its completion.

The runtime library maintains one message queue for each object. Whenever
any when-block is enabled, it checks for the messages intended for its component
entries. If all of these are available, it enables its component constructs and if
possible executes them (In particular, it executes the code in atomic constructs,
which do not have dependence on message arrival.) The entry-method generated
corresponding to each of the entries within when-blocks contains code to buffer
the message, set the appropriate flags and awaken any when-blocks that may
be waiting. By doing a careful analysis of this dependence, the translator avoids
repeated and redundant checking for all enabled when-blocks.

For assessing the performance impact of our translation scheme, we ran a
simple program on a single node of CM-5. This program creates two objects,
which then start sending messages to each other in a loop for a specified num-
ber of times. We compared the performance of our Structured Dagger program
with a Charm program and also with a multi-threaded program written using
thread-objects in Converse [7]. The results for 10000 round-trip messages (each
of size 4 bytes) are in table 1. As can be seen from these results, Structured
Dagger program does not add significant overhead to the native Charm code,
while it reduces the program complexity. The cost of context-switching in a
multi-threaded program is very high, which justifies our use of message-driven
execution in Structured Dagger.

652

Table 1. Performance Results

Program Charm Multi-Threaded[Structured Dagger
Time(seconds) 1.390 5.654 [1.890

5 R e l a t e d Work

Dagger [3] is an earlier a t t empt to build a coordination language on top of
Charm. The concept and structure of when-blocks in Structured Dagger is
borrowed from Dagger. Dagger permits a more general class of control flow
graphs than Structured Dagger, using when-blocks, e x p e c t and r ead y state-
ments, and condition variables. A when-block specifies dependences as a list of
entries and condition variables. A Dagger program enables a when-block by is-
suing an e x p e c t statement. If the arrived message is not expected, it is buffered
for later retrieval. A condition variable is used to signal the end of a when-block
with a r e a d y statement. Thus control-dependences among when-blocks belong-
ing to the same chare can be expressed using condition variables. However, the
structure of Dagger programs is not as perspicuous as Structured Dagger be-
cause a Dagger program is a flat collection of when-blocks. This perspicuity is
obtained at the cost of sacrificing the generality that Dagger provides.

C C + + [4] is an object-parallel language that bears some similarities to Struc-
tured Dagger. C C + + is a thread-based system. A computat ion consists of one
or more processor objects each with its own address space. Objects within these
processor objects can be accessed by remote objects using global pointers. Within
individual processor objects, new threads can be spawned using the structured
constructs par, and parlor, and the unstructured construct spawn, which cre-
ates a new parallel thread. Multiple threads created by these statements may
be executed by different processors, or interleaved on the same processor, and
they may share variables. The par and parlor constructs of C C + + are analogous
to the overlap, and forall constructs in Structured Dagger. However, they are
different in a fundamental sense: two statements in a par construct may actually
be executed in parallel by two different processors, whereas two constructs in an
overlap statement are always executed by the same processor. Also they can in-
terleave only in a disciplined fashion: only entire when-blocks can be interleaved,
based on the arrival of messages, and not the individual C statements.

The most important difference between Structured Dagger and C C + + (and
other systems such as Chant [5]) has to do with threads. Using threads creates
a flexibility, but at a cost: thread context switches are more expensive than
message-driven invocations of methods in Charm or Structured Dagger(as illus-
trated in fig. 1); also, threads waste memory: creating hundreds or thousands of
threads, each with its own stack, may not be possible, whereas a large number
of parallel objects can easily be created without reaching memory limits.

A B C + + [2] is a thread-based object-parallel language. There is one thread
associated with each parallel object. This thread receives method invocation rues-

653

sage and decides when and whether to invoke methods. Primitives are provided
to selectively enable execution of individual methods. Unlike Structured Dagger,
no direct expression of control flow across method invocations is possible.

The enable set construct [8] addresses the issue of synchronization within
Aclors [1]. Using this, one may specify which messages may be processed in the
new state. Other messages received are buffered until the current enable set
includes them. The ordering constructs in Structured Dagger achieve this in a
cleaner manner. Also, there is no analogue of a when-block, viz. a computat ion
block, that can be executed only when a specific group of messages have arrived.

6 C o n c l u s i o n

We presented a coordination language called Structured Dagger which is a no-
tation for specifying intra-process control dependences in message-driven pro-
grams. This language combines efficiency of message-driven execution with the
explicitness of control specification. Structured Dagger allows easy expression of
dependences among messages and computations and also among computations
within the same object using when-blocks similar to Dagger and various struc-
tured constructs. Structured Dagger has been developed on top of Charm and
is portable across many MIMD machines, with or without shared memory.

R e f e r e n c e s

1. G.Agha, Actors: A Model of Concurrent Computation in Distributed Systems. MIT
Press. 1986.

2. E. Arjomandi et. al., "ABC++: Concurrency by inheritance in C++", IBM Sys-
tems Journal, Vol 34, No. 1, 1995.

3. A.Gnrsoy, Message Driven Execution and its Impact on the Performance of CFD
and other Applications, Ph.D Thesis, University of Illinois at Urbana-Champaign,
Jan 1993.

4. K.Mani Chandy and C. Kesselman, "Compositional C++: Compositional Parallel
Programming", Technical Report no. Caltech-CS-TR-92-13, Department of Com-
puter Science, California Institute of Technology, 1992.

5. M. Hainer, D. Cronk and P. Mehrotra, "On the Design of Chant: A Talking Threads
Package", Proceedings of Supercomputing '94, Nov 1994.

6. L.V.Kale, "The Chafe Kernel parallel programming language and system", Pro-
ceedings of the International Conference on Parallel Processing, Vol II, Aug 1990,
pp17-25.

7. L.V.Kale et.al., "Converse: An Interoperable Framework for Parallel Program-
ming", Submitted to International Parallel Processing Symposium, 1996.

8. C.Tomlinson, V.Singh, "Inheritance and Synchronization with Enabled-Sets',
ACM OOPSLA 1989 , pp103-112.

9. The CHARM(4.0) programming language manual, Department of Computer Sci-
ence, University of Illinois at Urbana-Champaign, Urbana, IL, 1993.

