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Abstract. Message-Driven Programming style, used in l~nguages such 
as Charm, avoids the use of blocking receives and allows adaptive overlap 
of computation and communication by scheduling objects depending on 
availability of messages. Charm supports objects whose methods can 
be triggered by remote objects asynchronously, which enables Charm 
programs to tderate communication latencies in an ad~ptive manner. 
However, many parallel object-based applications require the object to 
coordinate the sequencing of the execution of their methods. Structured 
Dagger is a coordination language built on top of Charm that supports 
such applications by facilitating a dear expression of the flow of control 
within the object without losing the performance benefits of adaptive 
message-driven execution. 

1 Introduction 

One of the daunting tasks for parallel programmers is to tolerate message latency 
and unpredictable delays in remote response. Message-driven style of parallel 
programming attempts to tolerate such latencies by disallowing any process to 
block the processor when trying to receive messages and scheduling computation 
depending upon availability of messages. Message-driven parMlel programming 
languages provide constructs for attaching code blocks to availability of specific 
messages. In object-oriented systems these blocks correspond to methods of par- 
alld objects. These blocks are scheduled for execution by the run-time system 
when the specified messages arrive. This scheme minimizes the performance im- 
pact of communication latency by scheduling a ready process for execution while 

other processes are waiting for data. 
Charm [6] is one of the first object-based portable parallel programming lan- 

guages that embodies message-driven execution and promotes modularity while 
exhibiting latency tolerance, The order of execution of processes is determined 
by the order of messages received. Due to unpredictable delays in remote re- 
sponse times, the messages may arrive in any order and the programmer must 
deal with all possible message orderings. However, imposing an order on the 
arrival of messages, as is done in the traditional message-passing systems, tends 
to make the parallel program inefficient by letting the communication latency 

affect its performance. 
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To solve this problem, a coordination language called Dagger [3] was de- 
veloped on top of the Charm programming system. However, the structure of 
Dagger programs still does not clearly express the flow of control in certain situa- 
tions. We propose a new coordination language called Structured Dagger, which 
reduces the complexity of message-driven objects further by providing constructs 
to express control flow as a series-parallel graph. 

2 C h a r m  

Charm is a machine independent parallel programming system [6]. Charm pro- 
grams are written in C with a few syntactic extensions. Charm currently runs 
on many distributed and shared memory parallel machines, as well as worksta- 
tion networks. Charm programs consist of potentially medium grained objects 
(chafes), and a special type of replicated objects, called branch-office chafes. 
Charm supports dynamic creation of chares, by providing dynamic (as well as 
static) load balancing strategies. Chafes interact by sending messages to each 
other and via specific information sharing modes. 

The runtime system is message-driven. It repeatedly selects an available mes- 
sage from a pool of messages, switches to the context of the chare to which it is 
directed, and initiates execution of the method specified by the message. 

A Charm program consists of chare definitions, message definitions, and dec- 
larations of specifically shared objects in addition to regular C language con- 
structs (except global variables). A chare definition consists of local variable 
declarations, entry-point definitions and private function definitions. Local vari- 
ables of a chare are shared among the chare's entry-points and private functions. 
Calls are provided to create chares and send messages to existing chafes. 

A branch office chare (BOC) represents a group of chares. An instance of a 
BOC has a branch chafe on every processor. A BOC definition is similar to a 
chafe definition. All the branches of a single BOC instance share a global ID. One 
can send a message to a specific branch chare of a BOC, on a particular processor, 
or broadcast it to all its branches. BOC's are useful for some computations 
such as reduction operations, expressing static load balancing, and SPMD style 
programs. 

In addition to messages, Charm provides other ways in which objects share 
information. The information sharing abstractions supported include readonly 
variables, monotonic variables, accumulators and distributed tables. Charm also 
provides a sophisticated module system that facilitates reuse, and large-scale 
programming. Details about these features can be found in [9]. 

Consider an algorithm for matr ix  multiplication that is dynamically load 
balanced. Matrix A is stored as a collection of entries where each entry is a block 
of contiguous rows. Similarly, the matr ix B is stored as a collection of colmnns. 
The f au l t_cha fe  used in this algorithm (Figure la) is responsible for multiplying 
a block of rows of A, and a block of columns of B. The entry in i l ;  is executed 
when an instance of the chare is created. The message msg contains indices of 
the row and column blocks that  are to be multiplied. First, the chare requests 



648 

the row and columns from the tables Atable  and B t a b l e  (these tables store 
the matrices A and B) by calling F ind  which is supported by the distributed 
tables mechanism in Charm. Note that  the Find call is non-blocking, and it 
immediately returns. Eventually, the row (and column) data  will be sent in a 
message to the entry-point recv_row (recv_column),  and these messages may 
arrive in any order. 

The multiplication depends on availability of both  rows and columns. The de- 
pendence (i.e. the flow of control within mult_chare) must therefore be enforced 
using mechanisms such as counters and message buffers. Here, a chare-private 
variable, count ,  is initially set to 2, and is decremented with arrival of each 
message. When count  becomes zero, the buffered messages are fetched and mul- 
tiplication is performed. This example has been chosen to be a simple one in 
order to demonstrate the necessity of counters and buffers. In general, a parallel 
algorithm may have more interactions leading to the use of many counters, flags, 
and message buffers, which complicates the program development significantly. 

chare mult_chare { 
in t  count,  *row, *col;  
ChareIDType chareid;  
e n t r y  i n i t :  (message MSG *msg) { 

count = 2; MyChareID(&chareid) ; 
Find(Atable, msg->row_index, recv_row, &chareid,NOWAIT) ; 
Find (Btable, msg->col_index, recv_col, ~chareid,NOWAIT) ; } 

en t ry  recv_row: (message TBL_MSG *msg) { 
row = msg->data; i f  ( - -count  == 0 ) mu l t ip ly ( row,co l ) ; )  

en t ry  recv_col:(message TBL_MSG *msg){ 
col = msg->data; i f  ( - -count  == 0) mul t ip ly( row,co l ) ;}  

Fig. l (a )  Matrix multiplication chare in Charm 

:hare mult_chare { 
struetentry init : (message MSG *msg){ 

atomic  { 
Find(Arable, msg->row_index .... ) ; 
Find(Btable, msg->col_index .... ) ; } 

when recv_row(TBL-MSG ,row), recv_col(TBL-MSG *col) { 
atomic{ multiply(row->data,col->data) }} 

} 

Fig. l (b )  Matrix multiplication chare in Structured Dagger 
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3 S t r u c t u r e d  D a g g e r  : T h e  L a n g u a g e  

Structured Dagger hides the details of counters, buffers, and tests mentioned 
in the last section from the programmer while clarifying the flow of control by 
providing structured constructs discussed below. 
S t r u c t u r e d  E n t r y - M e t h o d s :  The Structured Dagger language is defined by 
augmenting Charm with structured entry-methods, which specify pieces of com- 
putations (when-blocks) and dependences among computations and messages. 
A when-block is guarded by dependences that must be satisfied before it can 
be scheduled for execution. These dependences include arrival of messages or 
completion of other constructs. Before describing the language in detail, let us 
consider the matrix multiplication example once again. 

Figure lb shows the matrix multiplication written using Structured Dag- 
ger. Whenever the entries recv_ro~ and recv_column receive messages, the 
mu l t i p ly  function is called with the rows and columns that have been received. 
Structured Dagger takes care of the bookkeeping functions such as incrementing 
counters, flags and buffering the messages. Therefore, the resulting code is more 
readable (and easy to program). 
When-Blocks:  When-blocks specify dependence between computation and mes- 
sage arrival at an entry-point. In general, a when-block may specify its depen- 
dence on more than one entry-point. When all constituent entry-points receive 
messages, computation corresponding to the when-block may be triggered. 

When-blocks combined with the ordering constructs are adequate for spec- 
ifying computations where multiple iterations of the same computations may 
not overlap. However, in many practical problems, such as Jacobi Relaxation in 
numerical methods, such overlap may occur. Then messages for different itera- 
tions must be matched separately. In order to handle this problem, Structured 
Dagger provides reference numbers attached to messages to distinguish between 
messages belonging to different phases of computation. A when-block optionally 
specifies the reference numbers for the messages triggering its constituent entry- 
points. Messages that belong to the same phase of the computation are given 
specific reference numbers by the user. Structured Dagger matches the messages 
with those reference numbers to activate a when-block. 
Atomic  Cons t ruc t :  The atomic construct is a wrapper around C statements 
and specifies that no Structured Dagger constructs appear inside it. further, it 
does not contain code executed depending on the arrival of remote messages and 
is therefore executed atomically. 

Order ing  Cons t ruc ts :  Receiving a message at an entry-point is not sufficient 
to trigger a computation. The computation must be in a state where it is ready to 
process the message. Even if all the entry-points specified in a when-block have 
received messages, the computation specified in the when-block is not triggered 
until other constructs occurring previously in the program order may not have 
completed. The program order may be specified in Structured Dagger using the 
ordering constructs, seq and overlap. 

The seq construct is written as s e q { c o n s t r u c t - l i s t }  and ensures that each 
of the constructs in the list is enabled only after its predecessor completes. Note 
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IBranchOffice Harlow_Welch{ 
~//chare-local  va r iab les  dec la ra t ions  
s t r u c t e n t r y  init:(MSGINIT *msg){ 

seq { 
a tomic  { i n i t i a l i z e ( ) ; f o r ( i = 0 ;  i<Z; i++) convdone[i] = FALSE; } 
fo ra l l ( i=0 ,Z- l , i ) {  

whi le(!convdone[ i ] ){  
a tomic  { fo r  (dir=0; dir<4; dir++){ 

m[i][dir] = copy~oundary(i,dir); 

SendMsgBranch(en t ry~o[d i r l ,m[ i J [d i r ] ,nbr [ i ] [d i r ] ) ;}}  
when North(Bdry *n),South(Bdry *s) ,East(Bdry *e),West(Bdry *w){ 

a tomic  { upda te ( i ,  n, s,  e, w); 
reduction(my_cony, i ,  Converge, &mycid);}} 

when [ i ]  Converge (Cony *c) {atomic{convdone [i]  = c->done ; }} 
} 

} 
a tomic  { p r i n t _ r e s u l t s ( ) ;  } 

} 
.} 

Fig. 1. Harlow-Welch Program 

that ,  s e q  construct is not the same as a tomic  construct because it may contain 
other Structured Dagger constructs. The seq  construct completes when the last 
of its component constructs reaches completion. 

The o v e r l a p  construct enables all its component constructs concurrently and 
can execute these constructs in any order. Actual execution of these component 
constructs may be dependent on arrival of messages that  they use. An o v e r l a p  
construct reaches its completion only after each of its component constructs has 

completed. 
C o n d i t i o n a l  a n d  L o o p i n g  C o n s t r u c t s :  In many situations, one may need 
to conditionally enable the Structured Dagger constructs, or to iterate over a 
set of constructs. Since a tomic  construct cannot include any Structured Dagger 
constructs, the C statements such as i f ,  whi le ,  and f o r  cannot be used for 
this purpose. Therefore, Structured Dagger provides the equivalent constructs. 
If more than one component constructs appear inside such a construct, they are 
implicitly enclosed by a seq  construct. The constructs supported include: 

i f  (condition) {construct-llst} e lse  {construct-list} 
wh i l e  (condition) {construct-list} 
f o r  (strut; condition; strut) {construct-list) 
fo ra l l  ( var=const, coast, coast) {construct-list) 

A f o r a l l  construct  enables its component constructs for the entire iteration 
space as opposed to the whi le  and f o r  constructs, which enable their component 
constructs for each element of the iteration space in strict sequence. 
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Example  P rogram:  We present an example Structured Dagger program that 
implements the Harlow-Welch scheme in Computational Fluid Dynamics. The 
control flow is expressed in Figure 1. Each iteration in this scheme consists of 
communicating the boundary elements with neighbors in the 2-D grid followed 
by a global reduction to check whether the scheme has converged. (The reduction 
is carried out asynchronously by a separate object and is not shown here.) This 
is done concurrently for all the planes and each of the planes could converge 
independently of each other. 

4 S t r u c t u r e d  D a g g e r  : I m p l e m e n t a t i o n  

Structure Dagger is implemented on top of Charm as a translator and a run-time 
library. The translator transforms the program to an equivalent Charm program, 
by splitting a structured entry-point into a number of Charm entry-methods 
and chare-private functions, inserting counters and flags to specify dependences 
between different component constructs of the structured entry-point. 

For each construct, the translator generates code for enabling the construct 
and for the completion of the construct. Code generated for completion of the 
construct contains code to free the message buffers occupied by the messages 
arrived during its execution as well as to enable the constructs that may be 
dependent on its completion. 

The runtime library maintains one message queue for each object. Whenever 
any when-block is enabled, it checks for the messages intended for its component 
entries. If all of these are available, it enables its component constructs and if 
possible executes them (In particular, it executes the code in atomic constructs, 
which do not have dependence on message arrival.) The entry-method generated 
corresponding to each of the entries within when-blocks contains code to buffer 
the message, set the appropriate flags and awaken any when-blocks that may 
be waiting. By doing a careful analysis of this dependence, the translator avoids 
repeated and redundant checking for all enabled when-blocks. 

For assessing the performance impact of our translation scheme, we ran a 
simple program on a single node of CM-5. This program creates two objects, 
which then start sending messages to each other in a loop for a specified num- 
ber of times. We compared the performance of our Structured Dagger program 
with a Charm program and also with a multi-threaded program written using 
thread-objects in Converse [7]. The results for 10000 round-trip messages (each 
of size 4 bytes) are in table 1. As can be seen from these results, Structured 
Dagger program does not add significant overhead to the native Charm code, 
while it reduces the program complexity. The cost of context-switching in a 
multi-threaded program is very high, which justifies our use of message-driven 
execution in Structured Dagger. 
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Table  1. Performance Results 

Program Charm Multi-Threaded[Structured Dagger 
Time(seconds) 1.390 5.654 [ 1.890 

5 R e l a t e d  Work  

Dagger [3] is an earlier a t t empt  to build a coordination language on top of 
Charm. The concept and structure of when-blocks in Structured Dagger is 
borrowed from Dagger. Dagger permits a more general class of control flow 
graphs than Structured Dagger, using when-blocks, e x p e c t  and r ead y  state- 
ments, and condition variables. A when-block specifies dependences as a list of 
entries and condition variables. A Dagger program enables a when-block by is- 
suing an e x p e c t  statement.  If the arrived message is not expected, it is buffered 
for later retrieval. A condition variable is used to signal the end of a when-block 
with a r e a d y  statement.  Thus control-dependences among when-blocks belong- 
ing to the same chare can be expressed using condition variables. However, the 
structure of Dagger programs is not as perspicuous as Structured Dagger be- 
cause a Dagger program is a flat collection of when-blocks. This perspicuity is 
obtained at the cost of sacrificing the generality that  Dagger provides. 

C C + +  [4] is an object-parallel language that  bears some similarities to Struc- 
tured Dagger. C C + +  is a thread-based system. A computat ion consists of one 
or more processor objects each with its own address space. Objects within these 
processor objects can be accessed by remote objects using global pointers. Within 
individual processor objects, new threads can be spawned using the structured 
constructs par, and parlor, and the unstructured construct spawn, which cre- 
ates a new parallel thread. Multiple threads created by these statements may 
be executed by different processors, or interleaved on the same processor, and 
they may share variables. The par and parlor constructs of C C + +  are analogous 
to the overlap, and forall constructs in Structured Dagger. However, they are 
different in a fundamental  sense: two statements in a par construct may actually 
be executed in parallel by two different processors, whereas two constructs in an 
overlap statement are always executed by the same processor. Also they can in- 
terleave only in a disciplined fashion: only entire when-blocks can be interleaved, 
based on the arrival of messages, and not the individual C statements. 

The most important  difference between Structured Dagger and C C + +  (and 
other systems such as Chant [5]) has to do with threads. Using threads creates 
a flexibility, but at a cost: thread context switches are more expensive than 
message-driven invocations of methods in Charm or Structured Dagger(as illus- 
trated in fig. 1); also, threads waste memory: creating hundreds or thousands of 
threads, each with its own stack, may not be possible, whereas a large number 
of parallel objects can easily be created without reaching memory limits. 

A B C + +  [2] is a thread-based object-parallel language. There is one thread 
associated with each parallel object. This thread receives method invocation rues- 
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sage and decides when and whether to invoke methods. Primitives are provided 
to selectively enable execution of individual methods. Unlike Structured Dagger, 
no direct expression of control flow across method invocations is possible. 

The enable set construct [8] addresses the issue of synchronization within 
Aclors [1]. Using this, one may specify which messages may be processed in the 
new state. Other messages received are buffered until the current enable set 
includes them. The ordering constructs in Structured Dagger achieve this in a 
cleaner manner. Also, there is no analogue of a when-block, viz. a computat ion 
block, that  can be executed only when a specific group of messages have arrived. 

6 C o n c l u s i o n  

We presented a coordination language called Structured Dagger which is a no- 
tation for specifying intra-process control dependences in message-driven pro- 
grams. This language combines efficiency of message-driven execution with the 
explicitness of control specification. Structured Dagger allows easy expression of 
dependences among messages and computations and also among computations 
within the same object using when-blocks similar to Dagger and various struc- 
tured constructs. Structured Dagger has been developed on top of Charm and 
is portable across many MIMD machines, with or without shared memory. 
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