
Partial Evaluation Scheme for Concurrent
Languages and Its Correctness

Haruo Hosoya, Naoki Kobayashi and Akinori Yonezawa

Department of Information Science, University of Tokyo,
7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan

A b s t r a c t . A simple, general, and well-formalized partial evaluation
method for concurrent languages is proposed. In spite of many potential
benefits, there are few partial evaluation techniques for concurrent lan-
guages. We choose a process calculus for the target language because it
has theoretical clarity, and yet has expressive power enough to represent
various high-level constructs in concurrent object-oriented languages. We
realize effective optimization by allowing elimination of even nondeter-
ministic interprocess communications. Furthermore, we prove correctness
of our method with respect to barb-agreed simulation.

1 I n t r o d u c t i o n

Partial evaluation is a program transformation scheme to improve efficiency by
specializing a program with respect to its known part of inputs. Many partial
evaluation techniques have been proposed for sequential languages [6, 14]. They
have been applied to programs in many fields such as compilers for reflective lan-
guages [10], logic circuit simulation [14], and numerical computation [2], speeding
up programs by orders of magnitude. In concurrent languages, partial evaluation
may optimize code for data distribution or load balancing if it depends heavily
on the known inputs, or partial evaluation may enhance low-level optimizations
by expanding sequences of message sending explicitly in output code. In spite
of such potential benefits, there are few proposals of partial evaluation methods
for concurrent languages.

Our goal is to develop a partial evaluation method that (1) is powerful enough
to handle multiple processes and their communications, which are not treated in
conventional partial evaluation methods for sequential languages, (2) is general
enough to easily apply to various constructs in high-level concurrent (especially
object-oriented) languages, and (3) is clear enough to formalize and prove its
correctness since partial evaluation is non-trivial global program transformation.
For these purposes, we make the following two fundamental decisions.

First, rather than doing complicated and specific partial evaluation directly
on high-level languages, we first translate a program in a high-level language
into a simple language based on process calculi [12, 9] and then apply partial
evaluation to the translated program. It is because process calculi have theoret-
ical clarity, and yet significant expressive power enough to represent high-level
concurrent (object-oriented) languages, so that they have been foundations of

626

static analyses and optimization techniques for concurrent languages [7, 8]. It is
therefore easy to formalize our partial evaluation method and discuss its correct-
ness. In this paper, we chose a subset of HACL [9], one of such process calculi,
as our target language.

The second decision is that we allow our partial evaluation to eliminate
communications between processes. This approach can not only reduce high-
cost communications themselves, but can also make it easy to propagate values
sent by communications for further optimization of the subsequent code. Even
when there are several nondeterministic choices in a communication, our method
chooses one and discards the rest. In this sense, our approach resolves nonde-
terminism. Some previous work already takes similar approaches. For example,
some existing optimizing compilers achieve high performance by generating code
for statically fixed scheduling order [15]. In practice, results of most of concurrent
applications do not depend on nondeterminism.

We formalize our partial evaluation method and prove its correctness. Be-
cause our approach resolves nondeterminism, a resultant program is not always
equivalent to the original program with respect to usual process equivalence re-
lations. We therefore introduce barb-agreed simulation, which is a relaxed version
of barbed bisimulation [11]. We show that our method is correct with respect
to barb-agreed simulation. We believe that it sufficiently expresses correctness
criteria for most program transformation schemes as well as partial evaluation.
As far as the authors know, this is the first s tudy that develops a partial evalu-
ation method for a concurrent language with enough expressive power, and also
proves correctness of the method.

According to our preliminary experiments using a prototype system for our
partial evaluation scheme with an application of logic expression interpreter,
our method has power to eliminate a considerable number of communications in
practice and improve efficiency dramatically.

The rest of this paper is organized as follows. Section 2 introduces the syntax
and semantics of our target language. Section 3 gives our formal partial evalu-
ation method. In section 4, we introduce barb-agreed simulation and prove our
partial evaluation correct. In section 5, we discuss our approach to elimination of
communications. In section 6, we remark on related work. Finally section 7 con-
cludes this paper and touches upon future work. Full formalization, full proofs,
and experiments, which are omitted here because of the lack of space, are found
in our accompanying technical report [5].

2 S y n t a x a n d S e m a n t i c s o f t h e T a r g e t L a n g u a g e

This section introduces our target language, a subset of HACL. From the full
HACL [9], we excluded static polymorphic types, choices, functions, and first-

class processes.
In HACL, computation is performed by concurrent processes communicating

each other asynchronously via channels, re(v) is a process that sends a value v
to a channel m. re(x)=>P is a process that receives a values v from a channel m,

627

Syntax
(processes) "P 9 P ::= PIIP2 I$x . P l e l (e 2) I e(x)=>P I T

l if e then P1 else P2
(procedure defs.) F ::= {fl(x)--P1, . . . , fn(x)=P,~}

(programs) 6 9 / / : : = F t> P
(arithmetic exprs.) $ 9 e ::= x I const I op(e) I (e l , . . . , en) I #iCe)

(values) v : : = x I const l (v l , . . . , v =)

Structural congruence
(1) FliP2 ~- P21P1 (2) (P~lP2)lP3 ~- Pll(P21P3)
(3) Sx. (P~ I P2) ~ P11Sx. P2 if x • Fv(P1) .
Reduc t ion Rules

P ~- Q F ~ P ---+ F ~ P ' P ' ~- Q' F ~, P ---, F E> P '
F ~ Q ----, F ~ , Q ' (SCoNG) F ~ P I Q ----* F ~ P ' I Q

F t> p ---+ F > p ~
r t> $x .P --~ F ~ $x .P ' (NEW) F ~, re(v) Im(x)=>P --~ F ~ P[v/x]

F U { f (x) = P } ~ f (v) --~ F U { f (x) = P } > P [v / x] (APP)

(PAR)

(CoM)

Fig. 1. Syntax and operational semantics (selected)

and executes P[v /x] . Semantically, a channel is a bag of values, rather than a
(FIFO) queue, and each of them is consumed by a receiver. If there are multiple
senders and receivers, it is nondeterministic which pair of sender and receiver
will communicate. Processes are spawned by parallel composition: P1 [P2. $x. P
creates a channel x and executes P. Channels can be carried as first-class data.

We give the syntax and operational semantics in Figure 1. op is a primitive
operator such as integer addition. Note that et @2) can be either a sender process
or a procedure (described below) call according to whether el is evaluated to a
channel or a procedure. T denotes a run-time error. A contex t C[.] is a process
with a single occurrence of a hole [-] in it. C[P] denotes a process obtained by
replacing [-] in C[.] with P.

The operational semantics is defined via three reduction relations: an (appli-
cative-order) reduction relation ---~c over ari thmetic expressions s a structural
congruence ~ over processes :P; and a reduction relation - . over programs
G, i.e., pairs of a set of procedure (parameterized recursive process) definitions
and a process. Structural congruence ~ is the smallest reflexive and transitive
congruence relation closed under the rules in Figure 1. We define it in order to
identify "equal" processes in terms of the structure and simplify the reduction
rules. In the figure, we present part of the inference rules for --+ . S C o n g rule
allows structurally congruent processes to make the same reduction.

E x a m p l e We give an example of simplified parallel "logic expression interpreter",
which inputs a logic expression (exp) and the value for the variable X (va lo fx) ,
and outputs the value for the expression. Arguments of each subexpression are
evaluated in parallel. We describe below this example in our language, where a

628

natural extension to continuation passing style (CPS) [1] is used. (ML-style case
statement is a syntax sugar.) The procedure logev takes an extra argument r ,
which is a "reply" channel to which the procedure will pass a return value. On
the other hand, each caller of the procedure first creates a new channel for reply,
call the procedure with the new channel as an extra argument, and, in parallel
to this, waits for a return value on the channel.

l o g e v (e x p , v a l o f x , r) = case exp of
TRUE o r FALSE => r (e x p)

I X => r (v a l o f x)
I (AND,e l , e2) => S s l . $ s 2 . (l o g e v (e l , v a l o f x , s l) I l o g e v (e 2 , v a l o f x , s 2)

I s l (v l) = > s 2 (v 2) = > r (v l and v2))

3 P a r t i a l E v a l u a t i o n M e t h o d

We represent each step of program transformation in partial evaluation by a
reduction relation ~-+ over programs. Its usage is as follows. Suppose we are
given a p r o g r a m / / 0 += F ~ P0 and a context C[-] ~ Cd[C~[.]] where C8[-] and
Cd[.] denote a statically known context and a dynamic (unknown) context, re-
spectively. We first transform F ~ C~[P] in arbi trary number of steps by ~,+ :
F ~ Cs[P] ~,+* I ~ ~ P1. We then execute _/7 ~ Cd[P1] by ~ .

In Figure 2, we present part of inference rules for ~-+E over C and +,z over
G. Most of these rules are naturally derived from the operational semantics rules.
In partial evaluation, any subexpression in an expression is allowed to reduce.
For arithmetic expressions, we allow destructions of tuples containing even ir-
reducible expressions (P E A r S e l rule), which is known as partially static data
structures [6]. P E C o m rule eliminates communications between pairs of senders
and receivers apparently in paraJlel; we say that P1 and P2 are apparently in par-
allel in Q if Q ~- $xi Sx,+. (P11 P21 R) for some R, x l , . . . , x,~. P E A p p rule
inlines procedure calls. Our t reatment of procedures makes it easy to allow spe-
cialization of procedures [5] (making specialized versions of recursive procedures

w.r.t, particular arguments.)
We show some examples of reductions to illustrate our rules. Let F be the def-

inition of the procedure logev shown in Section 2. F ~ $r . (l o g e v (X , b , r) I R) ,
where R _~ r (y) = > s (y and TRUE), invokes logev, waits for a result on r , and

replies a value to s. We have the reductions

F l > $ r . (l o g e v (X , b , r) l R) "~+ F t > $ r . (c a s e X of . . . IR) (P E A p p)
~,~ F ~ Sr. (r(b) IR) (PEI f)
~.+ F ~ $ r . (s (b and TRUE)) (P E C o m)

where the right-most column shows main rules applied in each reduction step.
We present below the inference of the last reduction by P E C o m .

(P E C o m)
F t> r (b) IR ~ F t> s (b and TRUE) (P E N e w)

-/~ t> $ r . (r (b) [R) ~ F t> $z. (s (b and TRUE))

629

!

e~-,~e ei l < i < n
(P E A r l) (PEArSel)

(" ' , e i , ' ") ' x ~ 8 (...,ei; . . .) # i ((e l , . . . , e n)) " ~ c el

F ~ P -,z F ~ P~ (P E P a r) F ~ P -,~ F ~ P '
F ~, P] Q "~* F ~ P' IQ F ~ e(x)=>P ~ F ~ e(x)=>P' (PERecv)

F ~ re(e) [ra(x)=>P ~* F ~ P[e/x] (PECom)

F U {f (x)=P} t> f (e) -,~ F t.J {f(x)=P} t> P[e/x] (PEApp)

Fig. 2. The partial evaluation rules (selected)

N o n d e t e r m i n i s m P E C o m rule can resolve nonde termin i sm. Specifically, when
there are multiple pairs of sender and receiver apparently in parallel on a channel,
the rule chooses a pair and eliminates the communication between them. For
example, among two choices of communications in the following p r o g r a m / / , our
rule chooses one and may transform the program as follows.

/ / -- /" ~ $ c . (c (a)] c (x)=>c(x+b l) [c (y)=>c(y+b2))

"~* / ~ $ c . (c (a + b l) [c(y)=>c(y+b2)) ~ . z / ' ~$c . (c ((a+b l)+b2))

Nondeterminism in the original program is thus resolved by partial evaluation.
As mentioned in the introduction, in our principle, any optimization scheme as
well as partial evaluation can be allowed to resolve nondeterminism, for efficiency.

4 C o r r e c t n e s s o f P a r t i a l E v a l u a t i o n

This section shows correctness of our partial evaluation method. For correctness
criteria, we cannot use bisimulation equivalences because of our treatment of
nondeterminism. On the other hand, the simulation relation [11] is too weak
because it allows re(l) In(2) to be replaced with re(l) , for example. We therefore
introduce barb-agreed s imulat ion.

Barb-agreed simulation involves a binary relation 7~ on programs. We require
that for each (/7, ~) E ~ , (1) each possible one-step reduction from # corresponds
to some possible multiple-step reduction from H, and (2) / / a n d ~5 have the same
"actions observable from external processes." We require the latter condition
because what always happen in H should always happen in ~5. We allow to
observe in / / sender processes via free channels, and the error, if any; we call
them barbs of H.

D e f in i t i on I B a r b . A program H --- F ~ P has a barb a, written Hga, if
(1) P -~ $Xl $xn . (a (v)]Q) where a r xi and a • Dora (F) , for some Q; or
(2) a = W and P -~ T[Q, for some Q.

630

D e f i n i t i o n 2 B a r b - a g r e e d S i m u l a t i o n . A relation ~ is a barb-agreed simula-
tion if (// , ~) E ~ implies (1) H~a iff ~ a ; and (2) if �9 ~ ~', then H 4 " /7' and
(/7', ~') E ~ , for some 17'. We wr i t e /7 ~ �9 if (H, ~) E ~ , for some barb-agreed
simulation 7~.

Because the barb-agreed simulation itself is too weak a relation (for example,
it allows re(l) to be replaced with m(2)), in order to obtain a reasonable relation,
we should further require that the relation be closed under any context, just as
barbed congruence is obtained from barbed bisimulation by closing it under any
context. We call the resulting relation a barb-agreed quasi-congruence.

In addition, we have to take the following into consideration: (1) in some rules
such as P E C o m , H need not to have the same barbs of �9 at the starting point,
but to reduce in some steps to get the barbs. (2) some rules such as P E C o m and
P E A p p assume that H never cause errors at execution time. We then obtain
the following relation.

D e f i n i t i o n 3 B a r b - a g r e e d Q u a s i - c o n g r u e n c e . F ~ P ~_c A ~ Q if, for each
context C[.], F ~ C[P] %+* T implies F r. C[P] --** /7' and II ' ~ A ~ C[Q] for

some H ' .

We can finally prove soundness of partial evaluation by induction on the
height of inferences of H ~.z ~, and the reflexivity and transitivity of ~_c .

T h e o r e m 4 S o u n d n e s s o f P a r t i a l E v a l u a t i o n . If I I ~.z* ~, then H >-r ~.

5 D i s c u s s i o n s on E l i m i n a t i o n o f C o m m u n i c a t i o n s

Power of a partial evaluation method mostly depends on how it can propagate
constants to the whole program. Our approach propagates values to be sent by
(even nondeterministic) communications by just eliminating them. It is anal-
ogous to conventional approaches that propagate argument values of function
calls by inlining them. However, we have the following issues to discuss.

Which communications to eliminate ? Although our P E C o m rule is sound as
already shown, it is conservative in the sense that it eliminates a communication
only if the sender and the receiver are apparently in parallel. It is far from trivial
to judge whether the elimination is sound or not if they are not apparently in
parallel. For example, in the process P --- (n(5)] m(x)=>n(y)=>f(x+Y)) , we
can show that it is not sound to eliminate the communication between the sender
n(5) and the receiver n (y)=>f (x+y), while it is sound if the channel n is bound
as $n. P, intuitively because no external process can receive from n. Developing
an analysis to detect such cases is one of our future research issues.

Possibility of loss of concurrency Eliminating communications has potential of
decreasing concurrency. For example, consider the following transformation,

Ft>ml(el)] m2(e2)] ml(x)=>m2(y)=>n(x+y) ...~* Ft>n(el+e2)

631

At execution time, the expressions et and e2 will be computed concurrently in
the original program, while they will be computed sequentially in the resultant
program. It is a trade-off whether we should eliminate the communication and
decrease concurrency; or leave it uneliminated and retain concurrency. A possi-
ble decision strategy may analyze the size of the expressions and whether they
are serialized in the receivers. Another strategy may use annotations specifying
location of each process, and leave remote communications uneliminated. Note
that this issue exists even if we eliminate only deterministic communications.

6 R e l a t e d W o r k

One of our motivations is to aggressively optimize high-cost communication and
synchronization constructs in concurrent object-oriented languages. The Concert
compiler [13] stands on a setting similar to ours and proposes several optimiza-
tion techniques. However, their approach is rather ad-hoc and handles locks and
communication constructs separately, while our framework can handle them uni-
formly.

In the reflective concurrent object-oriented language ABCL/R3 [10], partial
evaluation is used for compiling away meta-level interpreter code. However, al-
though their meta-level uses in principle concurrent objects, the target of their
partial evaluation is restricted to functional part of the meta-level programs, and
every inter-object communication is residualized as an I/O operation. It is one
of our goals to develop a framework that can optimize such communications.

Some partial evaluation methods for concurrent logic languages have been
proposed [4]. These methods, in contrast to ours, take approaches that preserve
nondeterminism, though they have not clearly described it. It seems to us that
such approaches are difficult to propagate values between processes effectively.
Moreover, their correctness has not been proven yet to the best of our knowledge.

7 C o n c l u s i o n a n d F u t u r e W o r k

In this paper, we have proposed a simple, general, and well-formalized partial
evaluation method for a simple language based on process calculi. By taking an
approach that eliminates even nondeterministic communications, we realized el-
fective partial evaluation. We introduced barb-agreed simulation as correctness
criteria for program transformation schemes that are allowed to resolve nonde-
terminism, and proved correctness of our partial evaluation method with respect
to barb-agreed simulation.

Finally, to make our partial evaluation method more powerful, we are plan-
ning to utilize the following analyses: linear channel analysis [8], which analyzes
channels used only "once", for elimination of more communications, and set-
based analysis [3], which analyzes conservatively values to be sent, for specializ-
ing receivers.

632

A c k n o w l e d g e m e n t s : We deeply appreciate Hidehiko Masuhara, Kenjiro Taura
and Tatsurou Sekiguchi for helpful comments and advice.

References

1. A. W. Appel. Compiling with Continuation. Cambridge University Press, 1992.
2. R. Baier, R. Gliik, and R. ZSchling. Partial evaluation of numerical programs in

Fortran. In Proceedings of Partial Evaluation and Semantics-Based Program Ma-
nipulation, pages 119-132, 1994.

3. N. Heintze. Set-based analysis of ML programs. In proceedings of the 1994 Con-
ference on Lisp and Functional Programming, pages 306-317, 1994.

4. H.Fujita, A.Okamura, and K.Furukawa. Partial evaluation of GHC programs based
on the UR-set with constraints. In proceedings of Logic Programming: Fifth Inter-
national Conference and Symposium, pages 924-941, 1988.

5. H. Hosoya, N. Kobayashi, and A. Yonezawa. Partial evaluation for concurrent lan-
guages and its correctness. Technical report of the Department of Information
Science, the University of Tokyo, 1996. to appear.

6. N. D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic
Program Generation. Prentice Hall, 1993.

7. N. Kobayashi, M. Nakade, and A. Yonezawa. Static analysis of communication for
asynchronous concurrent programming languages. In Second International Static
Analysis Symposium (SAS'95), volume 983 of Lecture Notes in Computer Science,
pages 225-242. Springer-Verlag, 1995.

8. N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and the pi-caiculus. In
Proceedings of A CM SIGACT/SIGPLAN Symposium on Principles of Program-
ming Languages, pages 358-371, 1996.

9. N. Kobayashi and A. Yonezawa. Higher-order concurrent linear logic program-
ming. In Theory and Practice of Parallel Programming, volume 907 of Lecture
Notes in Computer Science, pages 137-166. Springer-Verlag, 1995.

10. H. Masuhara, S. Matsuoka, K. Asai, and A. Yonezawa. Compiling away the meta-
level in object-oriented concurrent reflective languages using partial evaluation.
In Proceedings of ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA '95), pages 300-315, 1995.

11. R. Milner and D. Sangiorgi. Barbed bisimulation. In 19th ICALP, volume 623 of
Lecture Notes in Computer Science, pages 685-695, 1992.

12. B. C. Pierce and D. N. Turner. Concurrent objects in a process calculus. In Theory
and Practice of Parallel Programming (TPPP), volume 907 of Lecture Notes in
Computer Science, pages 187-215. Springer-Verlag, 1995.

13. J. Plevyak, X. Zhang, and A.A.Chien. Obtaining sequential efficiency for con-
current object-oriented languages. In Proceedings of ACM SIGACT/SIGPLAN
Symposium on Principles of Programming Languages, pages 311-321, 1995.

14. E. Ruf. Topics in Online Partial Evaluation. PhD thesis, Stanford University,
1993. (Technical Reprt CSL-TR-93-563).

15. K. Taura, S. Matsuoka, and A. Yonezawa. StackThreads: An abstract machine for
scheduling fine-grain threads on stock cpus. In Proceedings of Workshop on Theory
and Practice of Parallel Programming, number 907 in Lecture Notes on Computer
Science, pages 121-136. Springer Verlag, 1994.

