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A b s t r a c t .  A simple, general, and well-formalized partial evaluation 
method for concurrent languages is proposed. In spite of many potential 
benefits, there are few partial evaluation techniques for concurrent lan- 
guages. We choose a process calculus for the target language because it 
has theoretical clarity, and yet has expressive power enough to represent 
various high-level constructs in concurrent object-oriented languages. We 
realize effective optimization by allowing elimination of even nondeter- 
ministic interprocess communications. Furthermore, we prove correctness 
of our method with respect to barb-agreed simulation. 

1 I n t r o d u c t i o n  

Partial evaluation is a program transformation scheme to improve efficiency by 
specializing a program with respect to its known part of inputs. Many partial 
evaluation techniques have been proposed for sequential languages [6, 14]. They 
have been applied to programs in many fields such as compilers for reflective lan- 
guages [10], logic circuit simulation [14], and numerical computation [2], speeding 
up programs by orders of magnitude. In concurrent languages, partial evaluation 
may optimize code for data  distribution or load balancing if it depends heavily 
on the known inputs, or partial evaluation may enhance low-level optimizations 
by expanding sequences of message sending explicitly in output code. In spite 
of such potential benefits, there are few proposals of partial evaluation methods 
for concurrent languages. 

Our goal is to develop a partial evaluation method that  (1) is powerful enough 
to handle multiple processes and their communications, which are not treated in 
conventional partial evaluation methods for sequential languages, (2) is general 
enough to easily apply to various constructs in high-level concurrent (especially 
object-oriented) languages, and (3) is clear enough to formalize and prove its 
correctness since partial evaluation is non-trivial global program transformation. 
For these purposes, we make the following two fundamental decisions. 

First, rather than doing complicated and specific partial evaluation directly 
on high-level languages, we first translate a program in a high-level language 
into a simple language based on process calculi [12, 9] and then apply partial 
evaluation to the translated program. It is because process calculi have theoret- 
ical clarity, and yet significant expressive power enough to represent high-level 
concurrent (object-oriented) languages, so that  they have been foundations of 
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static analyses and optimization techniques for concurrent languages [7, 8]. It is 
therefore easy to formalize our partial evaluation method and discuss its correct- 
ness. In this paper, we chose a subset of HACL [9], one of such process calculi, 
as our target language. 

The second decision is that  we allow our partial evaluation to eliminate 
communications between processes. This approach can not only reduce high- 
cost communications themselves, but can also make it easy to propagate values 
sent by communications for further optimization of the subsequent code. Even 
when there are several nondeterministic choices in a communication, our method 
chooses one and discards the rest. In this sense, our approach resolves nonde- 
terminism. Some previous work already takes similar approaches. For example, 
some existing optimizing compilers achieve high performance by generating code 
for statically fixed scheduling order [15]. In practice, results of most of concurrent 
applications do not depend on nondeterminism. 

We formalize our partial evaluation method and prove its correctness. Be- 
cause our approach resolves nondeterminism, a resultant program is not always 
equivalent to the original program with respect to usual process equivalence re- 
lations. We therefore introduce barb-agreed simulation, which is a relaxed version 
of barbed bisimulation [11]. We show that  our method is correct with respect 
to barb-agreed simulation. We believe that  it sufficiently expresses correctness 
criteria for most program transformation schemes as well as partial evaluation. 
As far as the authors know, this is the first s tudy that  develops a partial evalu- 
ation method for a concurrent language with enough expressive power, and also 
proves correctness of the method. 

According to our preliminary experiments using a prototype system for our 
partial evaluation scheme with an application of logic expression interpreter, 
our method has power to eliminate a considerable number of communications in 
practice and improve efficiency dramatically. 

The rest of this paper is organized as follows. Section 2 introduces the syntax 
and semantics of our target language. Section 3 gives our formal partial evalu- 
ation method. In section 4, we introduce barb-agreed simulation and prove our 
partial evaluation correct. In section 5, we discuss our approach to elimination of 
communications. In section 6, we remark on related work. Finally section 7 con- 
cludes this paper and touches upon future work. Full formalization, full proofs, 
and experiments, which are omitted here because of the lack of space, are found 
in our accompanying technical report [5]. 

2 S y n t a x  a n d  S e m a n t i c s  o f  t h e  T a r g e t  L a n g u a g e  

This section introduces our target language, a subset of HACL. From the full 
HACL [9], we excluded static polymorphic types, choices, functions, and first- 

class processes. 
In HACL, computation is performed by concurrent processes communicating 

each other asynchronously via channels, re(v) is a process that sends a value v 
to a channel m. re(x)=>P is a process that  receives a values v from a channel m, 
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Syntax 
(processes) "P 9 P ::= PIIP2 I$x .  P l e l ( e 2 )  I e(x)=>P I T 

l if e then P1 else P2 
(procedure defs.) F ::= {fl(x)--P1, . . . , fn(x)=P,~} 

(programs) 6 9 / / : : =  F t> P 
(arithmetic exprs.) $ 9 e ::= x I const  I op(e) I (e l , . . . ,  en) I #iCe) 

(values) v : : =  x I const l  ( v l , . . . , v = )  

Structural congruence  
(1) FliP2 ~- P21P1 (2) (P~lP2)lP3 ~- Pll(P21P3) 
(3) Sx. (P~ I P2) ~ P11Sx. P2 if x • Fv(P1) .  
Reduc t ion  Rules  

P ~- Q F ~ P ---+ F ~ P '  P '  ~- Q' F ~, P ---, F E> P '  
F ~ Q  ----, F ~ , Q '  (SCoNG) F ~  P I Q  ----* F ~  P ' I Q  

F t> p ---+ F > p ~ 
r t> $x .P  --~ F ~ $x .P '  (NEW) F ~, re(v) Im(x)=>P --~ F ~ P[v/x] 

F U { f ( x ) = P } ~ f ( v )  --~ F U { f ( x ) = P } > P [ v / x ]  (APP) 

(PAR) 

(CoM) 

Fig.  1. Syntax and operational semantics (selected) 

and executes P[v /x ] .  Semantically, a channel is a bag of values, rather  than a 
(FIFO) queue, and each of them is consumed by a receiver. If  there are multiple 
senders and receivers, it is nondeterministic which pair of sender and receiver 
will communicate.  Processes are spawned by parallel composition: P1 [P2. $x. P 
creates a channel x and executes P.  Channels can be carried as first-class data.  

We give the syntax and operational semantics in Figure 1. op is a primitive 
operator  such as integer addition. Note that  et @2) can be either a sender process 
or a procedure (described below) call according to whether el is evaluated to a 
channel or a procedure. T denotes a run-time error. A contex t  C[.] is a process 
with a single occurrence of a hole [-] in it. C[P] denotes a process obtained by 
replacing [-] in C[.] with P.  

The operational semantics is defined via three reduction relations: an (appli- 
cative-order) reduction relation ---~c over ari thmetic expressions s a structural  
congruence ~ over processes :P; and a reduction relation - .  over programs 
G, i.e., pairs of a set of procedure (parameterized recursive process) definitions 
and a process. Structural congruence ~ is the smallest reflexive and transitive 
congruence relation closed under the rules in Figure 1. We define it in order to 
identify "equal" processes in terms of the structure and simplify the reduction 
rules. In the figure, we present part  of the inference rules for --+ . S C o n g  rule 
allows structurally congruent processes to make the same reduction. 

E x a m p l e  We give an example of simplified parallel "logic expression interpreter",  
which inputs a logic expression (exp) and the value for the variable X (va lo fx ) ,  
and outputs  the value for the expression. Arguments  of each subexpression are 
evaluated in parallel. We describe below this example in our language, where a 
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natural extension to continuation passing style (CPS) [1] is used. (ML-style case  
statement is a syntax sugar.) The procedure logev  takes an extra argument r ,  
which is a "reply" channel to which the procedure will pass a return value. On 
the other hand, each caller of the procedure first creates a new channel for reply, 
call the procedure with the new channel as an extra argument, and, in parallel 
to this, waits for a return value on the channel. 

l o g e v ( e x p , v a l o f x , r )  = case  exp of  
TRUE o r  FALSE => r ( e x p )  

I X => r ( v a l o f x )  
I (AND,e l , e2)  => S s l . $ s 2 . ( l o g e v ( e l , v a l o f x , s l )  I l o g e v ( e 2 , v a l o f x , s 2 )  

I s l ( v l ) = > s 2 ( v 2 ) = > r (  v l  and v2)) 

3 P a r t i a l  E v a l u a t i o n  M e t h o d  

We represent each step of program transformation in partial evaluation by a 
reduction relation ~-+ over programs. Its usage is as follows. Suppose we are 
given a p r o g r a m / / 0  += F ~ P0 and a context C[-] ~ Cd[C~[.]] where C8[-] and 
Cd[.] denote a statically known context and a dynamic (unknown) context, re- 
spectively. We first transform F ~ C~[P] in arbi trary number of steps by ~,+ : 
F ~ Cs[P] ~,+* I ~ ~ P1. We then execute _/7 ~ Cd[P1] by ~ . 

In Figure 2, we present part of inference rules for ~-+E over C and +,z over 
G. Most of these rules are naturally derived from the operational semantics rules. 
In partial evaluation, any subexpression in an expression is allowed to reduce. 
For arithmetic expressions, we allow destructions of tuples containing even ir- 
reducible expressions ( P E A r S e l  rule), which is known as partially static data 
structures [6]. P E C o m  rule eliminates communications between pairs of senders 
and receivers apparently in paraJlel; we say that  P1 and P2 are apparently in par- 
allel in Q if Q ~- $xi . . . .  Sx,+. (P11 P21 R) for some R, x l , . . . ,  x,~. P E A p p  rule 
inlines procedure calls. Our t reatment  of procedures makes it easy to allow spe- 
cialization of procedures [5] (making specialized versions of recursive procedures 

w.r.t, particular arguments.) 
We show some examples of reductions to illustrate our rules. Let F be the def- 

inition of the procedure logev  shown in Section 2. F ~ $r .  ( l o g e v ( X , b , r )  I R) ,  
where R _~ r ( y ) = > s ( y  and TRUE), invokes logev,  waits for a result on r ,  and 

replies a value to s. We have the reductions 

F l > $ r . ( l o g e v ( X , b , r )  l R )  "~+ F t > $ r . ( c a s e  X of  . . .  IR)  ( P E A p p )  
~,~ F ~ Sr. (r(b)  IR) (PEI f )  
~.+ F ~ $ r . ( s ( b  and TRUE)) ( P E C o m )  

where the right-most column shows main rules applied in each reduction step. 
We present below the inference of the last reduction by P E C o m .  

( P E C o m )  
F t> r ( b )  IR  ~ F t> s ( b  and TRUE) ( P E N e w )  

-/~ t> $ r .  ( r ( b )  [R)  ~ F t> $z.  ( s ( b  and TRUE)) 
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! 

e~-,~e ei l < i < n  
( P E A r l )  (PEArSel)  

( " ' , e i , ' " ) ' x ~ 8  (...,ei; . . .) # i ( ( e l , . . . , e n ) ) " ~ c  el 

F ~ P -,z F ~ P~ ( P E P a r )  F ~ P -,~ F ~ P '  
F ~, P ] Q  "~* F ~ P'  IQ F ~ e(x)=>P ~ F ~ e(x)=>P' (PERecv)  

F ~ re(e) [ra(x)=>P ~* F ~ P[e/x] (PECom)  

F U {f (x)=P} t> f (e )  -,~ F t.J {f(x)=P} t> P[e/x] (PEApp)  

Fig. 2. The partial evaluation rules (selected) 

N o n d e t e r m i n i s m  P E C o m  rule can resolve nonde termin i sm.  Specifically, when 
there are multiple pairs of sender and receiver apparently in parallel on a channel, 
the rule chooses a pair and eliminates the communication between them. For 
example, among two choices of communications in the following p r o g r a m / / ,  our 
rule chooses one and may transform the program as follows. 

/ /  -- /" ~ $ c . ( c ( a )  ] c (x )=>c(x+b l )  [ c (y )=>c(y+b2) )  

"~* / ~ $ c . ( c ( a + b l )  [ c(y)=>c(y+b2)) ~ . z / ' ~$c . ( c ( ( a+b l )+b2 ) )  

Nondeterminism in the original program is thus resolved by partial evaluation. 
As mentioned in the introduction, in our principle, any optimization scheme as 
well as partial evaluation can be allowed to resolve nondeterminism, for efficiency. 

4 C o r r e c t n e s s  o f  P a r t i a l  E v a l u a t i o n  

This section shows correctness of our partial evaluation method. For correctness 
criteria, we cannot use bisimulation equivalences because of our treatment of 
nondeterminism. On the other hand, the simulation relation [11] is too weak 
because it allows re(l)  In(2) to be replaced with re( l) ,  for example. We therefore 
introduce barb-agreed s imulat ion.  

Barb-agreed simulation involves a binary relation 7~ on programs. We require 
that  for each (/7, ~) E ~ ,  (1) each possible one-step reduction from # corresponds 
to some possible multiple-step reduction from H,  and ( 2 ) / / a n d  ~5 have the same 
"actions observable from external processes." We require the latter condition 
because what always happen in H should always happen in ~5. We allow to 
observe in / /  sender processes via free channels, and the error, if any; we call 
them barbs of H.  

D e f in i t i on  I B a r b .  A program H --- F ~ P has a barb a, written Hga,  if 
(1) P -~ $Xl . . . .  $xn . ( a (v )  ]Q) where a r xi and a • Dora (F) ,  for some Q; or 
(2) a = W and P -~ T[Q, for some Q. 
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D e f i n i t i o n  2 B a r b - a g r e e d  S i m u l a t i o n .  A relation ~ is a barb-agreed simula- 
tion if (// ,  ~) E ~ implies (1) H~a  iff ~ a ;  and (2) if �9 ~ ~',  then H 4 "  /7' and 
(/7', ~')  E ~ ,  for some 17'. We wr i t e /7  ~ �9 if (H, ~) E ~ ,  for some barb-agreed 
simulation 7~. 

Because the barb-agreed simulation itself is too weak a relation (for example, 
it allows re(l)  to be replaced with m(2)), in order to obtain a reasonable relation, 
we should further require that  the relation be closed under any context, just as 
barbed congruence is obtained from barbed bisimulation by closing it under any 
context. We call the resulting relation a barb-agreed quasi-congruence. 

In addition, we have to take the following into consideration: (1) in some rules 
such as P E C o m ,  H need not to have the same barbs of �9 at the starting point, 
but to reduce in some steps to get the barbs. (2) some rules such as P E C o m  and 
P E A p p  assume that  H never cause errors at execution time. We then obtain 
the following relation. 

D e f i n i t i o n  3 B a r b - a g r e e d  Q u a s i - c o n g r u e n c e .  F ~ P ~_c A ~ Q if, for each 
context C[.], F ~ C[P] %+* T implies F r. C[P] --** /7' and II '  ~ A ~ C[Q] for 

some H ' .  

We can finally prove soundness of partial evaluation by induction on the 
height of inferences of H ~.z ~, and the reflexivity and transitivity of ~_c . 

T h e o r e m  4 S o u n d n e s s  o f  P a r t i a l  E v a l u a t i o n .  If  I I  ~.z* ~, then H >-r ~. 

5 D i s c u s s i o n s  on  E l i m i n a t i o n  o f  C o m m u n i c a t i o n s  

Power of a partial evaluation method mostly depends on how it can propagate 
constants to the whole program. Our approach propagates values to be sent by 
(even nondeterministic) communications by just eliminating them. It is anal- 
ogous to conventional approaches that  propagate argument values of function 
calls by inlining them. However, we have the following issues to discuss. 

Which communications to eliminate ? Although our P E C o m  rule is sound as 
already shown, it is conservative in the sense that  it eliminates a communication 
only if the sender and the receiver are apparently in parallel. It is far from trivial 
to judge whether the elimination is sound or not if they are not apparently in 
parallel. For example, in the process P --- (n(5)  ] m(x)=>n(y)=>f(x+Y)) ,  we 
can show that  it is not sound to eliminate the communication between the sender 
n(5)  and the receiver n (y)=>f  (x+y),  while it is sound if the channel n is bound 
as $n. P,  intuitively because no external process can receive from n. Developing 
an analysis to detect such cases is one of our future research issues. 

Possibility of loss of concurrency Eliminating communications has potential of 
decreasing concurrency. For example, consider the following transformation, 

Ft>ml(el) ] m2(e2) ] ml(x)=>m2(y)=>n(x+y) ...~* Ft>n(el+e2) 
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At execution time, the expressions et and e2 will be computed concurrently in 
the original program, while they will be computed sequentially in the resultant 
program. It is a trade-off whether we should eliminate the communication and 
decrease concurrency; or leave it uneliminated and retain concurrency. A possi- 
ble decision strategy may analyze the size of the expressions and whether they 
are serialized in the receivers. Another strategy may use annotations specifying 
location of each process, and leave remote communications uneliminated. Note 
that this issue exists even if we eliminate only deterministic communications. 

6 R e l a t e d  W o r k  

One of our motivations is to aggressively optimize high-cost communication and 
synchronization constructs in concurrent object-oriented languages. The Concert 
compiler [13] stands on a setting similar to ours and proposes several optimiza- 
tion techniques. However, their approach is rather ad-hoc and handles locks and 
communication constructs separately, while our framework can handle them uni- 
formly. 

In the reflective concurrent object-oriented language ABCL/R3 [10], partial 
evaluation is used for compiling away meta-level interpreter code. However, al- 
though their meta-level uses in principle concurrent objects, the target of their 
partial evaluation is restricted to functional part of the meta-level programs, and 
every inter-object communication is residualized as an I/O operation. It is one 
of our goals to develop a framework that can optimize such communications. 

Some partial evaluation methods for concurrent logic languages have been 
proposed [4]. These methods, in contrast to ours, take approaches that preserve 
nondeterminism, though they have not clearly described it. It seems to us that 
such approaches are difficult to propagate values between processes effectively. 
Moreover, their correctness has not been proven yet to the best of our knowledge. 

7 C o n c l u s i o n  a n d  F u t u r e  W o r k  

In this paper, we have proposed a simple, general, and well-formalized partial 
evaluation method for a simple language based on process calculi. By taking an 
approach that eliminates even nondeterministic communications, we realized el- 
fective partial evaluation. We introduced barb-agreed simulation as correctness 
criteria for program transformation schemes that are allowed to resolve nonde- 
terminism, and proved correctness of our partial evaluation method with respect 
to barb-agreed simulation. 

Finally, to make our partial evaluation method more powerful, we are plan- 
ning to utilize the following analyses: linear channel analysis [8], which analyzes 
channels used only "once", for elimination of more communications, and set- 
based analysis [3], which analyzes conservatively values to be sent, for specializ- 
ing receivers. 
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