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Abs t rac t .  Distributed shared memory systems offer the possibility of 
implementing parallel algorithms using the familiar operations of shared 
memory access. In this paper we present the proof of correctness of an 
algorithm implementing such a shared memory system over a distrib- 
uted environment. Such proof is based in the formal model for memory 
systems introduced by the authors in previous works. 

1 I n t r o d u c t i o n  

A typical (loosely coupled) distributed systems is composed of a collection of 
independent computers interconnected through some type of network. In order 
to cooperate, applications written to span several computers on such a system 
need to have some mechanism to allow each one of their parts to exchange 
information. 

The shared memory model (SMM) provides a shared address space which 
can be used by processes in the same way as local memory, even if they 
are executed concurrently in different processors. Thus, every process can ac- 
cess any address by means of the basic operations data = read(address) and 
write(address, data), where read returns the da ta  in address, and write asso- 
ciates data with address. 

When a SMM is built on top of a distributed system, we get what is known 
as a DSMM. In this paper we present the formal proof of correctness of a DSMM 
algorithm which implements a particular shared memory  model. This model is 
a mixture of the atomic memory model [3] and the sequential model [4], thus 
presenting the developer with a familiar memory access semantics, while allowing 
a more efficient implementation. The proof is carried out using the formal model 
introduced by the authors in [1]. We base our framework on the I /O  au tomata  
formalism [5] for discrete event systems. The  I /O  au tomata  formalism has been 
successfully used to prove the correctness of algorithms as well as to specify 
properties of memory systems and transactional systems. 

2 C o r r e c t n e s s  P r o o f  

It is well known the inherent complexity of distributed algorithms. Indeed, there 
are several widely known algorithms that  were considered correctly designed and 
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that later have been found incorrect. Therefore, it is very important to be able 
to ensure that  implementations of models work correctly. 

Most of the work on shared models has not paid enough attention to the 
way such models are specified. The availability of an adequate formal framework 
makes it possible to answer questions about models and algorithms implementing 
them. In another work [2], we have introduced such a formal framework. Here, 
we show, basing on the specifications of two given models, how to we verify the 
correctness of a proposed DSMM implementing algorithm. 

Our framework takes into account two type of operations: write(i, x, u) which 
associates the value u to the variable ~, and read(i, x, u) which informs of 
the value u associated with the variable x (being i the process that  executes 
the operation). The way these operations are executed are described as ac- 
tions of that  formalism. A write(/,z, u) operation can be identified as a pair 
of bwdte(i, x, u) - ewrite(i, x) events, and a read(i, z, u) operation can be identi- 
fied as a pair of bread(i, z) - eread(i, z, u) events (the first to begin the operation 
and the second to finish it). 

In our formalism to specify a given memory model it is enough to specify 
the set of executions it allows. Moreover, the sequences of the model that  we are 
going to implement (a mixture of the atomic and sequential) are characterized 
by the existence of atomics and sequential "views" of those sequences. Formally, 
from [2], "a sequence a is sequential if VIEWS(SEQ, a) is not an empty set 
(ditto for the atomic sequences)". 

The proposed DSMM implementing algorithm permits to take advantage of 
the larger degree of parallelism given by the sequential model, allowing at the 
same time the use of a stricter model (atomic) for a subset of the variables. 

The way in which the DSMM implementing algorithm deals with atomic 
variables consists of invalidating all the replicas previously to each writing. Thus, 
each variable in isolation will be atomic [3]. Thereby, if we consider that  the 
atomic model is compositional, we can assume (in the verification) that  all the 
variables are sequential without losing generality. 

Our solution contains three system's descriptions: OpSpec, the operational 
requirement specification; Syslmpl, the hight level system implementation; and 
DiscSyslmpl, the discrete system implementation. 

The operational specification describes the system by using a single automa- 
ton. Next, we split it into two automata:  one of them models the architectural 
platform and the other the DSMM implementing algorithm. Finally, we split the 
later automaton into the automata  that  model its distributed implementation. 

Here, we present only those parts we consider necessary to understand the 
verification process. The details of the proofs are available in [2]. In what follows, 
7 ~ will stand for the set of processes, .hal for the set of variables (being .h, i0 the 
initial values) and msig(Ta,.ht) for the set of memory operations. 

2.1 O p e r a t i o n a l  Spec i f i ca t ion  

The operational specification, OpSpec, consists of a single automaton, 
BLACh'(7~,.h4,.h, to) (Fig. 1), which models all required properties in order to 
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solve the sequential model. Moreover, it incorporates the fairness condition that  
guarantees liveness of the implementation. The state transitions are described 
by specifying the "preconditions" under which each action can occur and the 
"effect" of each action. This constitutes an abstract representation harder to 
understand than the axiomatic specification of the sequential model. However, 
it is easier to use in the proofs. 

Actions: 
�9 Inputs: bread(i, x), bwrke(i, x, u) 
�9 Outputs: eread(i, x, u), ewrite(i, x) 
where i E P, x E A4 and u e range(z) 

State: a set of elements, S, in msig('P, .M), initially empty 
Transitions: 

�9 bwrite(i, x, u) �9 ewrlte(i, x) 
Precondition: 

last(Sl i  ) = bwrite(i, z, .) 
Effect: Effect: 

S = S- bwrite(i, x, u) S = S. ewrite(i, x) 
�9 bread(i, x) �9 eread(i, x, u) 

Precondition: 
last(S I i) = bread(i, x) 
VIEW(SEQ, T) # 0 
(where T = S- eread(i, z, u)) 

Effect: 
S = S. eread(i, x, u) 

Effect: 
S = S- bread(i, ~) 

Partition: {{ewrite(i, .)}, {eread(i,., .)}} 

Fig.  1. Specification of B L A C K ( P ,  AA, .Mo). 

2.2 System Implementation 

To implement a model, memory operations have to be translated into operations 
of the underlying system. The nature of such operations depends on the archi- 
tecture of the system on which the model is to be implemented. The architecture 
gives us only part of the full implementation of the model. The other part is the 
algorithm which, based on the architecture, implements the model (MMS). 

In this section we provide the specification of the components that  compose 
the system by using two automata.  The first implements the architecture and 

the other one the MMS. 
We consider a distributed architecture consisting of a set of locations O 

connected by a fault-free, ordered communication channel. We identify the set 
of:variables at each location as PV, being 1420 their initial values. Then, the 
architecture is globally modeled by using a single automaton DST(T), IV, )'Yo) 
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(Fig. 2). Roughly speaking, each memory operation is modeled by using three 
actions (the first to start  it, the second to "physically perform" it and the later 
to finish it). Moreover, data  at each location is modeled by an array of storing 
values. Accesses to those data  are made through three FIFO operatiOns: H E A D  
returns the queue's bo t tom value, DEQ dequeues that  value and E N Q  puts the 
value on the top of the queue. 

Act ions:  
�9 Inputs: br(j, y), bw(j, y, v) 
�9 Outputs: er(j, y, v), ew(j, y) 
�9 Internals: xr(j, y, v), xw(j, y, v) 
where j E ~, Y E )IV and v E range(y) 

State:  
�9 Fin[j], Fo~,[j]: array of FIFO queues of elements in in(sig(DST(:D, W, W0))) and 
out(sig(DST(D, W, }'Y0))) respectively, initially empties 
�9 Store[j,y]: array of variables in the range of y, initially y0 

T r a n s i t i o n s :  
�9 bw(j, y, v) 

Effect: 
ENQ(Fi, b'], bw(j, y, v)) 

�9 ew(j, y) �9 xw(j, y, v) 
Precondition: Precondition: 

HEAD(F~t[j]) = ew(j, y) HEAD(Fi,[j]) = bw(j, y, v) 
Effect: Effect: 

D EQ( Fo~t Iv]) Store[j, y] ---- v 

D EQ( F,.[y]) 
ENQ(Fo=,[y], ew(j, y)) 

�9 er(j, y, v) �9 xr(j, y, v) 
Precondition: Precondition: 

HEAD(Fo, t[j]) = er(j, y, v) HEAD(Fin[y]) = br(j. y) 
v = Store[j, y] 

Effect: Effect: 
D EQ( Fo.= [j]) D EQ( F,.[j]) 

E N Q ( F o = , [ j ] ,  er(/, y, v)) 

�9 bqj, v) 

Effect: 
E N Q( F,n[j], br(j, y) ) 

Partition: {{ew(j, .)}, {er(j,-, .)}, {xw(j,., .)}, {xr(j,., .)}} 

Fig.  2. Specification of DST(79, W, Wo). 

The MMS is modeled by using a single automaton RED(P,A~)  (Fig. 3). 
That  continues being a rather abstract representation of the system which is 
still far away from a realistic representation of the proposed distributed memory 
system. However, it is intended to be used in the discrete system specification 
correctness proof. 

At this stage it has to be proved that the interaction of the MMS with the 
architecture provides sequential executions. 

L e m r n a  1. Let Sys[rnpl = hide~( RED(P,  .Ad) 17 DST(79, ~V, ~/Vo ) ) (where ~ -- 
extsig( DST(:D, W, Wo ) )). Then Syslmpl solves OpSpec. 
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Actions: 
�9 Inputs: bread(i, x), bwrite(i, x, u), er(j, y, v), ew(j, y) 
�9 Outputs: eread(i, x, u), ewrite(i, x), br(j, y), bw(j, y, v) 
where i E ~, x e M,  u E range(~.), j E g), y e 14] and v E range(y) 

State:  a set of elements, S, in sig(RED(7 ~, r initially empty 
Transitions: 

�9 bwrite(i, x, u) 

Effect: 
S = S- bwrite(i, x, u) 

�9 bread(i, x) 

Effect: 
S = S- bread(i,x) 

�9 bw(j,  y, v) 
Precondition: 

las$(S I J) = bwdte(j, y, v) 
Effect: 

S = S .  bw(j, y, v) 
�9 br(j, y) 

Precondition: 
last(S I J) = bread(j, y) 

Effect: 
S = S. br( j ,y)  

�9 ewrite(i, x) 
Precondition: 

las*(S ] i) -- ew(i, x) 
Effect: 

S = S. ewrite(i, x) 
�9 eread(i, x, u) 

Precondition: 
l ~ t ( s  I i) = e r ( i , . ,  ~) 
VIEW(SEQ, T) r 0 
(where T = (S- eread(i, ~, ~)) I m~ig(~', 2~)) 

Effect: 
S = S.  eread(i, x, u) 

�9 ew(j, y) 

Effect: 
S = S . e w ( j , y )  

�9 er(j ,  y, v) 

Effect: 
S = S '  er(j,y,v) 

Par t i t ion:  { {eread(i,-,-)}, {ewrite(i, .)}, { br(j, .)], {bw(j,-,-)}} 

Fig .  3. Specification of RED(P,  M) .  

2 . 3  Di s c r e t e  S y s t e m  I m p l e m e n t a t i o n  

In the previous sections we have presented two levels of description of our so- 
lution, which, by their very nature, are quite abstract and do not correspond 
directly with an implementation over a distributed system. 

We now proceed to describe the discrete system model of the algorithm. In 
this model, the distributed nature of the underlying system is made explicit 
by using FIFO communication channels and explicit message passing between 
nodes in the distributed system. 

The communications system is modeled by an automaton FIFOM,  which, 
for our purposes, is in charge of sending and making receive the messages used 
by our protocol. 
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To obtain DiscSyslmpJ we compose the au tomata  that  will model the 
modules responsible of requesting variables as well as providing them 
({WRKRi(7~,c~4)}ieT~) with the module taking care of arbitrating conflict- 
ing requests for variables, ordering them and keeping track of circulating vari- 
ables (SEQ(7), A4)) and that  which models the communication channel module 
(FZFOM). 

At this stage it has to be proved that  the interaction of the automata  that 
model the discrete system implementation can be safely used for any task for 
which RED(P,.A4) is satisfactory. 

L e m m a  2. 
Let DiscSyslmpl - hide~(FIFOM 17 SEQ(7),A/f) 17 {WRKRi(P,A/f)}~O,) 
(where Z = extsig(FIFOM)). Then DiscSyslmpl solves RED(P, J~t). 

3 Conclus ion 

In this paper we have shown how to model, using our formalization of mem- 
ory coherency models, a particular algorithm implementing a distributed shared 
memory system. First we modeled the problem using an I /O  automata.  The 
possible execution sequences of this au tomata  define the "problem" we claim 
our algorithm "solves". Then we propose a more detailed I /O  automaton which 
is shown to solve the original problem. This automaton,  while still abstract, 
and not making use of the distributed nature of the underlying system, con- 
tains some details which facilitate its further break down into a fully distributed 
specification. 

The method used in this paper would be appropriate in general to prove the 
correctness of any other MMS implementation.  In our approach we use the full 
power of the I /O automata  formalism. A similar approach can also be used to 
prove the correctness of algorithms built upon any particular memory model. 
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