
Correctness Proof for a Distr ibuted M e m o r y
Sys tem

Vicente Cholvi-Juan 1 and Jos~ M. Bernab@u-Aub~n 2

1 University 3aume I
Castell6 (Spain)

2 Polytechnic University of Valencia
Valencia (Spain)

Abs t rac t . Distributed shared memory systems offer the possibility of
implementing parallel algorithms using the familiar operations of shared
memory access. In this paper we present the proof of correctness of an
algorithm implementing such a shared memory system over a distrib-
uted environment. Such proof is based in the formal model for memory
systems introduced by the authors in previous works.

1 I n t r o d u c t i o n

A typical (loosely coupled) distributed systems is composed of a collection of
independent computers interconnected through some type of network. In order
to cooperate, applications written to span several computers on such a system
need to have some mechanism to allow each one of their parts to exchange
information.

The shared memory model (SMM) provides a shared address space which
can be used by processes in the same way as local memory, even if they
are executed concurrently in different processors. Thus, every process can ac-
cess any address by means of the basic operations data = read(address) and
write(address, data), where read returns the da ta in address, and write asso-
ciates data with address.

When a SMM is built on top of a distributed system, we get what is known
as a DSMM. In this paper we present the formal proof of correctness of a DSMM
algorithm which implements a particular shared memory model. This model is
a mixture of the atomic memory model [3] and the sequential model [4], thus
presenting the developer with a familiar memory access semantics, while allowing
a more efficient implementation. The proof is carried out using the formal model
introduced by the authors in [1]. We base our framework on the I /O au tomata
formalism [5] for discrete event systems. The I /O au tomata formalism has been
successfully used to prove the correctness of algorithms as well as to specify
properties of memory systems and transactional systems.

2 C o r r e c t n e s s P r o o f

It is well known the inherent complexity of distributed algorithms. Indeed, there
are several widely known algorithms that were considered correctly designed and

527

that later have been found incorrect. Therefore, it is very important to be able
to ensure that implementations of models work correctly.

Most of the work on shared models has not paid enough attention to the
way such models are specified. The availability of an adequate formal framework
makes it possible to answer questions about models and algorithms implementing
them. In another work [2], we have introduced such a formal framework. Here,
we show, basing on the specifications of two given models, how to we verify the
correctness of a proposed DSMM implementing algorithm.

Our framework takes into account two type of operations: write(i, x, u) which
associates the value u to the variable ~, and read(i, x, u) which informs of
the value u associated with the variable x (being i the process that executes
the operation). The way these operations are executed are described as ac-
tions of that formalism. A write(/,z, u) operation can be identified as a pair
of bwdte(i, x, u) - ewrite(i, x) events, and a read(i, z, u) operation can be identi-
fied as a pair of bread(i, z) - eread(i, z, u) events (the first to begin the operation
and the second to finish it).

In our formalism to specify a given memory model it is enough to specify
the set of executions it allows. Moreover, the sequences of the model that we are
going to implement (a mixture of the atomic and sequential) are characterized
by the existence of atomics and sequential "views" of those sequences. Formally,
from [2], "a sequence a is sequential if VIEWS(SEQ, a) is not an empty set
(ditto for the atomic sequences)".

The proposed DSMM implementing algorithm permits to take advantage of
the larger degree of parallelism given by the sequential model, allowing at the
same time the use of a stricter model (atomic) for a subset of the variables.

The way in which the DSMM implementing algorithm deals with atomic
variables consists of invalidating all the replicas previously to each writing. Thus,
each variable in isolation will be atomic [3]. Thereby, if we consider that the
atomic model is compositional, we can assume (in the verification) that all the
variables are sequential without losing generality.

Our solution contains three system's descriptions: OpSpec, the operational
requirement specification; Syslmpl, the hight level system implementation; and
DiscSyslmpl, the discrete system implementation.

The operational specification describes the system by using a single automa-
ton. Next, we split it into two automata: one of them models the architectural
platform and the other the DSMM implementing algorithm. Finally, we split the
later automaton into the automata that model its distributed implementation.

Here, we present only those parts we consider necessary to understand the
verification process. The details of the proofs are available in [2]. In what follows,
7 ~ will stand for the set of processes, .hal for the set of variables (being .h, i0 the
initial values) and msig(Ta,.ht) for the set of memory operations.

2.1 O p e r a t i o n a l Spec i f i ca t ion

The operational specification, OpSpec, consists of a single automaton,
BLACh'(7~,.h4,.h, to) (Fig. 1), which models all required properties in order to

528

solve the sequential model. Moreover, it incorporates the fairness condition that
guarantees liveness of the implementation. The state transitions are described
by specifying the "preconditions" under which each action can occur and the
"effect" of each action. This constitutes an abstract representation harder to
understand than the axiomatic specification of the sequential model. However,
it is easier to use in the proofs.

Actions:
�9 Inputs: bread(i, x), bwrke(i, x, u)
�9 Outputs: eread(i, x, u), ewrite(i, x)
where i E P, x E A4 and u e range(z)

State: a set of elements, S, in msig('P, .M), initially empty
Transitions:

�9 bwrite(i, x, u) �9 ewrlte(i, x)
Precondition:

last(Sl i) = bwrite(i, z, .)
Effect: Effect:

S = S- bwrite(i, x, u) S = S. ewrite(i, x)
�9 bread(i, x) �9 eread(i, x, u)

Precondition:
last(S I i) = bread(i, x)
VIEW(SEQ, T) # 0
(where T = S- eread(i, z, u))

Effect:
S = S. eread(i, x, u)

Effect:
S = S- bread(i, ~)

Partition: {{ewrite(i, .)}, {eread(i,., .)}}

Fig. 1. Specification of B L A C K (P , AA, .Mo).

2.2 System Implementation

To implement a model, memory operations have to be translated into operations
of the underlying system. The nature of such operations depends on the archi-
tecture of the system on which the model is to be implemented. The architecture
gives us only part of the full implementation of the model. The other part is the
algorithm which, based on the architecture, implements the model (MMS).

In this section we provide the specification of the components that compose
the system by using two automata. The first implements the architecture and

the other one the MMS.
We consider a distributed architecture consisting of a set of locations O

connected by a fault-free, ordered communication channel. We identify the set
of:variables at each location as PV, being 1420 their initial values. Then, the
architecture is globally modeled by using a single automaton DST(T), IV,)'Yo)

529

(Fig. 2). Roughly speaking, each memory operation is modeled by using three
actions (the first to start it, the second to "physically perform" it and the later
to finish it). Moreover, data at each location is modeled by an array of storing
values. Accesses to those data are made through three FIFO operatiOns: H E A D
returns the queue's bo t tom value, DEQ dequeues that value and E N Q puts the
value on the top of the queue.

Act ions:
�9 Inputs: br(j, y), bw(j, y, v)
�9 Outputs: er(j, y, v), ew(j, y)
�9 Internals: xr(j, y, v), xw(j, y, v)
where j E ~, Y E)IV and v E range(y)

State:
�9 Fin[j], Fo~,[j]: array of FIFO queues of elements in in(sig(DST(:D, W, W0))) and
out(sig(DST(D, W, }'Y0))) respectively, initially empties
�9 Store[j,y]: array of variables in the range of y, initially y0

T r a n s i t i o n s :
�9 bw(j, y, v)

Effect:
ENQ(Fi, b'], bw(j, y, v))

�9 ew(j, y) �9 xw(j, y, v)
Precondition: Precondition:

HEAD(F~t[j]) = ew(j, y) HEAD(Fi,[j]) = bw(j, y, v)
Effect: Effect:

D EQ(Fo~t Iv]) Store[j, y] ---- v

D EQ(F,.[y])
ENQ(Fo=,[y], ew(j, y))

�9 er(j, y, v) �9 xr(j, y, v)
Precondition: Precondition:

HEAD(Fo, t[j]) = er(j, y, v) HEAD(Fin[y]) = br(j. y)
v = Store[j, y]

Effect: Effect:
D EQ(Fo.= [j]) D EQ(F,.[j])

E N Q (F o = , [j] , er(/, y, v))

�9 bqj, v)

Effect:
E N Q(F,n[j], br(j, y))

Partition: {{ew(j, .)}, {er(j,-, .)}, {xw(j,., .)}, {xr(j,., .)}}

Fig. 2. Specification of DST(79, W, Wo).

The MMS is modeled by using a single automaton RED(P,A~) (Fig. 3).
That continues being a rather abstract representation of the system which is
still far away from a realistic representation of the proposed distributed memory
system. However, it is intended to be used in the discrete system specification
correctness proof.

At this stage it has to be proved that the interaction of the MMS with the
architecture provides sequential executions.

L e m r n a 1. Let Sys[rnpl = hide~(RED(P, .Ad) 17 DST(79, ~V, ~/Vo)) (where ~ --
extsig(DST(:D, W, Wo))). Then Syslmpl solves OpSpec.

530

Actions:
�9 Inputs: bread(i, x), bwrite(i, x, u), er(j, y, v), ew(j, y)
�9 Outputs: eread(i, x, u), ewrite(i, x), br(j, y), bw(j, y, v)
where i E ~, x e M, u E range(~.), j E g), y e 14] and v E range(y)

State: a set of elements, S, in sig(RED(7 ~, r initially empty
Transitions:

�9 bwrite(i, x, u)

Effect:
S = S- bwrite(i, x, u)

�9 bread(i, x)

Effect:
S = S- bread(i,x)

�9 bw(j, y, v)
Precondition:

las$(S I J) = bwdte(j, y, v)
Effect:

S = S . bw(j, y, v)
�9 br(j, y)

Precondition:
last(S I J) = bread(j, y)

Effect:
S = S. br(j ,y)

�9 ewrite(i, x)
Precondition:

las*(S] i) -- ew(i, x)
Effect:

S = S. ewrite(i, x)
�9 eread(i, x, u)

Precondition:
l ~ t (s I i) = e r (i , . , ~)
VIEW(SEQ, T) r 0
(where T = (S- eread(i, ~, ~)) I m~ig(~', 2~))

Effect:
S = S. eread(i, x, u)

�9 ew(j, y)

Effect:
S = S . e w (j , y)

�9 er(j , y, v)

Effect:
S = S ' er(j,y,v)

Par t i t ion: { {eread(i,-,-)}, {ewrite(i, .)}, { br(j, .)], {bw(j,-,-)}}

Fig . 3. Specification of RED(P, M) .

2 . 3 Di s c r e t e S y s t e m I m p l e m e n t a t i o n

In the previous sections we have presented two levels of description of our so-
lution, which, by their very nature, are quite abstract and do not correspond
directly with an implementation over a distributed system.

We now proceed to describe the discrete system model of the algorithm. In
this model, the distributed nature of the underlying system is made explicit
by using FIFO communication channels and explicit message passing between
nodes in the distributed system.

The communications system is modeled by an automaton FIFOM, which,
for our purposes, is in charge of sending and making receive the messages used
by our protocol.

531

To obtain DiscSyslmpJ we compose the au tomata that will model the
modules responsible of requesting variables as well as providing them
({WRKRi(7~,c~4)}ieT~) with the module taking care of arbitrating conflict-
ing requests for variables, ordering them and keeping track of circulating vari-
ables (SEQ(7), A4)) and that which models the communication channel module
(FZFOM).

At this stage it has to be proved that the interaction of the automata that
model the discrete system implementation can be safely used for any task for
which RED(P,.A4) is satisfactory.

L e m m a 2.
Let DiscSyslmpl - hide~(FIFOM 17 SEQ(7),A/f) 17 {WRKRi(P,A/f)}~O,)
(where Z = extsig(FIFOM)). Then DiscSyslmpl solves RED(P, J~t).

3 Conclus ion

In this paper we have shown how to model, using our formalization of mem-
ory coherency models, a particular algorithm implementing a distributed shared
memory system. First we modeled the problem using an I /O automata. The
possible execution sequences of this au tomata define the "problem" we claim
our algorithm "solves". Then we propose a more detailed I /O automaton which
is shown to solve the original problem. This automaton, while still abstract,
and not making use of the distributed nature of the underlying system, con-
tains some details which facilitate its further break down into a fully distributed
specification.

The method used in this paper would be appropriate in general to prove the
correctness of any other MMS implementation. In our approach we use the full
power of the I /O automata formalism. A similar approach can also be used to
prove the correctness of algorithms built upon any particular memory model.

References

1. Bernab6u-Aubs J.M., Cholvi-Juan, V.: Formalizing memory coherency models.
Journal of Computing and information 1 (1994) 653-672

2. Cholvi-Juan, V.: Formalizing memory models. PhD thesis, Department of Computer
Science, Polythechnic University of Valencia (1994)

3. Herlihy, M.P., Wing, J.M.: Linearizability: A correctness condition for concurrent
objects 12 3 (1990) 463-492

4. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs, IEEE Transactions on Computers 28 9 (1979) 690-691

5. Lynch, N.: I/O Automata: A model for discrete event system. Massachusetts Insti-
tute of Technology, Technical Report MIT/LCS/TM-351 (1988)

