
Array Dataflow Analysis for Explicitly Parallel
Programs

Jean-Francois Collard 1 and Martin Griebl 2

1 Laboratoire PRISM, Universit4 de Versailles St-Quentin, 45 Avenue des
Etats-Unis, 78035 Versailles, FRANCE, Jean-Francois.CollardOprism.uvsq. fr

2 FMI, Universit/it Passau, Innstrafie 33, 94032 Passau, GERMANY,
Mart in. Gr iebl@fmi, uni-passau, de

Abst rac t . This paper describes a dataflow analysis of array data struc-
tures for data-parallel and/or control- (or task-) parallel imperative lan-
guages. This analysis departs from previous work because it 1) simulta-
neously hanitles both parallel programming paradigms, and 2) does not
rely on the usual iterative solving process of a set of data flow equations
but extends array dataflow analysis based on integer linear programming,
thus improving the precision of results.

1 I n t r o d u c t i o n

After decades of parallel processing, few programming languages can claim to be
used on a wide range of parallel architectures. Probably, one of the reasons lies
in the difficulty of efficiently compiling a general language on an ever-widening
spectrum of machines. Among useful analyses, datattow analysis derives informa-
tion about the definition and the subsequent use(s) of data values in a program.
Its applications include dead-code elimination, strength reduction, array expan-
sion [1] or equivalently conversion into single-assignment form.

Unfortunately, very few data-flow analyses have been proposed for parallel
languages (but see [7]). This paper presents an analysis for data-parallel lan-
guages, e.g. HPF [2], control-parallel (also called task-parallel) languages, such
as PCF [3], or a mixture of both [4, 5, 6].

2 M o t i v a t i n g E x a m p l e s

Several languages [4, 6] have indexed parallel constructs whose semantics corre-
spond to what we call d o a l l in this paper: a statement instance is spawned for
each possible value of the index variable (e.g., from 0 to 2n by step 1 in Program
ExD, hence 2n + 1 instances or tasks are spawned). Each instance has its own
copy of shared data structures, and all reads and writes are applied to this copy.
Shared data structures are updated only when the instances of all statements in
the loop body have completed. Thus, within one iteration of a d o a l l loop, all

s tatements work on the same copy.
For example in Program ExD, if n = 2, the read of a(1) in Instance number

1 of Statement R may return the value produced by the instance number 1 of

407

program ExD
/~ doall(i = 0 : 2 * n : 1)

where (...)

SI : a(i) = ...
$2: else a(2*n-i) = ...

endwhere
R : ...= a(i)

program ExF
f o r a l l (i = 0 : 2 * n :1)

where (. . .)
$1: a(i) = ...
$2: else a(2*n-i) = ...

endwhere
R : ...= a(i)

Fig. 1. Two examples

S1, but not from Instance 3 of $2. Consequently, the information we would like
to automatically derive is that the source of a (i) in Instance i of R is either $1
in Instance i or undefined (written as • if i # n; or: $t or $2 in Instance i if
i = n (because in this case, either $1 or $2 writes into a(n)) .

Notice that we consider that all instances of both arms of the parallel condi-
tional structure where are executed in parMlel.

Similarly, a f o r a l l construct spawns as many instances as there are possible
values for the index variable (e.g., 2 n + 1 instances are spawned in Program ExF).
The semantics of f o r a l l we consider is reminiscent from the HPF semantics 3 [2]:
in a multi-statement f o r a l l , the array assignment semantics are applied to each
statement in turn. Each instance of a statement has its own copy of shared data
structures, but these shared data structures are updated before the instances of
following statements begin.

Consider the read of a(1) in Program ExF: it may be the case that both $1
and $2 simultaneously wrote into this cell. Such an over-determined source will
be denoted by top (T). To sum up, our analysis derives that the source of a (i)
in Instance i of R in Program ExF is either $1 in Instance i or $2 in Instance
2n - i or • or T, if i # n, or $1 or S~ in Instance i, if i = n (without _k nor T).

3 D e f i n i t i o n s

The input language includes the following sequential control structures: do,
while, i f , the following parMlel structures: f o r a l l , doa l l , where, and parallel
sections parsection.

The dimension of a vector x is denoted by Ix I. The k-th entry of vector x,
k > 0, is denoted by x[k]. The sub-vector built from components k to 1 is written
as: x[k..l]. If k > l, then this vector is by convention the vector of dimension 0.
Furthermore, << (<<) denotes the (strict) lexicographical order on such vectors.

The index vector of a statement S is the vector built from the counters
of surrounding do, f o r a l l , d o a l l and while constructs. An operation is an
instance of some Statement S, and will be denoted by (S, x), where x is some
value of the index vector of S.

a Note that in HPF the only parallel constructs inside fora l l s are fo ra l l s and wheres
(Rules H404 and H406 of [2]).

408

The dept_b of a statement or construct is the number of surrounding do,
I o r a l l , d o a l l or whi le constructs. So, the depth of S equals to }x I. If x[p],
p > O, is a counter of a do, f o r a l l or d o a l l construct, then lower and upper
a n n e bounds are known: / ; (x[O. .p- 1]) < x[p] < up(x[O..p- 1]) where I v and
up are syntactically given by the loop bounds. In the case of while-loops, we
have by convention 1 _< x[p]. The index domain of a statement S is denoted
by D(S) and is given by the conjunction of all inequalities on surrounding loop
bounds. We define Cp(S) as the iterative (do, while, forall or doa l l) construct
surrounding S at depth p. (When clear from the context, S will be omitted.) For
example, let us consider Statement St in Program ExD: Co = P1 (the doa l l) .

We define 7~(S,/~) to be the par construct surrounding both S and R such
that S and R appear in distinct sections of the par construct. (Notice that there
is at most one such construct.) Moreover, let Msn be the depth of 7)(S, R).
(If P(S, R) does not exist, then Msn is the number of do, f o r a l l , d o a l l or
whi le constructs surrounding both S and R.) In Program ExF, "P(S1, R) = (2)
and Ms11~ = 1. Predicate ASR is true if S and R appear in opposite arms of
an i f . . thegn., e l s e or where . , e l sewhere construct, or in distinct sections of a
par construct. Predicate TsR is true if S textually precedes R and Ash is false.
We denote by 142(u) (resp. 7g(u)) the memory cell written into (resp. read) by
operation u, so for instance I/V((S2, i>) = a (2n - i) and 7Z((R, i}) =a (i) in
Programs ExD and ExF.

4 The Semantics: Execut ion Order

The purpose of this section is not to give a complete semantical description of
a parallel language. As far as dataflows are concerned, we are mainly interested
in the order in which computations, and their corresponding writes and reads
to memory, occur. The fact that {S, x) is executed before (R, y} in the parallel
program will be denoted by (S, x> -4 (R, y). In the case of sequential programs,
-< is a total order which can be expressed as the lexicographical order on index
vectors. In turn, the lexicographical order can be expressed as a disjunction of
linear inequalities. Expressing the execution order -< of parallel programs is more
intricate. For instance, Section 2 showed that two semantics can be chosen for
a data-parallel construct: the "synchronous" semantics of the construct we call
f o r a l l , where the memory is updated between the execution of two successive
statements inside a :~orall; and the "asynchronous" semantics of the construct
we call d o a l l , where none of the spawned tasks sees the effects produced by
other tasks. However, thanks to the semantics of ~ o r a l l and d o a l l constructs,
-4 can still be expressed in a linear way:

(V Pred(p,x,y)) (S,x) -< (R,y} r p:OMsR-1, cp=do v cp=while

409

where:

Pred(p,x,y)-(i= oA.v-1 Equ(i, Ci,x,y))Ax~]<y~v] (2)

Equ(p, do, x, y) -- Equ(p, while, x, y) = x[p] = y[p] (3)

Equ(p, f o r a l l , x, y) ~ t r u e (4)

Equ(p, doal l , x, y) - xb] = Yb] (5)

Obviously, (1) is a partial order on operations. (In particular, it has no cycle.)
Intuitively, Predicate Pred in (1) formalizes the sequential order of a given do or
whi le loop at depth p. Such a loop enforces an order up to the first p a r construct
encountered at depth MsR while traversing the nest of control structures, from
the outermost level to the innermost. The order of sequential loops is given by
the strict inequality in (2), under the condition that the two operations at hand
are not ordered up to level p - 1; hence the conjunction on the p outer predicates
Equ. Notice that the instances of two successive statements inside a ~ o r a l l at
depth p are always ordered at depth p due to (4), but are ordered inside a d o a l l
only if they belong to the same task (i.e., the values of the d o a l l index are equal,
cf (5)).

Note that VP, V~eo P(i) = false and Aieo P(i) = t ru e . Note also that the
lexicographical order on nests of do loops [1] and in (sequential) dynamic control
programs [8] comes as a special case of (1).

] Example] As far as programs ExD and ExF are concerned, the order between $1
(or $2) and R is given by:

ExF: P(S1, R) = O, so Msn = 1. Co = f o r a l l and Ts1R = t ru e . Thus:

(Sl,i')'<(R,i)r V(Equ(O, Co, i',i) ATsln)

r V (t r u e A t r u e) ~z t r u e (6)

This is a formal restatement of a semantical property of f o r a l l s , cf Sec-
tion 2. Notice that ($2, i') ~ (R, i) is also always true.

E x D . 7)($1, R) = O, so MsR = 1. Co = d o a l l and TsIR --- t r u e . Thus:

(Sl,i')-.~ (R,i) ~ (p~o Pred(p,i',i)) V(Equ(O, Co, i',i) ATsiR)

f a l s e V (i ' = i A t r u e) r i ' = i (7)

5 D a t a f l o w A n a l y s i s

Our dataflow analysis first builds the set of possible sources of the flow of a given
data, and then selects the latest element, i.e., the maximal element according to
the original sequential order. Selecting the maximal element is then done using
Integer Linear Programming techniques.

410

5.1 M e t h o d O v e r v i e w

Let us consider two statements S and R. Suppose that S writes into an array a
and that R reads that same array:

S : a (f (x))
R : . . . = a (g (y))

The aim of array dataflow analysis is to find the source of the value a (g (y))
read in R for a given y. This source is denoted by a((R, y))4. To be a source
candidate, an operation (S, x) has to satisfy the following constraints:

E x i s t e n c e p r e d i c a t e : (S, x) is a valid operation: e((S, x)) evaluates to t r u e .
(See Section 5.2.)

C o n f l i c t i n g accesses : (S,x) and (R,y) access the same array cell: f (x) =
g(y). f and g are possibly multi-dimensional affine functions.

S e q u e n c i n g c o n d i t i o n : (S, x) is executed before (R, y) in the parallel pro-
gram: (S, x) ~ (R, y). Notice that this leads to a formal definition of _L: _k is
the name of the operation that is executed once before all other operations
of the program, i.e., VS, x : _k -~ (S, x).

E n v i r o n m e n t : The set of source candidates is computed under the hypothesis
that (R, y) is a valid operation, i.e., y E D(R).

The set of candidate sources is thus:

QsR(Y) = {(S,x) [e((S,x)), (Existence)
f (x) = g(y), (Conflicting accesses) (8)
(S,x)--< (.R,y)) (Order)

The direct dependence from S to R is then KsR(y) = max.< QsR(Y). Obviously,
S may not be the only statement writing into a. Let S(R) be the set of statements
writing into the array read by/~. Then, the set of candidate sources is Qn(Y) =
UseS(n) QsR(Y). The source K n (y) of the flow of datum a (g (y)) is the

maximal element in QR(Y) according to -~:

KR(y) = max QR(Y)" (9)

Clearly, three problems occur:

- We have to express Predicate e. This issue is addressed in Section 5.2.
- Maxima according to -4 among sets of operations have to be computed.

Section 5.3 explains how to compute max.< using the Omega tool.
- KR(y) may not be uniquely defined, since -~ is not a total order. Intuitively,

a non-unique maximum means that two operations wrote in an undefined
order into the same memory cell. The over-determined source is denoted by

T (cf Section 5.4).

4 For the sake of clarity, we assume that an operation executes at most one read.

411

5.2 E x i s t e n c e o f O p e r a t i o n s

We say that an operation exists if this operation executes. In the case of static-
control sequential programs, the only loops are do loops, and the existence pred-
icate boils down to e((S, x)) ~ x E D(S).

When arbitrary whi le , i f and where constructs appear, the control flow
is dynamic, and existence of operations cannot in general be predicted. The
problem then boils down to finding a suitable coding of Existence predicate e.
The reader is referred to [8, 10] for details. In the sequel, we will use the Omega
package[9] and phrase this paper in the corresponding framework 5. For instance,
the case of i f and where constructs is handled as follows: If x is the index
vector of a conditional statement, the execution of the t h e n branch is coded by
postulating that some uninterpreted function f evaluates to, say, a nonnegative
value: f (x) > 0. The execution of the e l s e or e l sewhere branch is then denoted
by f (x ') < 0. Since both branches cannot execute in the same instance of the
construct, / (x) > 0 A f (x ') < 0 ~ x • x' .

IExample] Let us find possible bottoms in the source of the read {R,k> in

Program ExF. (k is here a parameter.) The set of possible writes from S1 is:

Omega Calculator [vl.O0, Mar 96]:

symbolic n, f(1), k;

W1 := { [iw] : 0 <= iw <= 2n &~ f(Set) >= 0 ~ iw = k } ;

where f (Set) means that f is applied to the bounded variable(s) that, define the
set (here, iw). Then, for $2:

W2 := { [iw] : 0 <= iw <= 2n a~ f (S e t) < 0 ~a 2n - iw = k } ;

We are interested in finding all reads that do not have a corresponding write
from either $1 or $2. We thus take the union of the two sets of writes:

WI union W2 ;

{[iw] : k = iw ~ 0 <= iw <= 2n ~ 0 <= f(iw)} union

{[iw]: k+iw = 2n ~ 0 <= iw <= 2n ~ f(iw) <= -i}

We then subtract the obtained set to the set R of all reads:

K := { [ir] : 0 <= ir <= 2n ~ ir = k } ;

Bottoms := R intersection complement (WI union W2);
Bottoms ;

{[In_l]: k = In_1 ~& n < In_1 <= 2n ~ f(In_l) <= -I} union
{[In_l]: k = In_l ~ 0 <= In_l < n ~& f(In_l) <= -I}

Since nothing is known about f, we have to take a conservative approach and
assume that any predicate involving f is true. The set of possibly undefined
reads (bottoms) is thus given by {k : 0 < k < n} U {k : n < k < 2n}. Notice
that, as expected, the case k = n does notoccur , i.e., (S, n) is always defined by
$1 and/or $2.

5 When ca/led with an input file, the Omega calculator (vl.00 dated March 1996)
copies the input equations on the standard output, prefixed by the # sign.

412

5.3 C o m p u t i n g M a x i m a

Solving (9), i.e., computing the maximum (maxima), is equivalent to finding
the element(s) K s n (y) such that - ,?x E QsR(Y),X # KsR(y) : KsR(y) -< x.
This expression may have several solutions, since parallel programs have partial
execution orders. (See Section 5.4.) Similarly, KR(y) in (9) can be computed by:

x>, x>), w((s, x)) = re((R, y>), (s, .:> # K.(y) -< <s, x>
(io)

5.4 D e t e c t i n g O v e r - D e t e r m i n e d Sources

Detection of over-determined sources is done by checking that no two distinct
operations satisfy their respective existence predicates, write into the same mem-
ory cell, and are not related by -<. Formally: Error (u , v) - e(u) A e(v) A u
v A W(u) = W(v) A -~(u -< v)A-~(v -< u), where u and v are operations. Notice
that, in the general case, checking that no dependence is carried by a doa l l - or
a f o r a l l - l o o p is not sufficient.
f Example~ Let us find the over-determined eases in the source of operation (R,k)
4 ~

in Program ExF.

Symbolic f(1), n , k ;

Error :=
{ [iwl] -> [iw2] : 0 <= iwl, iw2 <= 2n ~ f(In) >= 0 ~ f(Out) < 0

~ iwl = 2n - iw2 = k }

union
{ [iwl] -> [iw1'] : 0 <= iwl, iwl' <= 2n ~ f(In) >= 0 ~ f(Dut) >= 0

~ iwl != iwl' ~ iwl = iwl' = k }

#union
{ [iw2] -> [iw2'] : 0 <= iw2, iw2' <= 2n ~ f(In) < 0 ~ f(Out) < 0

~ iw2 != iw2' ~ 2n - iw2 = 2n - iw2' = k } ;

In and Out are collective names of the input (the tuple preceding the -> and
output (the tuple following the ->) variables of a relation, respectively.

Error ;

{[In_l] -> [iw2]

([In_i] -> [iw2]

: In_l+iw2 = 2n E~ k = In_l ~ n < In_l <= 2n

~ f(iw2) <= -I ~ 0 <= f(In_l)} union

: In_l+iw2 = 2n ~ k = In_l ~ 0 <= In_l < n

~ f(iw2) <= -I ~ 0 <= f(In_l)}

As in the case of bottoms, f is unknown. The set Er ro r of possibly over-
determined reads (T) is thus {k : 0 < k < n} U {k : n < k < 2n}. Notice
that this is the result expected from Section 2.

413

6 C o n c l u s i o n

This paper presented a dataflow analysis that can be applied to data- and/or
task- parallel programs, with dynamic flows of control. Li and Wolfe proposed
[11] a simple and precise framework to express the interaction of arbitrarily
nested parallel control structures, together with an appropriate data dependence
analysis. They did not, however, extended this work to data flows.

The main results of this paper are: a general affine expression for the execu-
tion order of programs written in a structured imperative parallel language (this
expression subsumes the lexicographieal execution order in sequential programs),
and a general affine expression for the over-determined cases (Error).

Acknowledgments We would like to thank L. Boug6, T. Brandes, W. Pugh, Y.
Robert, G. Utard and M. Wolfe for their helpful comments, and D. Wanna-
cott for his technical help with Omega. Authors are supported by the CNRS
and the DFG project RecuR, respectively, and in addition by a German-French
programme Procope.

R e f e r e n c e s

1. P. Feautrier. Dataflow analysis of scalar and array references. Int. Journal of
Parallel Programming, 20(1):23-53, February 1991.

2. C.H. Koelbel, D.B. Loveman, R.S. Schreiber, G.L SteHe Jr, and M.E. Zosel. The
High Performance Fortran Handbook. The MIT Press, 1994.

3. Paxallel Computing Forum. PCF fortran extensions. Fortran Forum, 10(3), 1991.
4. M. Gerndt and R. Berrendorf. SVM-Fortran, Reference Manual, Version 1.4. KFA-

ZAM-IB-9510, Research Center Jfilich May 1995.
5. I. Foster et al. A Compilation System That Integrates High Performance For-

tran and Fort ran M. In Proc. of the Scalable High-Performance Computing Con]
(SHPCC'9 4). pages 293-300, Knoxville, TN, May 1994.

6. B. Chapman et al. Extending Vienna Fortran with Task Parallelism. In Proc. of
the 1994 lntl Conf on Parallel and Distributed System s. pages 258-263, Hsinchu,
Talwan, December 1994.

7. J. Ferrante, D. Grunwald, and H. Sriniv~an. Computing communication sets for
control parallel programs. In K. Pingali et al., editor, Proc. Of 7 TM Int. 147. on Lang.
and Compilers for Parallel Comp., volume 892 of LNCS, pages 316-330, Ithaca,
NY, August 1994.

8. J.-F. Collard, D. Barthou, and P. Feautrier. Fuzzy array dataflow analysis. In
Proe. of 5th ACM SIGPLAN Syrup. on Principles and Practice of Parallel Pro-
gramming, pages 92-102, Santa Barbara, CA, July 1995.

9. W. Pugh. A practical algorithm for exact array dependence analysis. Communi-
cations of the ACM, 35(8):27-47, August 1992.

10. W. Pugh ~nd D. Wonnacott. Nonlinear Array Dependence Analysis. in Third
~orkshop on Languages, Compilers and Run-Time Systems for Scalable Comput-
ers, Troy, NY, May 1992.

11. J. Li and M. Wolfe. Defining, Analyzing, and Transforming Program Constructs.
IEEE Parallel and Distributed Technology, 32-39, Spring 1994

