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Abst rac t .  This paper describes a dataflow analysis of array data struc- 
tures for data-parallel and/or control- (or task-) parallel imperative lan- 
guages. This analysis departs from previous work because it 1) simulta- 
neously hanitles both parallel programming paradigms, and 2) does not 
rely on the usual iterative solving process of a set of data flow equations 
but extends array dataflow analysis based on integer linear programming, 
thus improving the precision of results. 

1 I n t r o d u c t i o n  

After decades of parallel processing, few programming languages can claim to be 
used on a wide range of parallel architectures. Probably, one of the reasons lies 
in the difficulty of efficiently compiling a general language on an ever-widening 
spectrum of machines. Among useful analyses, datattow analysis derives informa- 
tion about the definition and the subsequent use(s) of data values in a program. 
Its applications include dead-code elimination, strength reduction, array expan- 
sion [1] or equivalently conversion into single-assignment form. 

Unfortunately, very few data-flow analyses have been proposed for parallel 
languages (but see [7]). This paper presents an analysis for data-parallel lan- 
guages, e.g. HPF [2], control-parallel (also called task-parallel) languages, such 
as PCF [3], or a mixture of both [4, 5, 6]. 

2 M o t i v a t i n g  E x a m p l e s  

Several languages [4, 6] have indexed parallel constructs whose semantics corre- 
spond to what we call d o a l l  in this paper: a statement instance is spawned for 
each possible value of the index variable (e.g., from 0 to 2n by step 1 in Program 
ExD, hence 2n + 1 instances or tasks are spawned). Each instance has its own 
copy of shared data  structures, and all reads and writes are applied to this copy. 
Shared data  structures are updated only when the instances of all statements in 
the loop body have completed. Thus, within one iteration of a d o a l l  loop, all 

s tatements work on the same copy. 
For example in Program ExD, if n = 2, the read of a(1)  in Instance number 

1 of Statement R may return the value produced by the instance number 1 of 
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program ExD 
/~ doall( i = 0 : 2  * n : 1 ) 

where (...) 

SI :  a( i )  = ... 
$2: else a(2*n-i)  = ... 

endwhere 
R :  ...= a( i )  

program ExF 
f o r a l l ( i = 0 : 2 * n  :1  ) 

where ( . . . )  
$1: a( i )  = ... 
$2: else a(2*n-i)  = ... 

endwhere 
R :  ...= a( i )  

Fig. 1. Two examples 

S1, but not from Instance 3 of $2. Consequently, the information we would like 
to automatically derive is that  the source of a ( i )  in Instance i of R is either $1 
in Instance i or undefined (written as • if i # n; or: $t or $2 in Instance i if 
i = n (because in this case, either $1 or $2 writes into a(n)) .  

Notice that we consider that all instances of both arms of the parallel condi- 
tional structure where are executed in parMlel. 

Similarly, a f o r a l l  construct spawns as many instances as there are possible 
values for the index variable (e.g., 2 n +  1 instances are spawned in Program ExF). 
The semantics of f o r a l l  we consider is reminiscent from the HPF semantics 3 [2]: 
in a multi-statement f o r a l l ,  the array assignment semantics are applied to each 
statement in turn. Each instance of a statement has its own copy of shared data 
structures, but these shared data structures are updated before the instances of 
following statements begin. 

Consider the read of a(1)  in Program ExF: it may be the case that both $1 
and $2 simultaneously wrote into this cell. Such an over-determined source will 
be denoted by top (T). To sum up, our analysis derives that the source of a ( i )  
in Instance i of R in Program ExF is either $1 in Instance i or $2 in Instance 
2n - i or • or T, if i # n, or $1 or S~ in Instance i, if i = n (without _k nor T). 

3 D e f i n i t i o n s  

The input language includes the following sequential control structures: do, 
while,  i f ,  the following parMlel structures: f o r a l l ,  doa l l ,  where, and parallel 
sections parsection. 

The dimension of a vector x is denoted by Ix I. The k-th entry of vector x, 
k > 0, is denoted by x[k]. The sub-vector built from components k to 1 is written 
as: x[k..l]. If k > l, then this vector is by convention the vector of dimension 0. 
Furthermore, << (<<) denotes the (strict) lexicographical order on such vectors. 

The index vector of a statement S is the vector built from the counters 
of surrounding do, f o r a l l ,  d o a l l  and while  constructs. An operation is an 
instance of some Statement S, and will be denoted by (S, x), where x is some 
value of the index vector of S. 

a Note that in HPF the only parallel constructs inside fora l l s  are fo ra l l s  and wheres 
(Rules H404 and H406 of [2]). 
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The dept_b of a statement or construct is the number of surrounding do, 
I o r a l l ,  d o a l l  or whi le  constructs. So, the depth of S equals to }x I. If x[p], 
p > O, is a counter of a do, f o r a l l  or d o a l l  construct, then lower and upper 
a n n e  bounds are known: / ; (x[O. .p-  1]) < x[p] < up(x[O..p- 1]) where I v and 
up are syntactically given by the loop bounds. In the case of while-loops, we 
have by convention 1 _< x[p]. The index domain of a statement S is denoted 
by D(S) and is given by the conjunction of all inequalities on surrounding loop 
bounds. We define Cp(S) as the iterative (do, while, forall or doa l l )  construct 
surrounding S at depth p. (When clear from the context, S will be omitted.) For 
example, let us consider Statement St in Program ExD: Co = P1 (the doa l l ) .  

We define 7~(S,/~) to be the par  construct surrounding both S and R such 
that  S and R appear in distinct sections of the par  construct. (Notice that  there 
is at most one such construct.) Moreover, let Msn be the depth of 7)(S, R). 
(If P(S,  R) does not exist, then Msn  is the number of do, f o r a l l ,  d o a l l  or 
whi le  constructs surrounding both S and R.) In Program ExF, "P(S1, R) = (2) 
and Ms11~ = 1. Predicate ASR is true if S and R appear in opposite arms of 
an i f . .  thegn., e l s e  or where . ,  e l sewhere  construct, or in distinct sections of a 
par  construct. Predicate TsR is true if S textually precedes R and Ash  is false. 
We denote by 142(u) (resp. 7g(u)) the memory cell written into (resp. read) by 
operation u, so for instance I/V((S2, i>) = a (  2n - i ) and 7Z((R, i}) =a (  i ) in 
Programs ExD and ExF. 

4 The  Semantics:  Execut ion  Order 

The purpose of this section is not to give a complete semantical description of 
a parallel language. As far as dataflows are concerned, we are mainly interested 
in the order in which computations, and their corresponding writes and reads 
to memory, occur. The fact that  {S, x) is executed before (R, y} in the parallel 
program will be denoted by (S, x> -4 (R, y). In the case of sequential programs, 
-< is a total order which can be expressed as the lexicographical order on index 
vectors. In turn, the lexicographical order can be expressed as a disjunction of 
linear inequalities. Expressing the execution order -< of parallel programs is more 
intricate. For instance, Section 2 showed that  two semantics can be chosen for 
a data-parallel construct: the "synchronous" semantics of the construct we call 
f o r a l l ,  where the memory is updated between the execution of two successive 
statements inside a :~orall;  and the "asynchronous" semantics of the construct 
we call d o a l l ,  where none of the spawned tasks sees the effects produced by 
other tasks. However, thanks to the semantics of ~ o r a l l  and d o a l l  constructs, 
-4 can still be expressed in a linear way: 

( V Pred(p,x,y)) (S,x) -< (R,y} r p:OMsR-1, cp=do v cp=while 
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where: 

Pred(p,x,y)-(i= oA.v-1 Equ(i, Ci,x,y))Ax~]<y~v] (2) 

Equ(p, do, x, y) -- Equ(p, while,  x, y) = x[p] = y[p] (3) 

Equ(p, f o r a l l ,  x, y) ~ t r u e  (4) 

Equ(p, doal l ,  x, y) - xb]  = Yb] (5) 

Obviously, (1) is a partial order on operations. (In particular, it has no cycle.) 
Intuitively, Predicate Pred in (1) formalizes the sequential order of a given do or 
whi le  loop at depth p. Such a loop enforces an order up to the first p a r  construct 
encountered at depth MsR while traversing the nest of control structures, from 
the outermost level to the innermost. The order of sequential loops is given by 
the strict inequality in (2), under the condition that the two operations at hand 
are not ordered up to level p -  1; hence the conjunction on the p outer predicates 
Equ. Notice that  the instances of two successive statements inside a ~ o r a l l  at 
depth p are always ordered at depth p due to (4), but are ordered inside a d o a l l  
only if they belong to the same task (i.e., the values of the d o a l l  index are equal, 
cf (5)). 

Note that  VP, V~eo P(i) = false  and Aieo P(i) = t ru e .  Note also that  the 
lexicographical order on nests of do loops [1] and in (sequential) dynamic control 
programs [8] comes as a special case of (1). 

] Example ] As far as programs ExD and ExF are concerned, the order between $1 
(or $2) and R is given by: 

ExF: P(S1, R) = O, so Msn = 1. Co = f o r a l l  and Ts1R = t ru e .  Thus: 

(Sl,i')'<(R,i)r V(Equ(O, Co, i',i) ATsln) 

r V ( t r u e  A t r u e )  ~z t r u e  (6) 

This is a formal restatement of a semantical property of f o r a l l s ,  cf Sec- 
tion 2. Notice that  ($2, i') ~ (R, i) is also always true. 

E x D .  7)($1, R) = O, so MsR = 1. Co = d o a l l  and TsIR --- t r u e .  Thus: 

(Sl,i')-.~ (R,i) ~ (p~o Pred(p,i',i)) V(Equ(O, Co, i',i) ATsiR) 

f a l s e V ( i ' = i A t r u e )  r i ' = i  (7) 

5 D a t a f l o w  A n a l y s i s  

Our dataflow analysis first builds the set of possible sources of the flow of a given 
data, and then selects the latest element, i.e., the maximal element according to 
the original sequential order. Selecting the maximal element is then done using 
Integer Linear Programming techniques. 
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5.1 M e t h o d  O v e r v i e w  

Let us consider two statements S and R. Suppose that S writes into an array a 
and that  R reads that  same array: 

S :  a ( f ( x ) )  . . . .  
R :  . . .  = a ( g ( y ) )  

The aim of array dataflow analysis is to find the source of the value a (g (y ) )  
read in R for a given y. This source is denoted by a((R, y))4. To be a source 
candidate, an operation (S, x) has to satisfy the following constraints: 

E x i s t e n c e  p r e d i c a t e :  (S, x) is a valid operation: e((S, x)) evaluates to t r u e .  
(See Section 5.2.) 

C o n f l i c t i n g  accesses :  (S,x)  and (R,y)  access the same array cell: f ( x )  = 
g(y).  f and g are possibly multi-dimensional affine functions. 

S e q u e n c i n g  c o n d i t i o n :  (S, x) is executed before (R, y) in the parallel pro- 
gram: (S, x) ~ (R, y).  Notice that  this leads to a formal definition of _L: _k is 
the name of the operation that  is executed once before all other operations 
of the program, i.e., VS, x : _k -~ (S, x). 

E n v i r o n m e n t :  The set of source candidates is computed under the hypothesis 
that  (R, y) is a valid operation, i.e., y E D(R).  

The set of candidate sources is thus: 

QsR(Y) = {(S,x)  [ e((S,x)), (Existence) 
f ( x )  = g(y),  (Conflicting accesses) (8) 
(S,x)--< (.R,y)) (Order) 

The direct dependence from S to R is then KsR(y)  = max.< QsR(Y). Obviously, 
S may not be the only statement writing into a. Let S(R) be the set of statements 
writing into the array read by/~.  Then, the set of candidate sources is Qn(Y) = 
UseS(n)  QsR(Y). The  source K n ( y )  of the flow of datum a ( g ( y )  ) is the 

maximal element in QR(Y) according to -~: 

KR(y) = max QR(Y)" (9) 

Clearly, three problems occur: 

- We have to express Predicate e. This issue is addressed in Section 5.2. 
- Maxima according to -4 among sets of operations have to be computed. 

Section 5.3 explains how to compute max.< using the Omega tool. 
- KR(y)  may not be uniquely defined, since -~ is not a total  order. Intuitively, 

a non-unique maximum means that  two operations wrote in an undefined 
order into the same memory cell. The over-determined source is denoted by 

T (cf Section 5.4). 

4 For the sake of clarity, we assume that an operation executes at most one read. 
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5.2 E x i s t e n c e  o f  O p e r a t i o n s  

We say that  an operation exists if this operation executes. In the case of static- 
control sequential programs, the only loops are do loops, and the existence pred- 
icate boils down to e((S, x)) ~ x E D(S).  

When arbitrary whi le ,  i f  and where constructs appear, the control flow 
is dynamic, and existence of operations cannot in general be predicted. The 
problem then boils down to finding a suitable coding of Existence predicate e. 
The reader is referred to [8, 10] for details. In the sequel, we will use the Omega 
package[9] and phrase this paper in the corresponding framework 5. For instance, 
the case of i f  and where constructs is handled as follows: If x is the index 
vector of a conditional statement, the execution of the t h e n  branch is coded by 
postulating that  some uninterpreted function f evaluates to, say, a nonnegative 
value: f ( x )  > 0. The execution of the e l s e  or e l sewhere  branch is then denoted 
by f ( x ' )  < 0. Since both branches cannot execute in the same instance of the 
construct, / ( x )  > 0 A f ( x ' )  < 0 ~ x • x' .  

IExample] Let us find possible bottoms in the source of the read {R,k> in 

Program ExF. (k is here a parameter.) The set of possible writes from S1 is: 

# Omega Calculator [vl.O0, Mar 96]: 

# symbolic n, f(1), k; 

# W1 := { [iw] : 0 <= iw <= 2n &~ f(Set) >= 0 ~ iw = k } ; 

where f (Set) means that f is applied to the bounded variable(s) that, define the 
set (here, iw). Then, for $2: 

# W2 := { [iw] : 0 <= iw <= 2n a~ f ( S e t )  < 0 ~a 2n - iw = k } ; 

We are interested in finding all reads that do not have a corresponding write 
from either $1 or $2. We thus take the union of the two sets of writes: 

# WI union W2 ; 

{[iw] : k = iw ~ 0 <= iw <= 2n ~ 0 <= f(iw)} union 

{[iw]: k+iw = 2n ~ 0 <= iw <= 2n ~ f(iw) <= -i} 

We then subtract the obtained set to the set R of all reads: 

# K := { [ir] : 0 <= ir <= 2n ~ ir = k } ; 

# Bottoms := R intersection complement (WI union W2); 
# Bottoms ; 

{[In_l]: k = In_1 ~& n < In_1 <= 2n ~ f(In_l) <= -I} union 
{[In_l]: k = In_l ~ 0 <= In_l < n ~& f(In_l) <= -I} 

Since nothing is known about f, we have to take a conservative approach and 
assume that  any predicate involving f is true. The set of possibly undefined 
reads (bottoms) is thus given by {k : 0 < k < n} U {k : n < k < 2n}. Notice 
that,  as expected, the case k = n does notoccur ,  i.e., (S, n) is always defined by 
$1 and/or  $2. 

5 When ca/led with an input file, the Omega calculator (vl.00 dated March 1996) 
copies the input equations on the standard output, prefixed by the # sign. 
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5.3 C o m p u t i n g  M a x i m a  

Solving (9), i.e., computing the maximum (maxima), is equivalent to finding 
the element(s) K s n ( y )  such that - ,?x E QsR(Y),X # KsR(y)  : KsR(y)  -< x. 
This expression may have several solutions, since parallel programs have partial 
execution orders. (See Section 5.4.) Similarly, KR(y) in (9) can be computed by: 

x>, x>), w((s, x)) = re((R, y>), (s, .:> # K.(y) -< <s, x> 
(io) 

5.4 D e t e c t i n g  O v e r - D e t e r m i n e d  Sources  

Detection of over-determined sources is done by checking that  no two distinct 
operations satisfy their respective existence predicates, write into the same mem- 
ory cell, and are not related by -<. Formally: Error (u ,  v) - e(u) A e(v) A u 
v A W(u) = W(v) A -~(u -< v)A-~(v -< u), where u and v are operations. Notice 
that,  in the general case, checking that  no dependence is carried by a doa l l -  or 
a f o r a l l - l o o p  is not sufficient. 
f Example~ Let us find the over-determined eases in the source of operation (R,k) 
4 ~ 

in Program ExF. 

# Symbolic f(1), n , k ; 

# Error := 
# { [iwl] -> [iw2] : 0 <= iwl, iw2 <= 2n ~ f(In) >= 0 ~ f(Out) < 0 

# ~ iwl = 2n - iw2 = k } 

# union 
# { [iwl] -> [iw1'] : 0 <= iwl, iwl' <= 2n ~ f(In) >= 0 ~ f(Dut) >= 0 

# ~ iwl != iwl' ~ iwl = iwl' = k } 

#union 
# { [iw2] -> [iw2'] : 0 <= iw2, iw2' <= 2n ~ f(In) < 0 ~ f(Out) < 0 

# ~ iw2 != iw2' ~ 2n - iw2 = 2n - iw2' = k } ; 

In and Out are collective names of the input (the tuple preceding the -> and 
output (the tuple following the ->) variables of a relation, respectively. 

# Error ; 

{[In_l] -> [iw2] 

([In_i] -> [iw2] 

: In_l+iw2 = 2n E~ k = In_l ~ n < In_l <= 2n 

~ f(iw2) <= -I ~ 0 <= f(In_l)} union 

: In_l+iw2 = 2n ~ k = In_l ~ 0 <= In_l < n 

~ f(iw2) <= -I ~ 0 <= f(In_l)} 

As in the case of bottoms, f is unknown. The set Er ro r  of possibly over- 
determined reads (T) is thus {k : 0 < k < n} U {k : n < k < 2n}. Notice 
that  this is the result expected from Section 2. 
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6 C o n c l u s i o n  

This paper presented a dataflow analysis that  can be applied to data- and/or  
task- parallel programs, with dynamic flows of control. Li and Wolfe proposed 
[11] a simple and precise framework to express the interaction of arbitrarily 
nested parallel control structures, together with an appropriate data dependence 
analysis. They did not, however, extended this work to data flows. 

The main results of this paper are: a general affine expression for the execu- 
tion order of programs written in a structured imperative parallel language (this 
expression subsumes the lexicographieal execution order in sequential programs), 
and a general affine expression for the over-determined cases (Error). 
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