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Abs t rac t .  In this work we consider tree-based interconnects where the 
processing nodes are confined to the leaves of the tree. These types of in- 
terconnects include fat tree networks. We present and analyze algorithms 
for collective communications problems that include broadcasting, scat- 
tering/gathering, multinode broadcasting and total exchange. 

1 I n t r o d u c t i o n  

Distributed memory multiprocessors are based on a collection of independent 
processing nodes integrated through an interconnection network. Collective com- 
munications problems include: broadcasting, multinode broadcasting, scattering 
(gathering) and total exchange. The need for their efficient solution was realized 
quite early, especially in the context of parallel numerical algorithms [2]. 

Studies in collective communication problems for hypercube-networks appear 
in I l l ,  8, 1] and for non-hypercube ones in [12 I. Two excellent surveys on the 
subject can be also found in [7, 6]. 

In this work we consider the complete tree topology where processors are 
confined to the leaf level. Fat trees [9, 10], are also complete trees but  with branch 
capacities increasing towards the root. Here we consider k-ary trees where k is 
any integer greater than one. We shall study the above communication problems 
and determine the time requirements for solving them in the optimum time. 
Related but  not exactly applicable to fat trees are the works in [5, 3]. 

We note that  this paper provides only a short report  of the results, avoiding 
formal proofs. A more detailed exposition of the material can be found in [4]. 

1.1 P r e l i m i n a r i e s  

In a complete k-ary tree each node has k children, except for the leaves. The 
tree consists of log k n + 1 levels. Level 0 is the leaf level and level h = log k n is 
the level of the root; n denotes the number of leaves, which will be numbered 
from left to right as 0, 1, . . . ,  n - 1. The leaves correspond to processing nodes 
while all the other levels include only routing nodes. A fat tree is based on the 
same topology only branches increase in capacity as one moves towards the root. 
Branches between levels i - 1 and i have capacity ci _> 1 corresponding to the 
number of physical links included in the branch. Two capacity patterns are of 
interest: constant (c~ = 1; i = 1, 2 , . . . ,  h) and exponential (c~ - ki-1). 

* This research was supported in part through grants from NSERC and the University 
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Source Node:  
1 Send message to parent; 
Every Rout ing Node:  
1 Send message to parent (if any); 
2 Send message to each child in turn, except 

to the one the message came from; 
(b) 

Fig.  1. Broadcasting under the single-port model (a) labeling (b) algorithm 

We assume packet-switching. Messages consist of a single packet. Transferring 
a message between two neighbors occurs in one time unit (or step). We consider 
two models of communication: in the first one, nodes will be able to utilize only 
one of their output  links at a time (single-port model). In the multiport  model, 
all links incident to a node can be utilized simultaneously. 

2 Communications under the single-port model 
In this section we shall derive lower bounds for the communication problems we 
consider and shall provide algorithms that  achieve the lower bounds. Notice that  
we allow any node to receive messages from all its neighbors simultaneously but  
it can only send one message at a time; thus branch capacities have no effect. 

2.1 B r o a d c a s t i n g  

Let B~(e) denote the broadcast t ime from a node at level ~ to the leaf nodes. 

Br(e)  = B~(e - 1) + k ~ B~(e) = ke. (1) 

Our goal though is to broadcast from a leaf of a complete k-ary tree. Let the 
leaf, labeled u0 in Fig. l(a),  be the source node. Also, let b(T~)  be the broadcast 
t ime remaining after ui receives the message. Node Uh is the root of the tree. 
When Uh receives the message it must inform its k - 1 remaining children and 
for this it needs B~ ( h -  1) + k - 1 steps. Consequently, b ( T ~ )  = B~ ( h -  1) + k - 1. 

Now consider Uh-1. This node has to inform k - 1 subtrees lying below plus 
its parent,  uh. For the subtrees it needs B~ ( h - 2 ) +  k - 1  steps, while broadcasting 
from Uh, needs B~(h - 1) + k - 1 steps. Observe that  the best plan is to first send 
the message to the subtree with the largest broadcast time, (i.e. to Uh first). 
Consequently, b(T~h_l) = max{b(T~)  + 1 , B r ( h  - 2) + k}  = b(T~h) + 1. 

Proceeding downwards in this manner it is seen that  any node ui must first 
inform its parent (ui+l) and then its k - 1 remaining children, and 

b(T~,) = max{b(T~,+l) + 1 , B , ( i  - 1) + k }  = b(T~h) + h - i, 

giving b(T~o) = b(T~h) + h = B~(h  - 1) + k - 1 + h. Since from (1) B~(h  - 1) = 
k (h  - 1), we have the following result (recall that  h = logk n): 

T h e o r e m  1. Broadcasting in ]at trees under  the single-port model requires (k -b 

1) logk n - 1 steps. 
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E v e r y  Lea f  Node: 
Send message to parent; 

E v e r y  Rou t ing  Node:  (except  the root) 
A Receive all messages from children, sending a 

copy of them upwards, one-by-one; 
B Until the last message arrives from parent 

Send one message to each child in turn; 

o l 2 3 0 1 2 3 0 I 2 3 

Step 1 S tep  2 S tep  3 

0 1 2 3 0 1 2 3 0 1 2 3 

Step 4 Step 5 Step 6 

Ooo, o e 
B While receive all messages from children, keep . . . .  

sending one message to each child in turn; Step 7 Step 8 Step9 
(a) (b) 

F ig .  2. Multinode broadcasting under the single-port model (a) opt imal  algo- 
r i thm (b) example in 4 leaves 

2.2 Scattering 

The observation tha t  the source node has to send or receive n - 1 different 
messages over its incident link leads to a lower bound of S(n) = G(n) > n - 1 
steps. In reality, the exact bound is n or n + 1 steps. In gathering n - 1 messages 
at  processor 0, in the first two steps we can at most  receive one message since 
the closest leaf is at distance two. Therefore, there will be at  least one step with 
no message reception by node 0, i.e. S(n) = G(n) > n. If  the tree is binary there 
will be one extra  step of no reception since the next closest leaves (2 and 3) are 
bo th  at distance four from node 0, i.e. S(n) = G(n) > n + 1 if k = 2. 

Gather ing algorithms can be had from scattering ones by reversing the da ta  
paths.  The lower bound is achieved using furthest-first scheduling, whereby the 
source node gives priority to messages that  are destined the furthest. 

Theorem 2. The furthest-first discipline results in an optimal scattering algo- 
rithm. 

2.3 Multinode broadcasting 

In mult inode broadcasting every node broadcasts  its own message. An opt imal  
mult inode algorithm schedules the traffic in each routing node so tha t  all leaves 
receive all messages at the minimum possible time. The subsequent two theorems 
(the proofs of which can be found in [4]) establish the lower bound and the 
opt imali ty  of a multinode broadcasting algorithm. 

T h e o r e m  3. Any multinode broadcasting algorithm under the single-port model 
requires at least kn + (k + 1)(log k n - 2) + 1 steps. 

T h e o r e m  4. The algorithm presented in Fig. 2(a) is optimal. 
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Eve ry  Leaf  Node: 
Send the n - 1 messages in a furthest-first order; 

E v e r y  Rout ing  Node:  (except  the  root)  
A While there exist upward messages from children 

Send one message to parent; 
B Until the last message arrives from parent 

Send one message to any (appropriate) child; 
Root  Node: 
B While receiving all messages from children, keep sending 

one message to any (appropriate) child; 

Fig.  3. Optimal total exchange algorithm under the single-port model 

2.4 T o t a l  e x c h a n g e  

Under the single-port model we may easily determine the lower bound of total  
exchange algorithms, in a similar fashion to the proof of Theorem 3. 

T h e o r e m  5. Any total exchange algorithm under the single-port model requires 
at least n2(2k + 1)(k - 1)/k ~ + 2log k n - 3 steps. 

An algorithm that  achieves the lower bound of Theorem 5 is given in Fig. 3. 
(For the proof of its optimality see [4].) 

T h e o r e m  6. The algorithm presented in Fig. 3 is optimal. 

3 C o m m u n i c a t i o n s  u n d e r  t h e  m u l t i p o r t  m o d e l  

We shall now assume that  a node is able to utilize all its incident links simulta- 
neously. This model of communication is affected by the capacity arrangement 
on the branches of the tree. We shall further assume that  the capacity of level-1 

branches is cl = 1. 

3.1 S i n g l e - s o u r c e  c o m m u n i c a t i o n s  

In any network, broadcasting from a node under the inultiport model takes t ime 
equal to d, where d is the distance between the source node and a node farthest  
from the source. In our case, broadcasting will require B(n) = 2h = 21ogk n 
steps. It is easily accomplished by setting the routing nodes to a broadcast  mode 
whereby the received message is replicated towards all directions. 

Scattering and gathering, under our assumptions, is governed by the same 
bounds as in the single-port case; there is only one link available from a leaf, 
forcing only one message to be sent or received at a time. Consequently, S(n) = 
G(n) > n (or n + 1 if k = 2). Had we allowed Cl > 1, different lower bounds 

would have been derived. 

3.2 M u l t i n o d e  b r o a d c a s t i n g  
The  same argument used for deriving bounds for scattering/gathering algorithms 
can be used to determine lower bounds for multinode broadcasting in the mul- 
t ipor t  model since every leaf has to receive n - 1 different broadcast messages. 
The  exact bounds are MB(n)  > n if k > 3 or MB(n)  ~ n + 1 if k = 2. 
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1 For all i---- 0 to h -  1 
/* Phase i */ 

2 Do in parallel for all level h - i nodes 
3 Transfer all messages from each of the k subtrees 

to the other k - 1 subtrees; 

Fig .  4. A total  exchange algorithm with no contention 

T h e o r e m  7. Multinode broadcasting can be performed in time equal to the lower 
bound. 

Proof. The lower bound can be achieved by following a "flooding" procedure: 
each node replicates every received message to all possible directions (expect the 
one the massage came from). The proof can be found in [4]. 

This flooding algorithm achieves the lower bound but it requires large queues. 
In [4] we give an algorithm which is suboptimal by 2 log k n - 2 steps but  it 
eliminates the queues. 

3.3 T o t a l  e x c h a n g e  

A simple lower bound for the total exchange problem is TE(n) > n (or TE(n) > 
n + 1 if the tree is binary), since multinode broadcasting can be performed in at 
most as many steps as total exchange [2] 

A total  exchange algorithm that  works for any capacity pat tern and induces 
no queueing is as follows. Initially, the k subtrees of the root node exchange 
their n(n - k h-l) messages meant for each other. Then, the k subtrees perform 
internally a total  exchange in parallel. The algorithm is stated in Fig. 4. 

During the i th phase a node at level h - i has to pass kh-i(kh-i -- k h-i-l) 
messages over its k incident branches which have capacity Ch-i. This means 
that  a maximum of kch-i messages can cross towards the node at a time. To 
avoid contention while maintaining maximum speed, exactly kch~ leaves should 
dispatch messages at a single step, and the messages should be appropriately 
chosen so that  their destinations are distinct. By calculating the time needed for 
each phase, it can be seen that  the algorithm needs time 

h [(k-1)k2i-2 1 
T =  E +h 2. 

i= l Ci 

Instead of executing the phases serially, it is possible to pipeline the phases 
appropriately and save in total h 2 -  2h + 1 steps (see [4]). The pipelined algorithm 
has a final number of steps 

h 

l-i( k _ ~ I -{- 2 h - i .  (2) T E 
i-~ l Ci | 

For trees with exponential capacities, cl = k i-1, we see, from (2), that  our 
algorithm requires T = kh+2h-2 _ n + 2 h - 2  steps. Consequently, the algorithm 
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we presented above is suboptimal  by 2 log k n - 2 steps. It  is interesting to see 
whether  the last bound is t ight or not. We have shown [4] tha t  for the case of 
trees with exponential capacities arrangement,  a bound tighter than  T E ( n )  > n 
exists which guarantees tha t  the total  exchange algorithm we presented is very 
close to opt imal  (within 2 log k logan  steps) for such trees. 

T h e o r e m  8. An optimal total exchange algorithm for exponential capacity trees 
needs at least n + 2 log~ n - 2 log k log k n - 2 steps. 

4 C o n c l u s i o n  
We studied the implementat ion and performance of communication operations 
in complete k-ary trees where the processing nodes are confined to the leaf level. 
The results can be easily generalized to the case where nodes in level i have ki 
children, where n = kl k2 . . .  kh. However, there are still a number  of issues to be 
considered. Multinode broadcasting has excessive queueing requirements if it is 
to be performed in the minimum number  of steps. I t  would be interesting to see 
what  is the lower t ime bound under the constraint of no queueing. Another  issue 
for consideration is total  exchange under the mult iport  model. The algori thm 
we presented is close to optimal  especially in the case of exponential capacities. 
Improved bounds though for the total  exchange problem need to be found as 
the straightforward one does not seem to be tight. 

A detailed exposition of this material  is available in [4] and can be obtained 
through the World Wide Web at h t t p : / / w w w - l a p i s . u v i c ,  ca. 
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