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Abstrac t .  Under the telephone model, the broadcasting time of most 
of the logarithmic networks (where the degree is fixed and the diameter 
logarithmic in the number of nodes) is not known, as the time of the 
known protocols is different from the known lower bounds. That is the 
case for de Bruijn. In this paper we present a technique enabling to derive 
better lower bounds on the broadcasting time of various networks, the 
technique is applied in the case of the de Bruijn graphs. 

1 I n t r o d u c t i o n  

The problem of dissemination of information has been investigated for most of 
the classical networks. We refer the reader to one of the recent surveys [8] [11] or 
the book [7]. Our aim is to describe a technique enabling to derive lower bounds 
on the broadcasting time of various networks. In this short version we apply the 
technique to obtain lower bounds on the broadcasting time of de Bruijn networks. 

The maximum degree A of a graph is the maximum degree of the vertices. In 
the case of a digraph, the number of arcs going out (resp. entering) a vertex is 
called the out-degree (resp. in-degree) of this vertex. The out(in)-degree d+(d - )  
of a digraph is the maximum out(in)-degree of the vertices. 

D e f i n i t i o n  1. The parameter d of a graph (resp. digraph) is its maximum degree 
minus one (A -- 1) (resp. its maximum out-degree d +) 

De Bruijn networks The de  B r u i j n  digraph (resp. graph), denoted by B(d, D) 
(resp. UB(d,  D)), has d D vertices, diameter D and in-degree or out-degree d 
(resp. degree 2d). The vertices correspond to the words of length D over an 
alphabet of d symbols. The arcs (or edges) correspond to the shift operations: 
Given a word x = x l ' " X D  on an alphabet .4 of d letters, where xi E .4, 
i = 1, 2 , . . . ,  D, and given A E .4, the operations: x l ' . . X D  ~ x 2 " "  XD~ and 
Xl ' ' ' X D  ~ Axl " ' 'XD-1  are called respectively left-shift and right-shift. In the 
de Bruijn digraph B(d, D), the successors are obtained by left-shift operations, 
whereas in the de Bruijn graph UB(d,  D), the neighbors are obtained by either 
left or right-shift operations. The de Bruijn graph is obtained by removing the 
directions of the arcs. Note that,  since the de Bruijn digraph contains loops 
and symmetric arcs, this leads to a multi-graph. Thus some authors define the 
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undirected de Bruijn graph as obtained by removing loops and multiple edges. 
Here we still keep them for homogeneity purpose, and in order to have a regular 
graph. The symmetric de Bruijn digraph B*(d, D) is the digraph obtained by 
replacing in UB(d, D) each edge by a pair of opposite arcs. 

Broadcasting One of the main problems of information dissemination investi- 
gated in the current literature and used in parallel and distributed computing 
is b r o a d c a s t i n g .  Broadcasting (also called One to All) refers to the process of 
message dissemination in an interconnection network whereby a message, origi- 
nated at one node x, is transmitted to all the nodes of the network. Broadcasting 
is accomplished by placing a series of calls over the communication lines of the 
network. Therefore the communication protocol is a sequence of rounds, each 

one being performed by a set of local calls. 

Here we restrict ourselves to what is called the "telephone model" where dm'- 
ing one round each vertex can communicate with at most one of its neighbors 
(out-neighbors in case of digraphs). The broadcasting time b(x, G) is the mini- 
mum number of rounds to achieve in G a broadcasting protocol originated at x. 
The broadcast t ime b(G) of a graph G, is the maximum of b(x, G) on all vertices 
x. (In the notation of [8] it would be bs I(G), F1 standing for "full duplex one 
port model").  In  all  t h e  p a p e r  all  t h e  l o g a r i t h m s  u s e d  a re  in b a se  2. 

2 P r e v i o u s  R e s u l t s  

Previous Upper bounds In the case of de Bruijn networks upper bounds have 
been given in many papers for example [4] [10] and [13] and have still be recently 
improved in [5, 6] . In particular this leads to: 

b(B(2, D)) <_ 1 .5 (D+ 1) b(B(3, D)) < 2(D + 1) 

Previous lower bounds Non trivial lower bounds have been derived using avail- 
able results for graphs or digraphs of bounded degree [3, 12]. Here we recall the 
basic counting argument of these articles: 

Let G be a graph (resp. digraph) of parameter d. The set of informed nodes 
cannot double at each round, as a node informed during some round can, in 
the optimal case, only forward the information during the d next rounds 1 
As example, when d = 2, for t >__ 4, the number S(t) of nodes receiving an 
information during the round t is such that  S(t) < S(t - 1) + S(t - 2). We 
can then compute an upper bound N(t) of S(t). In fact N(t) is the solution of 
N(t) = N ( t - 1 ) + N ( t - 2 )  for t >_ 4 with N(1) = S(1) and N(2) = S(2), N(3) = 
S(3). The difference between graphs and digraphs with the same parameter  d 
appears in the computation of the initial values of N(t). As example for graphs 

1 This is not true for the originator of the broadcasting in a graph, as such a node can 
possibly inform new vertices during d + 1 rounds 



327 

(digraphs) of parameter 2 we have" the values N(2) = 2, N(3) = 4 ( resp . . .  
N(2) = 2, N(3) = 3). The lower bound is then deduced by: 

0<t<b(c) 0<t<b(c) 

The analysis of the recurrences leads to the bounds of [3, 12]: 

d = 2, b(G) > 1.44041og(IVI)(1 + o(1)) d = 3b(G) > 1.13741og(lVI)(1 + oi l ) )  

Note that  1.4404 - Iog(y)l where r = 1+,/g2 is the g o l d e n  ra t io ,  that  is the 

greatest positive root of polynomial x 2 - x - 1. This property can be generalized 
1 as in[3]: b(a) _> ~ log(lVI)(1 + o(1)), where Td is the largest positive root of 

x d - x  d - 1 - . . . - l = 0 .  
In the case of binary de Bruijn and Butterfly graphs, the lower bounds have 

been improved later in [11], the authors proved that b(UB(2, D) >_ 1.311719, 
and that  b(WB~c(2, D)) >_ 1.7456D. 

In that paper we will introduce a technique enabling us to prove that  broad- 
casting in the undirected de Bruijn graph is not significantly faster than in the 
digraph. We will prove that b(B*(2, D)) >_ 1.4404D, b(B*(3, D)) >_ 1.8028D. For 
a generalization of the technique to the case of iterated line digraph (Kautz and 
Butterflies networks) we refer to the extended version. 

3 C o u n t i n g  i n f o r m e d  v e r t i c e s  i n  a d i g r a p h  ( g r a p h )  o f  
p a r a m e t e r  d .  

For this we consider a broadcast protocol in a graph (digraph) of parameter d 
as an infinite directed tree of out-degree d. 

D e f i n i t i o n  2. Given a digraph, the b r o a d c a s t  t r e e  associated to the protocol 
is a directed infinite tree of out-degree d whose root is the originator. The arcs 
outgoing from a given vertex are labeled 0, 1, 2 , . . . ,  d - 1 according to the fol- 
lowing rule the arc (x, y) is labeled i, if y is the i+ 1 - t h  vertex that x calls after 
having itself being informed. 

So the labeling reflects the strategy used locally by each node to forward the 
information in the tree, each label corresponding to the d e l ay  introduced by 
using the arc. In the case of a finite graph of out-degree d, the broadcast tree is 
finite and in fact obtained as a quotient graph of the infinite broadcast tree. 

D e f i n i t i o n 3 .  - Given a graph, the b r o a d c a s t  t r e e  is defined in the same 
way, except that the out-degree of the originator is d+ l  with delays 0, 1, 2, . . . ,  d. 

- If w is a path from the root to x we will say that x is informed along w. If 
w if of length l we will say that x is at d e p t h  l 
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- The d e l a y  of a path is the sum of the delays on each arc. The cos t  of a path 
is the sum of its length and of the delays of its arcs, it corresponds to the 
time at which the end vertex of the path is informed along the path. 

- We will denote I(l, t) the ideal 2 number of nodes informed at t ime exactly 
t on a path of length I. 

- In a broadcast protocol let S(t) denotes the number of nodes informed at 
time exactly t, note that S(t) < ~z  I(l, t). 

P r o p o s l t i o n 4 .  In a graph (digraph) of parameter d . 

I(1, t) = ( t  l l)  
- -  d 

Where the multinomial coefficient (~)d is defined by the generating .series iden- 
tities: 

i>O d 

(l) Zi For graphs (1 + z + . . . +  z + zd) (1  + z ' -1  = 
i>0 d 

Proof. As our bound is valid for any graph (digraph), we study a broadcasting 
protocol in a directed infinite tree of out-degree d whose root is the originator. 
Under this assumption, the number of paths of length l and cost t (or equivalently 
of delay t - I) is exactly the number of words of length I and weight t - t on the 
alphabet {0, 1 . . . d  - 1} that  is (tt z)d. In the case of a (all)graph of parameter d 

the value of I(l, t) is always smaller or equal than this value. Indeed, a vertex can 
appear many times in the broadcast tree, and so might be counted as informed 
more than once. This only means that  our counting does not take into account 
possible additional properties of the graph, and that the bound can be refined 
for some (di)graph. Note that  in the case of graphs as the originator (.i.e the root 
of the tree) have degree d + 1 instead of d with delays 0, 1 , . . . d ,  the generating 

serie differs a bit. 
As one can check, the difference between graphs and digraph of parameter  

d is not significant when deriving asymptotical evaluations. Consequently we 
will just forget it, considering for graphs the serie (1 + z + . . .  zd-1) t instead of 

( 1 +  z §  . . . +  z a-1 + z e ) ( l +  z + . . . z d - t )  t-1. 

Case d = 2 In the case d = 2, we can do a detailed analysis which gives not only 
the former bound ~ log(IVI) but much more information on how should be a 

protocol reaching the lower bound if any. As d = 2, I(I, t) the estimation of I(l, t) �9 ~ t 
i s  (t ~-t)2' the number of combinaisons of t - I  elements of a set of cardinal : (t ~)" 

For a fixed time t, we shall estimate what is the length lo(t) which maximize 
I(1, t) at time t. Indeed, we will compute at what depth are mainly located the 

"2 T h a t  is a geneiic  upper  b o u n d  valid for a specific class of g raph  
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nodes counted as informed at that  time. The set of nodes informed at t ime t 
at depth lo(t) wilt be called the main level at t ime t. Stirling approximation or 
usual techniques of estimation for coefficients of generating series (see [9]) allow 
us to claim that:  l o g ( ( ~ ) )  ~ he(x)  where r is the classical entropy function 
r  = - l o g ( ( 1  - x ) l - ~ x ' ) .  Then setting 1 = at, we have to maximize for a 
fixed t: log(I(a,t, (1 - a ) t )  = (1 + o(1))atr  -~-) relatively to the variable a.  

Computa t ions  leads to: lo(t) = a o t -  ~ t. Thus the main level at t ime t is 

( ~0t ~ log((10(*) ~ ~ ,~ t log( r )  3 this at depth a0t and its size is Kl-~o)*]" Note that  vxt_lo(t)j2j 
means that  the cardinality of the main level is potentially growing exponentially 
with the time. Due Lo the behavior of binomial coefficients one can shows tha t  
log(S(t)) is bounded above by a quantity equivalent to log(I(lo(t),t), that  is 
log(Sit)) < (1 + o(1))t log(r). Furthermore due to exponential growing of the 
value bounding S(t): 2 (~+~176 one knows that  l og (~ t<  r S(t))  <_ (1 + 

o ( 1 ) ) T c ~ 0 r  ~ ) = T log( r ) (1  + o(1)). And the number of vert-ices informed at 

t ime t is bounded by 2*1~176 This is a more precise way to derive the 
result of [3], as to achieve broadcasting at t ime T we must have 2Tl~176 > 
]V]. Our refined calculus is useful, as it enables us to precise the depth at which 
the nodes informed at t ime t are mainly located. In fact one can easily check 
that  at t ime t it is possible to consider that  all the vertices counted as informed 
are at depth not. As example, if a broadcast protocol finishes in a graph G of 

parameter  2 in ~ rounds, then most  of the informed vertices are at depth: log(~) 
l ~  _ ~ 

I = ~0 log(r) = 7log(IV]). Computa t ion  shows that  7 = log( , )  ~ 1.0423 > 1. 
So we can assert that  if a graph (digraph) of parameter  2 has a nearly opt imal  
broadcast protocol this one informs most of the nodes along paths of length 
around 71og(lvl) .  For example, in the case of degree 3 graphs, we need a graph 
with mean eccentricity less than 7 log(IVD. As 7 is very close to 1, such a graph 
is nearly a Moore graph (just note that  the graph has IVI vertices, 4 and most  
of these are supposed to lie at distance at most 71og(IVI)). Our condition is 
clearly more restrictive than the straight one stating that  the diameter  of G 
is not greater than 1.44041og(IvI) ' and gives also hints to tackle the following 
question: 

C o n j e c t u r e  1 b(B(2, D)) ,,~ D ~  ~ 1.4404D 

Note that  here log(IV]) is D, so a protocol proving this assumption should use 
paths of length 7D instead of shortest paths of length of order D used in existing 
protocols. 

3 r has been defined in section 2 as 
2 

4 At the moment, no explicit procedure is known to construct such a graph, existence 
is proved by probabilistic methods 
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4 C o u n t i n g  in the  de Brui jn  graph B*(d,  D )  

Any vertex in the digraph has 2d out going arcs. Among this 2d arcs, d corre- 
spond to a left-shift and lie in the de Bruijn digraph. These arcs will be called 
L (left) ones. The others corresponding to a right-shift are R (right) arcs. For 
purpose of simplicity we associate to each protocol P a derived protocol ,~ faster 
than P.  

T h e  d e r i v e d  p r o t o c o l  The protocol P is completely defined by a local labeling 
of the outgoing arcs. Suppose that at each vertex the outgoing arcs are sorted 
according to their labels, then the derived protocol P1 is defined by the new 
labeling given below: 

L arcs La0 Lal ... L~_I 
Rarcs R~ 0 <R~ 1 . . . < R ~ _ I ]  labels 0 1 ... d - 1  
Larcs L~ o < L ~ .  < L~d_ ~| Rarcs R~ o R~ . . .R~_~  

labels 0 1 . . .  d - 1  

C o u n t i n g  in  t h e  d e r i v e d  p r o t o c o l  [(1, t) and S(t) will denote the values of 
the estimation in the derived protocol P~. I(l, t) and S(t) still refer to a directed 
protocol. The counting problem is now simple; we consider once again the infinite 
tree associated to/)1;  for which at each vertex there are 2d outgoing arcs. Using 
the labeling of P1 they are: 

(R, 0), (R, 1) . . . .  , (R,d- 1) 
(Z, 0), (Z, 1), , (Z, d - 1) 

So, a path of length l and cost t, in the infinite broadcast tree is defined by the 
pair (a ,w) where: a = ( a l . . . a z )  with 0 < ai < d -  1 and ~ a i  = t - l, and w 
is a word of length l over the alphabet {L, R}. If the i - th letter of the word w 
is L (resp. R) that  means that  the i - th arc used in the path is (L, ai) (resp. 
(R, ai)). T h e  w o r d  w will  b e  ca l l ed  t h e  (L, R) w o r d  o f  t h e  p a t h .  A first 
bound on I(l, t) can be obtained by multiplying by the number of words 
of length l over the alphabet {L, R}. So the number of vertices informed at t ime 
t along a path of length I is at first glance: i ( l , t )  <_ I(l, t)2 ~. Not surprisingly, 
this estimation is useless as it does not take into account properties of de Bruijn 
graphs. Hopefully we will prove that  most of the paths are always redundant (i.e 

useless for the broadcasting protocol). 

U s e f u l  (L,  R)  w o r d s  

D e f i n i t i o n  5. 
- A path in the broadcast tree is redundant if, there exists either another path 

of smaller cost, or another path of equal cost with smaller length which leads 
to the same vertex. In other words, if this path informs a vertex which can 
be informed earlier by another path, or at the same time along a shorter 

path. 
- A word w of {L, R} z is useless if each walk in the broadcast tree having w 

as {L, R} word is redundant. A word is useful if it is not useless. 
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L e m m a 6 .  [n the undirected de Bruijn graphs UB(2, D) and UB(3, D), useful 
(L, t~) words have no sub-word of kind L iRiL  i or R i L i R  i. 

Proof. We consider a path in the tree, leading to a node z, with as (L, R) word 
wlL iR iL iw2  . Let x (resp. y) be the vertex informed along the path correspond- 
ing to the word wl (resp. wlLiRiLi ) .  Suppose that x is informed at time t. 
Then according to our protocol y will not be informed, thanks to the path, be- 
fore time t + 3i. Due to de Bruijn iterated line graph structure, there is a path 
with a (L, R) word L i from x to y. So, once again, according to our protocol, y 
will be also informed at time at most t + di ( as d < 3 , t + di <_ t + 3i) along 
a path with (L, R) word wlL  ~ . As z is informed from y, we can claim that any 

i i i z informed along a path with (L, R) word w lL  R L w2 can be informed sooner 
(or at the same time but along a shorter path) along a path with (L, R) word 
wlL~w2. Hence wlLiR~LiwB is useless. 

L e m m a T .  A partition of an integer n is an increasing sequence of integers 
k=p 

il . . . ip  such that ~ k = l  ik = n. The number P(n) of the partitions of n has the 

following asymptotic behavior: ~ ) 

Proof. A proof of this lemma is given for example in the book [1] 

P r o p o s i t i o n &  Let U (1) denotes the cardinality of the set of useful ( L, R) words 
of length l, then for UB(2, D) and UB(3, D); log(U(/)) = O(x/~) 

Proof. To a (L, R) word we associate a partition as follows: if the word is of the 
form L {11~ i~ . . .  Lip we associate to it the sequence il, i2, �9  ip. As w is useful, the 
sequence {ik} is a bitonic one. (i.e. the sequence is increasing then decreasing). 
To check that,  just notice that if ik + 1 < ik then ik+2 < i~+1 (if not, one of the 
pattern Lik+ ~ Rik+ ~ Li~+~ Rik+~ Lik+~ Ri~+~ would appear contradicting lemrna 6). 
Then to each useful word we can associate an increasing sequence and a decreas- 
ing one with sums respectively nl and n2 with n: +n2 = 1. So a crude estimation 
of U(I) can be V(l) <_ ~ + ~ = t  P(nl )P(n2)  < ~0<i<l  P( i )P(n  - i) < 1P(�89 2. 
Lemma 7 allows us to conclude. 

P r o p o s i t i o n 9 .  b(UB(2, D)) > lo~(~)D + o(D), b(UB(3, D)) > l~ + o(D) 
- -  _ log(r3)  

Proof As I(l, t) <_ I(l, t)U(l), and as log(U(/)) = o(t), we have in fact log(l(/, t)) = 
log(I(/, t)) + o(l). As 1 = O(t) we can claim that iog(S(t)) = l o g ( ~  I(l, t)) <_ 
l o g ( ~  I(1, t)U(l)) ,~ log(S(t)) + o(t). So, we get the same estimation than for di- 
rected graphs of out-degree d: log(~ t<  T S(t)) <_ log(rd)T+ o(T). So, undirected 
de Bruijn graphs of small degree behave like the digraphs. 

5 Conc lus ion  

In this article we have used a general technique and the structural properties of 
the de Bruijn networks to derive new lower bounds on the broadcasting time. 
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The results obtained show that  the protocol is not likely to be more efficient than 
in the de digraphs. We conjecture that  bounds obtained give the right order for 
the broadcasting t ime in de Bruijn networks. So improvements  have to been 
done in designing faster protocols. However our results show that  the diffusion 
will not be done on shortest paths which implies that  these protocols might be 
complicated or difficult to imagine. Extension of the technique to iterated line 
digraphs (butterflies and Kautz networks) and to n-dimensional grids will be 
addressed in the full paper. 
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