
Overlapping Communication and Computation in 
Hypercubes* 

Luis Dfaz de Cerio, Miguel Valero-Garcia and Antonio Gonz~ilez 

Dept. d'Arquitectura de Computadors - Univ. Polit. de Catalunya 
c/Gran Capit~n s/n, Campus Nord - D6, E-08071 Barcelona, Spain 

E-mail: {ldiaz,miguel,antoniot @ac.upc.es 

A b s t r a c t .  This paper presents a method to derive efficient algorithms for 
hypercubes. The method exploits two features of the underlying hardware: a) the 
parallelism provided by the multiple communication links of each node and b) 
the possibility of overlapping computations and communications, which is a fea- 
ture of machines supporting an asynchronous communication protocol. The 
method can be applied to a generic class of hypercube algorithms, Many exam- 
ples of this class of algorithms are found in the literature for different problems. 
The paper shows the efficiency of the method using two of these problems as an 
example: Fb-'I" and Vector Add. The results show that the reduction in communi- 
cation overhead is very significant in many cases and the algorithms produced 
by our method are always very close to the optimum in terms of execution time. 

1 Introduction 

Hypercube multicomputers are interesting because there are many problems for which 
parallel algorithms with a hypercube communication topology are obtained in a natural 
way [7], fI41. 

Communication overhead is a crucial issue when considering the performance of  a 
multicomputer. In some cases, communication overhead is the most significant factor 
in the execution time. To help in reducing communication overhead a) the nodes of  a 
multicomputer can send several messages in parallel through different links (commu- 
nication parallelism), and/or b) communication through one or several links can be 
overlapped with computation in the node (communication/computation overlapping) 

Designing parallel algorithms which are able to exploit features (a) and/or (b) is not 
an easy task. Many of those natural hypercube algorithms found in [7], [14] cannot 
exploit these features efficiently. In any case, some papers can be found in the litera- 
ture which propose hypercube algorithms for particular problems which are efficient 
for particular machine configurations. Examples are [1],[2], [4], [9J, [12], and [13], 
just to mention a few. 

In this paper we propose a method to derive hypercube algorithms which are able 
to exploit features (a) and (b). The method takes as an starting point a hypercube algo- 
rithm to solve the problem and transforms it in a systematic way, using a technique that 
we call communication pipelining. The starting algorithm must belong to a class of 
hypercube algorithms which we call CC-cube algorithms. Many numerical and sym- 
bolic computation problems can be solved using a CC-cube algorithm. FFT [9], Hart- 
ley transform [3], All-to-All personalized communications [8J and Jacobi methods for 
singular value decomposition and eigenvalue computation [11] are just some exam- 
ples. 

* This work has been supported by the Ministry of Education and Science of Spain (CICYT 
TIC-92/880 and TIC-91/1036) and the European Center for Parallelism in Barcelona (CEPBA). 



254 

In this paper, performance figures are given for two concrete application examples: 
FFT and Vector Add. Hypercube algorithms for FFT have been extensively studied in 
the literature. Among others, [9] and [2] are two concrete examples of algorithms 
which try to exploit communication parallelism ([9]) and communication/computation 
overlapping ([2]). In both cases the degree of communication parallelism and overlap- 
ping is fixed and, therefore, the results are only efficient for some machine configura- 
tions. 

The communication pipelining technique, which is the basis of the proposed 
method, has been used in a previous paper [5], in which only communication parallel- 
ism is considered. The main contribution of this paper is the extension of the method in 
order to include the overlapping of communications and computations. 

The rest of the paper is organized as follows. Next section describes the architec- 
ture assumptions. Section 3 defines the characteristics of a CC-cube algorithm. Section 
4 reviews the communication pipelining technique. Section 5 establish the overlapping 
method that is based on the previously described concept of communication pipelin- 
ing. Section 6 shows the performance figures that the method provides. Finally, the 
conclusions are found in section 7. 

2 Target architecture 
This study assumes a distributed memory multicomputer consisting of 2 d processors 
connected by bidirectional point-to-point links in a d-dimensional hypercube topology, 
Every node can send messages to any of its d neighbors following an asynchronous 
protocol. This means that, after initiating a communication operation through one or 
several of its links, a processor can continue performing computations in parallel with 
the transmission of the data. It is also assumed that every node can send messages in 
parallel along different links of the hypercube. However, the start-up times for the dif- 
ferent communications cannot be overlapped (we assume that the start-up time corre- 
sponds mostly to time spent by the processor to initiate each transmission). Therefore, 
the cost of sending c messages in parallel along c different dimensions of the hyper- 
cube and performing afterwards C computations is considered to be: 

c T u p + Max (C L ,  L ,nax T e) 

where T a is the time to perform a computation, Tsu p is the communication start-up, T e 
is the communication time per size unit and Lm~ a is the size of the longest message to 
be sent. This model is in fact an upper bound that will be exact only in the case that the 
longest message is the last one to be sent. Notice that this model is valid for any con- 
trol flow method (store-and-forward, wormhole, circuit switching) since the communi- 
cations always take place between neighbor nodes. 

3 CC-cube algorithms 
A CC-cube algorithm consists of 2 d processes that perform some computation and 
exchange data among them. Each process communicates only with other d processes 
following a hypercube communication topology. Every process executes the same 
code, which has the following structure: 

do i = i, K 
compute xi[l:N] plus some local data 
exchange x i with neighbor in dimension d i 

enddo 



255 

w w w w j,w  
I I i I I 

dim. l ~ t-'q>', ~ '('q> , ',--I> , 
dim. 2 ~ ...... I it ~ - - I~  I : : " '~  I ~ 

dim. 3 ~..~l I a 
w: Node is waiting for data. 
F ig .  1. An example of communication pipelining. The packets with the same gray level belong 
to the same iteration of the original CC-cube algorithm. 

I i r | ~ i | ~ J I 

dim. l l>' ',1> ' [~  1~ ~'1~ ,.._,'1~, , ,  ' 7 '. !'~ 
dim. 2 , '  , .... , ~ .... 1~ , .~' 

dim. 3 ~ ' ~" "----~ ' ~ " ~ '-- 
w: Node is waiting for data. d: Communication is delayed due to link contention. 

Fig.  2. Pipelining and overlapping of communications and computations. 

where d i is one of  the dimensions of  the hypercube (d  i ~ [1, d]). Note that it is not nec- 
essary that each iteration uses a different dimension. The computation of  xi[j] is a func- 
tion of  xi_ l [j] (which was computed in iteration i-1 by the neighbor in dimension di_ 1) 
and possibly some local data. 

4 Communication pipelining 

The communication pipelining technique is inspired in the software pipelining 
approach used to generate code for VLIW processors [ 10]. Communication pipelining 
is based on the fact that, in order to compute xi[j] it is not necessary to have received 
the whole vector xi_ 1 from the neighbor in dimension di_ 1 but simply element xi_ l [j]. 
In this situation, the algorithm is rewritten in as follows. Every vector x i is decomposed 
into Q packets. As Fig. 1 shows, in the first iteration every node computes the first 
packet o f x  I and sends the result to neighbor through dimension d I. In the second iter- 
ation, every node computes the second packet o f x  I and the first packet o f x  2 (it has all 
the data required to perform these computations). At the end of  this second iteration, 
each node sends two messages, one of  them to neighbor through dimension d I contain- 
ing the second packet of  x 1, and the other one to neighbor through dimension d2, con- 
taining the first packet of  x 2. If  d I ~= d2, both packets can be sent in parallel; otherwise, 
they are combined into a single message and sent to its destination. Proceeding in this 
way, at the end of  the third iteration every node can send three messages in parallel (if 
the involved dimensions are different). Following this approach, a parallel algorithm 
that makes use of  all the links of  the hypercube at the same time can be designed. 

5 Overlapping communication and computation 

After a packet is computed it can be sent to its destination at the same time that the fol- 
lowing packet is computed. As Fig. 2 shows, the nodes do not send the data at the end 
of  every iteration but they send the data after the computation of  every packet (if the 
link is busy the communication is delayed until it becomes idle). In parallel with the 
transmission, the nodes compute consecutive packets if they have the necessary data. 

The complete study of  the execution time and the corresponding analytical models 
can be found in [6]. These models have been used to obtain the performance figures 
presented in the next section. 



256 

FFT on a 4-dimensional hypercube. 
d=4 Tsup=l'Ta Te=l*Ta 

. . . . . . . . . . .  8 n 
8 10 12 14 16 I~ 20 22 24 26 2 

d=4 ?~up~lOOO'?a Te=l"Ta 

. . . . . . . . . . . .  r c c l ~  
Tcc I T~, 

-- " rcc/Ta>,o~ 
d=4 Tsup=100O*Ta Te=I0*TI r d=4 Tsup=1000*Tn Ti=lOO'Ta 

3 o. . . . . . .  
/ "  

8 i0121'i' i'61~ 20 22 24 2'6'2'8 n 6 B i012111618 20 22 2| 26 28 n 

Vector Add on a 4-dimensional hypercube. 
r d=4 T~p=I*Ta Te=2*Ta d=4 Tsup~1000*Ta Te:l'Ta r d=4 Tsup~lOO0*Ta Te=10*Ta r d=4 Tsup=1000*Ta Te=100~a 

! a ~ m  =i~ 4 . , f "  . . . .  

3 4 o , / ~ - ' -  
3 / 

2 /' 

. . . .  18 n 2 n .... n . . . .  2' -- 6 8 i0 12 14 16 18 20 22 24 26 8 6 8 1'0 1'2 I'4 16 iS 20 22 24 26 2"8 n 4 20 22 2'4 26 28 8 I0 12 14 16 18 20 22 24 6 ~8 

FFT on a 10-dimensional hypercube. 
r d=10 Tsup=l*Ta Te~l'Ta d=IO Tsup~1000*Ta Te=l'Ta r d=10 Tsup~100O*Ta Te=10"Ta x d=lO Tsup=lO00"Ta Te=iO0"Ta 

' I . . . . . . .  n 
. . . . . . . . .  n 121416182~22242628303234 12141'~1'8~'022242'62830321"3) n 1214161820222426283103'2~-4 n 4 

Vector Add on a 10-dimensional hypercube. 
r dr T~up=l*Ta Te=l*Ta r d=10 Ts~p=1000*Ta Te=l'Ta r d=10 Tsup~1000*Ta Te=I0*Ta r d~10 Tsup=1000*Ta Te=iO0~Ta 

i0 i0 

i 4 / - 4 / '  

i2 14 1.6 1,8 7.8 22 2,4 26 2,8 3,8 3,2'3'4 n 1214161'8202224262~3832"3'4 n 121416182022242628 n .... 2'$ 38 3'2 '3~ n 

Fig.  3. Performance.improvement of the overlapping scheme in relation to the CC-cube algo- 
rithm. 

6 Performance figures 

The plots in figure 3 show the performance improvement of  the overlapping scheme in 
relation to the CC-cube algorithm (Tco/'l~o~ where Toy is the execution time when 
using the overlapping method). In addition, they also show the performance improve- 
ment o f  a hypothetical algorithm that achieves an execution time equal to a lower 
bound (Tcc/LB). This lower bound represents the execution time under the assumption 
that an ideal overlapping of  computations and communications can be achieved. The 
objectives of  these plots are twofbld: it is intended to show that overlapping provides a 
very important improvement and that it is very close to the optimum. These figures 
combine both problems (FFT and Vector Add) for two different sizes of  the hypercube 
(d = 4, 10), varying the size of  problems (n ~ [6, 34]) and the communication parame- 



257 

ters (Te/T a = 1, 10, 100 and T s u f f  a = l, 1000). In case of the FFT problem, the figures 
also show the relative improvement of the method proposed by Aykanat and Dervis 

(rCCCrAyDe) [2]. 

7 Conclusions 

The main conclusion of the performance figures is that the proposed overlapping 
scheme gives results very close to the lower bound for all machine configurations and 
problem sizes. In addition, they show that a significant improvement is achieved in 
many cases (more than a factor 10 in some of the examples). 

The main features of the proposed overlapping method are: a) It is a method that 
can be applied to a wide range of algorithms for hypercubes. In the literature, there are 
particular solutions to specific problems that are difficult to adapt to other problems. 
We have illustrated the method by means of two real problems: FFT and Vector Add. 
There are many other problems on which the method can be applied, b) The method 
permits to tune the degree of overlapping for a given problem and a given architecture 
(due to lack of space we have omitted the derivation of this parameter). Other propos- 
als, as the one of Aykanat and Dervis, besides being a particular solution to a specific 
problem, they cannot vary the amount of overlapping and therefore the performance of 
the algorithm is much lower than that of our scheme, for some machine configurations. 

8 References 

1. Agarwal, R. C., Gustavson, F. G., Zubair, M.: An Efficient Algorithm tbr the 3-D FFI" NAS 
Parallel Benchmark. Scalable High-Performance Computing Conf. (1994) 129-133 

2. Aykanat, C., Dervis, A.: An Overlapped FFr Algorithm for Hypercube Multicomputers. 
ICPP (1991) III-316 - III-317 

3. Aykanat, C., Dervis, A.: Efficient Fast Hartley Transform Algorithms for Hypercube - Con- 
nected Multicomputers. IEEE Transactions on Parallel and Distributed Systems, vol. 6, no. 
6 (1995) 561-577 

4. Clement, M. J., Quinn, M. J.: Overlapping Computations, Communications and I/O in Par- 
allel Sorting. Journal of Parallel and Distributed Computing 28 (I 995) 162-172 

5. Dfaz de Cerio, L., Gonz~ilez, A., Valero-Garcfa, M.: Communication Pipelining in Hyper- 
cubes (submitted for publishing) 

6. Dfaz de Cerio, L., Valero-Garcfa, M., Gonz~ilez, A.: Overlapping Communication and Com- 
putation in Hypercubes. DAC/UPC Research Report No. RR-96/02 (1996) 

7. Fox, G. et al.: Solving Problems on Concurrent Processors. Englewood Cliffs, N. J. Prentice 
- Hall (1988) 

8. Johnsson, S. L., Ho, C. T.: Optimum broadcasting and Personalized Communication in 
Hypercubes. IEEE Trans. Comput. 38 (1989) 1249-1268 

9. Johnsson, S. L., Krawitz, R. L.: Cooley-Tukey Fb-T on tile Connection Machine. Parallel 
Computing 18 (1992) 1201-1221 

10. Lam, M.: Software Pipelining: An Effective Scheduling Technique for VLIW machines. 
Conf. on Programming Language Design and Implementation (t 988) 318-328 

11. Mantharam, M., Eberlein, P. J.: Block Recursive Algorithm to Generate Jacobi-sets. Parallel 
Computing 19 (1993) 481-496 

12. Sahay, A.: Hiding Communication Costs in Bandwidth-Limited Parallel FFT Computation. 
Report: UCB/CSD 93/722, University of California (1993) 

13. Suarez A., Ojeda-Guerra, C.: Overlapping Computations and Communications in Tours 
Networks. 4th Euromicro Workshop on Parallel and Distributed Processing (1996) 163-169 

14. Thomson Leighton, F.: Introduction to Parallel Algorithms and Architectures: Arrays, Trees 
and Hypercubes. Morgan Kaufmann Publishers (I 992) 


