
A Refinement Methodology for Developing
Data-Parallel Applications*

Lars Nyland, 1 Jan Prins, 1 Allen Goldberg, 2 Peter Mills, 3 John Reif a and Robert Wagner 3

1 Dept. of Computer Science, University of North Carolina
Chapel Hill, NC 27599-3175 USA

2 Kestrel Institute, 3260 HiUview Ave., Palo Alto, CA USA
3 Dept. of Computer Science, Duke University, Durham, NC 27708 USA

Abstract. Data-parallelism is a relatively well-understood form of parallel computation,
yet developing simple applications can involve substantial efforts to express the problem in
low-level data-parallel notations. We describe a process of software development for data-
parallel applications starting from high-level specifications, generating repeated refinements
of designs to match different architectural models and performanee constraints, support-
ing a development activity with cost-benefit analysis. Primary issues are algorithm choice,
correctness and efficiency, followed by data decomposition, load balancing and message-
passing coordination. Development of a data-parallel multitarget tracking application is used
as a case study, showing the progression from high to low-level refinements. We conclude
by describing tool support for the process.

1 Introduction

Data-parallelism can be generally defined as the concurrent application of an arbitrary function to
all items in a collection of data, yielding a degree of parallelism that typically scales with problem
size. This definition permits many computationalty intensive problems to be expressed in a data-
parallel fashion, but is far more general than the data-parallel constructs found in typical parallel
programming notations. As a result, the development of a data-parallel application can involve
substantial effort to recast the problem to meet the limitations of the programming notation and
target architecture. From a methodological point of view, the problems faced developing data-
parallel applications are:

- T a r g e t arch i t ec ture . Different target parallel architectures may require substantially differ-
ent algorithms to achieve good performance, hence the target architecture has an early and
pervasive effect on application development.

- Mul t ip l i c i ty o f t arge t arch i t ec tures . For the same reasons just cited, the frequent require-
ment that an application must operate on a variety of different architectures (parallel or se-
quential) substantially complicates the development.

- C h a n g e s in p r o b l e m spec i f i ca t ion or targe t archi tec ture(s) . Changes in problem specifi-
cation and/or target environment must be accommodated in a systematic fashion, because of
the large impact that either causes for parallel applications.

We consider a refinement methodology that generates a tree of data-parallel applications whose
level of development effort varies with the parallel architecture(s) targeted and the required level
of performance. The methodology explicates activities whose time and expense can be regulated
via a cost-benefit analysis. The main features of the methodology are:

- H i g h - l e v e l d e s i g n capture , where an executable description of the design can be evaluated
for its complexity and scalability.

- A data-parallel design notation that supports a fully generalized definition ofdata_parallelism
and eliminates dependence on specific architectures.

* This work supported by Rome Laboratory under contract #F30602-94-C-0037.

146

- Analysis and refinement of the design based on fundamental considerations of complexity,
communication, locality, and target architecture.

- Prototyping. Disciplined experimentation with the design at various levels of abstraction to
gain information used to further direct the refinement process.

Our methodology is based on the spiral model of software development with prototyping, a
model favored by the software engineering community. During the risk analysis phase of develop-
ment, development relies on cor~cise high-level, executable notations for data parallel problems,
such as FP, Sisal, Nesl and Proteus [3, 5, 4, 9]. The next phase is migration and integration (per-
haps automatic) to achieve an efficient application that can be tested and deployed. As new re-
quirements or target architectures are introduced, the development repeats the cycle.

The target architecture will have an influence on many aspects of the design, and here we clas-
sify parallel architectures into four classes- two shared memory classes and two distributed mem-
ory classes. The effects of each of the architectural classes is considered with regard to its impact
on application development.

- UMA shared memory. In this class, global memory has uniform memory access (UMA)
time. This challenging requirement is currently met only by cacheless machines with mem-
ory bandwidth matched to processor speed. Examples: Cray T90, NEC SX-4, and the Tera
Computer.

- N U M A shared memory. A non-uniform memory access architecture has hierarchically or-
ganized memory, often viewed as multiple levels of cache. Examples are SGI Challenge ma-
chines and the Convex Exemplar.

- Small-grain distributed memory. No shared memory abstraction is provided in hardware,
but fine-grain messagepassing and low-latency synchronization are supported. We've labeled
this class SIMD, since it describes machines such as the MasPar MP-2, but in also describes
MIMD machines with fine-grain support, such as the Cray T3D.

- Large-grain distributed memory. Message-passing (MP) machines where large messages
must be used to achieve reasonable performance of processor interconnect. Examples are the
Intel Paragon and IBM SP/2.

2 Design Refinement Methodology
Effective software development involves prototyping at several different design levels to discover
the characteristics of a problem. Figure I describes the stages along the refinement paths from
high-level designs to architecture-specific implementations. A description of each of the stages

follows.

2.1 Problem Definition and Validation

At the specification stage (top of figure 1), we seek an initial description of the problem and vali-
dation of the problem against functional requirements. The focus is on determining the feasibility
and practicality of obtaining a high-performance algorithmic solution for a succinctly-described

problem.
Algorithm selection and parallel complexity analysis. Solutions to complex problems are of-
ten expressed as highly algorithmic, mathematically sophisticated descriptions, This makes the
high-level analysis both necessary, because the algorithms are often computationally intensive,
and feasible, because of their succinct description. Asymptotic analysis, prototyping, and explo-
ration of algorithm variants can all be performed quickly at this level.

One set of measures for selecting parallel algorithms are work and step complexities. The work
complexity is a measure of all operations performed, while the step complexity measures the num-
ber of parallel steps (minimum number of sequential steps). While these measures are not com-
pletely realistic, we seek to separate concerns and formulate a tractable, staged analysis method-
ology. Finding a work-efficient algorithms is the goal, even though they may lead to irregular so-
lutions with data-dependent behavior. For large problems on fixed size machines, work-efficient

algorithms give the best performance.

147

A n a l y s i s for parallel architectures. The analysis techniques at this stage are based on medium-
level parallel computing cost models such as LogP [6], BSP [12], and HMM [1] that can be used
to estimate communication and memory performance. The model parameters of the algorithm are
obtained analytically (when possible, or by instrumenting a prototype of the algorithm). One of
the 4 architectural classes must be supplied to complete the analysis.

2.2 D e s i g n R e f i n e m e n t

The refinement of programs, shown
in figure 1 between the dashed lines, o~,~
occurs in a high-level design notation. ~,,, ,,,~, ,~, ,~, vm, ,,,,,,,~.,
We've chosen a data-parallel subset of
Proteus [9] as our design notation. An to,.~ ~ ~,~,,^
initial implementation of specification .~ J t I- t t
provides a starting point that provides .
a f~176 f~ c~ analysis' " n ~ ! ~ , ~ . , [2 , ,
information-conveyance and measure-
ment purposes. At a high level, pro-
gramming for data-parallel execution " " ~ ~ ' : - ' ~ ' ~ 1
is only slightly more complicated than . ~
programming for serial execution in a ~
language where collections of data are
fully supported. Fig. 1. Refinement and translation steps in the development

The different refinement paths are: of data-parallel applications

- Nested data-parallel design refined to flat data-parallel design by converting nested iterators
and nested sequences to loops with integer iterators and rectangular arrays. Flat data parallel
programs are suitably expressed using languages such as HPE Fortran90, C* and MPL.

- Nested (or flat) data-parallel refined to SPMD. SPMD programs have multiple threads of con-
trol using a single shared-memory, where decomposition is under program control, varying
from simple memory-decomposition models to complex, adaptive, load-balancing methods.

- SPMD refined to SPMD/C, This model adds explicit communications to an SPMD program,
eliminating the shared-memory constructs.

- Refining to an SIMD Model. SIMD machines can be viewed as fine-grain message-passing
machines, or as vector architectures. Refinement to an SIMD model can begin with either the
nested or flat data-paralM versions, or it can be derived as similar to other message-passing
versions.

2.3 T r a n s l a t i o n to T a r g e t Programming Models

Translation of high-level data-parallel designs can target a variety languages as shown by the ver-
tical arrows in figure 1. Different designs are matched to different languages and different parallel
architectures. Translation from the design notation may be manual or automatic; the automatic
translation of nested data-parallel programs to vector models is an active area of research [11, 4].

3 Case Studies: Multitarget Tracking
In this section, we rum our attention to an example, demonstrating the methodology and the re-
liance on particular tools used for the process. The problem chosen to solve here is that of multi-
target tracking, and through the development process, we will develop a tree of refined algorithms
and show the need for additional automated support.

Multitarget tracking (MTT) can be described simply: a set of N targets are being tracked when
new location data arrives as a set of M positions. Prediction models compute the expectedlocations
of the tracked targets, but the new data may not coincide with the estimated positions. The problem
is to find the joint probability that a target t, 1 < t < N, is represented by a measurement j, 1 < j <
M. Any algorithm that computes this result fal~s i ~ h e category of multitarget tracking algofi'tl~m~
that we are studying.

148

3.1 Solutions to the Multitarget ~Ii'acking Problem

We have explored two published algorithms that solve the multitarget tracking problem. The first
is the column-recursivejointprobability data association (CR-JPDA) algorithm, since it has been
the subject of parallel implementation studies [8, 2], Zhou and Bose also present a parallel MYr al-
gorithm, the tree-search joint probability data association filter (ZB-JPDAF) algorithm, that per-
forms much worse than the CR-JPDA in the worst case, but has claims of better performance in
average and highly likely cases [14].

The CR-JPDA is a specific association strategy that uses a weighted average of returns. The
column-recursive algorithm has work complexity of O (N M 22 N), but this is improved by a factor
of N(M+I) over the computation of all permanents of a matrix, the direct method of multitarget
tracking. The algorithm is a dynamic programming strategy, relying on solutions for sub-problems
to compute the answers to larger problems,

3.2 Development and Refinement

Figure 2 shows our development hierarchy of MTT solutions. The development of our multitarget
tracking algorithms begins at the root with a specification of the problem to be solved.

Below the specification are the two
MrrTrJc~l~

Calumn-r~ur~vJ ZB.mOAF

. 7 \
CR.JPDA FletData-Parollel ~:oqMemo-lbla

,'O e~ ea: t ~ \ /o,I ,

Fig. 2, Our development tree of the MTT algorithms.
The grayed instances have yet to be developed.

algorithms under consideration, the CR-
JPDA and the ZB-JPDAR These two im-
plementations are written in Proteus, and
serve the purpose of achieving a baseline
implementation with no initial concern for
parallelism. The two implementations are
concise, requiring about 40 lines of Proteus
each. They were validated against one an-
other prior to further development (details
in [10]).

The first descendent of the CR-
JPDA targets parallelism, it is a nested data-
parallel implementation in Proteus, which
is suitable for automatic translation to C

with vector operations. The initial version of the ZB-JPDAF, written in Proteus, is also suitable
for translation to C with vector operations. At this level, all implementations are architecture-
independent.

Additional studies were performed, as outlined by the design refinements described in section
2. A flat data-parallel version of the CR-JPDA was developed and translated manually into HPF
and Fortran77, where memory decomposition and vectorization could be examined. An SPMD
version of the CR-JPDA was developed, to explore assignment of work to processors, and al-
ternate memory decompositions that improved performance. And finally, a paper study was per-
formed to estimate the performance of a variety of message-passing implementations of the CR-
JPDA [13].

3.3 Results of the Implementation Study

A brief description of the variants of multitarget tracking programs follows. For a complete de-
scription, including code and analysis, see [10].
Nested Data-parallel Implementations. Prototyping the CR-JPDA and the ZB-JPDAF with a
high-level language yielded quick development and concise descriptions on which further imple-
mentations can be based. Not only were the two prototypes validated against one another, but their
work complexity was examined by running both on a variety of input data. As suggested by the
authors, a memoized implementation of the ZB-JPDAF drastically improved the performance. At
this high level, it is possible to recognize that the CR-JPDA is a dynamic programming variation
of the ZB-JPDAF, where the tabular nature of the implementation removes all variance from the
execution time. The CR-JDPA always has the same performance, where the ZB-JPDAF is highly
sensitive due to data-dependent branching factors.

149

Flat Data-parallel Implementations. The next results were from conversion to fiat data-parallel
implementations. The (manual) transformation removes nested structures, such as nested iterators,
nested function calls, and nested summations, turning them into loops populated with assignment
statements. The nested data structures are also made regular (same length at in each dimension),
where space is wasted to provide regularity. These versions, written in HPF and Fortran77, gave
us the opportunity to explore regular data decompositions for parallel execution. Unfortunately,
the work in the CR-JPDA is unevenly distributed over the data, so regular data decompositions
will never balance the work evenly, necessitating further refinement for higher performance.
SPMD Implementations. In an SPMD model, memory decomposition is under program control,
as is work decomposition. Three versions were explored at this level: one similar to the flat data-
parallel version (as a benchmark); an attempt to balance memory requests with a modified block-
cyclic layout; and uneven data decomposition to balance the work. Both of the attempts to improve
performance were successful, with good load-balancing leading to good scaling behavior.
M e s s a g e - p a s s i n g Studies. Our final study looked at the CR-JPDA as it might be implemented
on a message-passing architecture (described fully in [13]). A simple model was developed to
describe the computation and communication costs of different decompositions of the CR-JPDA.
The initial implementation was based on the simple observation that M processors could be used
to compute results with almost no communication. Since this provides only limited parallelism,
several more implementations were studied in an attempt to use more processors (64-2048). It took
substantial algorithm enhancement and complex message coordination to achieve any solutions
that could outperform the initial solution.
Summary of Implementations. The refinement strategy used to develop the MTI" algorithms
cleanly separates development issues. In the prototypes, the primary concern was one of correct-
ness and agreement between the two algorithms. The flat data-parallel implementations explored
regular memory decompositions. The SPMD version focused on load-balancing the work and data
with irregular decompositions. Finally, the message-passing study looked at several variants of
the algorithm in an effort to achieve a scalable program on a given architecture. Developing cor-
rect implementations early and quickly allowed the later developments to focus mainly on perfor-
mance issues.

4 Tools to support parallel software development
The work performed in the case study used a collection of software tools that only minimally sup-
port the task. What follows is a suggested set of tools to support the design methodology described
here.

- P a r a l l e l p r o g r a m m i n g l a n g u a g e f o r p r o t o t y p l n g . The brevity, clarity, and analyzability of
our Proteus implementations along with other implementations (Sisal implementation in [8])
make a strong argument for using high-level languages for prototyping. High-level program-
ming languages help the developer gain intuition and insight about the inner workings of com-
plex algorithms prior to exploring optimizations for high-performance.

- Repository version manager. Developing a tree ofprograms is not a one_way process, rather
there is constant flow of information among program instances up and down the version tree.
It must be possible to develop new versions on the development tree by taking parts of other
versions, or perhaps new parts, and composing them. Currently, no such tool exists, so the
development of the versions in this report were managed manually.

- P o w e r f u l t r a n s f o r m a t i o n tools . The translation and optimization strategies developed by
us, the Scandal group at CMU and the Sisal group at LLNL permit the developer to express
an parallel solution in a concise, clear notation that can be translated to code that runs com-
petitively with hand-written, hard-to-understand, low-level implementations.

- M u l t i - l i n g u a l p r o g r a m s . If prototypes are refined into reliable applications, often perfor-
mance can be increased with multi-lingual capabilities. In one instance, a small part might
be much more efficient if rewritten in a low-level language. Rather than commit the entire
prototype to the lower-level language, support for multi-lingual programs could drastically
reduce development time. As an alternative, consider the integration of a prototype into a
much larger existing system, such as a larger tracking system.

150

- I n f o r m a t i o n g a t h e r i n g tools. The main goal of developing parallel programs is high per-
formance. As such, it is important to know where the program is performing and consuming
resources as expected and where it is not. Performance analysis tools that provide information
about highly optimized programs are key to achieving this goal.

- Portable compilation targets. Architecture-independent compilation targets ensure the porta-
bility and longevity of parallel applications, as is demonstrated by the Nesl project [4], the
Sisal project [5], and the Fortran-M project [7].

5 Conclusions
We have proposed a tree-based refinement strategy for developing data parallet applications. As
development progresses down the tree, algorithms are specialized, perhaps to meet architectural
and performance considerations. Branches represent different algorithms or different specializa-
tions. To accommodate new target architectures, we add new branches; to accommodate specifi-
cation changes, we retrace the refinements steps through the tree. The application is represented
by the tree of refined programs, not one particular refined version in the tree.

We have used the refinement methodology to develop paralIel maltitarget tracking algorithms.
The separation of concerns allowed us first to concentrate on the correctness and high-level perfor-
mance of 2 competing algorithms (the CR-JPDA and the ZB-JPDAF). Further refinement allowed
the explorations of regular and irregular decomposition to achieve a balanced work-load. Addi-
tional models were used to determine the costs of a family of message-passing implementations,
and what was required to achieve scalable performance over a wide range of parallelism.

References
1. B. Alpem, L. Carter, and E. Fe~g. Uniform memory hierarchies. [n Proc. Foundations of Computer

Science, 1990.
2. John K. Antonio. Architectural influences on task scheduling: A case study implementation ofthejpda

algorithm. Technical Report RL-TR-94-200, Rome Laboratory, Nov. 1994.
3. J. Backus. Can programmingbe liberated from the von neumann style? a functional style and its algebra

ofprograms. Comm. of the ACM, 21(8):613-641,1978.
4. Guy E. Blelloch. Programming parallel algorithms. CACM, 39(3), Mar. 1996.
5. David C. Cann. SISAL 1.2: A brief introduction and tutorial. Technical report, Lawrence Livermore

National Laboratory, 1993.
6. D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramonian, and I". yon

Eieken. LogP: Towards a realistic model of parallel computation. In Proc. Symposium on Principles
and Practice of Parallel Programming, 1993.

7. Ian Foster. Designing and building parallelprograms. Addison Wesley, 1995.
8. Richard A. Games, John D. Ramsdell, and Joseph J. Rushanan. Techniques for real-time parallel pro-

cessing: Sensor processing case studies. Technical Report MTR 93B0000186, MITRE, April 1994.
9. Allen Goldberg, Peter Mills, Lars Nyland, Jan Prins, John Reif, and James Riely. Specification and devel-

opment of parallel algorithms with the proteus system. In G. Blelloch, M. Chandy, and S. Jagannathan,
editors, Specification of Parallel Algorithms. American Mathematical Society, 1994.

10. Lars S. Nyland, Jan E Prins, Allen T. Goldberg, Peter H. Mills, John H. Reif, and Robert A. Wagner. A
design methodology for data-parallel applications. Technical report, Univ. of N. Carolina, 1995. Avail-
able as http:llwww.es.unc.edulResearchlaipdesign.

11. Jan Prins and Daniel Palmer. Transforming high-level data-parallel programs into vector operations, tn
Proceedings of Principles and Practice of Parallel Programming, pages 119-128, San Diego, CA, 1993.

12. Leslie G Valiant. A bridging model for parallel computation. CACM, 33(8):103, August 1990.
13. Robert A. Wagner. Task parallel implementation ofthejpda algorithm. Technicalreport, Department of

Computer Science, Duke University, Durham, NC 27708-0129, June 1995-
14. B. Zhou and N. K. Bose. An efficient algorithm for data association in multitarget tracking. IEEE Trans.

on Aerospace and Electronic Systems, 31 (1):458-468, 1995.

