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Abstract. Data-parallelism is a relatively well-understood form of parallel computation, 
yet developing simple applications can involve substantial efforts to express the problem in 
low-level data-parallel notations. We describe a process of software development for data- 
parallel applications starting from high-level specifications, generating repeated refinements 
of designs to match different architectural models and performanee constraints, support- 
ing a development activity with cost-benefit analysis. Primary issues are algorithm choice, 
correctness and efficiency, followed by data decomposition, load balancing and message- 
passing coordination. Development of a data-parallel multitarget tracking application is used 
as a case study, showing the progression from high to low-level refinements. We conclude 
by describing tool support for the process. 

1 Introduction 

Data-parallelism can be generally defined as the concurrent application of an arbitrary function to 
all items in a collection of data, yielding a degree of parallelism that typically scales with problem 
size. This definition permits many computationalty intensive problems to be expressed in a data- 
parallel fashion, but is far more general than the data-parallel constructs found in typical parallel 
programming notations. As a result, the development of a data-parallel application can involve 
substantial effort to recast the problem to meet the limitations of the programming notation and 
target architecture. From a methodological point of view, the problems faced developing data- 
parallel applications are: 

- T a r g e t  arch i t ec ture .  Different target parallel architectures may require substantially differ- 
ent algorithms to achieve good performance, hence the target architecture has an early and 
pervasive effect on application development. 

- Mul t ip l i c i ty  o f  t arge t  arch i t ec tures .  For the same reasons just cited, the frequent require- 
ment that an application must operate on a variety of different architectures (parallel or se- 
quential) substantially complicates the development. 

- C h a n g e s  in  p r o b l e m  spec i f i ca t ion  or  targe t  archi tec ture(s ) .  Changes in problem specifi- 
cation and/or target environment must be accommodated in a systematic fashion, because of 
the large impact that either causes for parallel applications. 

We consider a refinement methodology that generates a tree of data-parallel applications whose 
level of development effort varies with the parallel architecture(s) targeted and the required level 
of performance. The methodology explicates activities whose time and expense can be regulated 
via a cost-benefit analysis. The main features of the methodology are: 

- H i g h - l e v e l  d e s i g n  capture ,  where an executable description of the design can be evaluated 
for its complexity and scalability. 

- A data-parallel  design notation that supports a fully generalized definition ofdata_parallelism 
and eliminates dependence on specific architectures. 

* This work supported by Rome Laboratory under contract #F30602-94-C-0037. 
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- Analysis  and refinement of the design based on fundamental considerations of complexity, 
communication, locality, and target architecture. 

- Prototyping. Disciplined experimentation with the design at various levels of abstraction to 
gain information used to further direct the refinement process. 

Our methodology is based on the spiral model of software development with prototyping, a 
model favored by the software engineering community. During the risk analysis phase of develop- 
ment, development relies on cor~cise high-level, executable notations for data parallel problems, 
such as FP, Sisal, Nesl and Proteus [3, 5, 4, 9]. The next phase is migration and integration (per- 
haps automatic) to achieve an efficient application that can be tested and deployed. As new re- 
quirements or target architectures are introduced, the development repeats the cycle. 

The target architecture will have an influence on many aspects of the design, and here we clas- 
sify parallel architectures into four classes- two shared memory classes and two distributed mem- 
ory classes. The effects of each of the architectural classes is considered with regard to its impact 
on application development. 

- UMA shared memory.  In this class, global memory has uniform memory access (UMA) 
time. This challenging requirement is currently met only by cacheless machines with mem- 
ory bandwidth matched to processor speed. Examples: Cray T90, NEC SX-4, and the Tera 
Computer. 

- N U M A  shared memory.  A non-uniform memory access architecture has hierarchically or- 
ganized memory, often viewed as multiple levels of cache. Examples are SGI Challenge ma- 
chines and the Convex Exemplar. 

- Small-grain distributed memory.  No shared memory abstraction is provided in hardware, 
but fine-grain messagepassing and low-latency synchronization are supported. We've labeled 
this class SIMD, since it describes machines such as the MasPar MP-2, but in also describes 
MIMD machines with fine-grain support, such as the Cray T3D. 

- Large-grain distributed memory.  Message-passing (MP) machines where large messages 
must be used to achieve reasonable performance of processor interconnect. Examples are the 
Intel Paragon and IBM SP/2. 

2 Design Refinement Methodology 
Effective software development involves prototyping at several different design levels to discover 
the characteristics of a problem. Figure I describes the stages along the refinement paths from 
high-level designs to architecture-specific implementations. A description of each of the stages 

follows. 

2.1 Problem Definition and Validation 

At the specification stage (top of figure 1), we seek an initial description of the problem and vali- 
dation of the problem against functional requirements. The focus is on determining the feasibility 
and practicality of obtaining a high-performance algorithmic solution for a succinctly-described 

problem. 
Algorithm selection and parallel complexity analysis.  Solutions to complex problems are of- 
ten expressed as highly algorithmic, mathematically sophisticated descriptions, This makes the 
high-level analysis both necessary, because the algorithms are often computationally intensive, 
and feasible, because of their succinct description. Asymptotic analysis, prototyping, and explo- 
ration of algorithm variants can all be performed quickly at this level. 

One set of measures for selecting parallel algorithms are work and step complexities. The work 
complexity is a measure of all operations performed, while the step complexity measures the num- 
ber of parallel steps (minimum number of sequential steps). While these measures are not com- 
pletely realistic, we seek to separate concerns and formulate a tractable, staged analysis method- 
ology. Finding a work-efficient algorithms is the goal, even though they may lead to irregular so- 
lutions with data-dependent behavior. For large problems on fixed size machines, work-efficient 

algorithms give the best performance. 
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A n a l y s i s  for parallel architectures. The analysis techniques at this stage are based on medium- 
level parallel computing cost models such as LogP [6], BSP [12], and HMM [1] that can be used 
to estimate communication and memory performance. The model parameters of the algorithm are 
obtained analytically (when possible, or by instrumenting a prototype of the algorithm). One of 
the 4 architectural classes must be supplied to complete the analysis. 

2.2  D e s i g n  R e f i n e m e n t  

The refinement of programs, shown 
in figure 1 between the dashed lines, o~,~ 
occurs in a high-level design notation. ~,,, ,,,~, ,~,  ,~,  vm, ,,,,,,,~., 
We've chosen a data-parallel subset of 
Proteus [9] as our design notation. An to,.~ ~ ~,~,,^ 
initial implementation of specification .~ J t I- t t 
provides a starting point that provides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
a f~176 f~ c~ analysis' " n ~ ! ~ ,  ~ . ,  [ 2 , ,  
information-conveyance and measure- 
ment purposes. At a high level, pro- 
gramming for data-parallel execution " " ~ ~ ' : - ' ~ ' ~  1 
is only slightly more complicated than . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ~ . . . . . . .  
programming for serial execution in a ~ 
language where collections of data are 
fully supported. Fig. 1. Refinement and translation steps in the development 

The different refinement paths are: of data-parallel applications 

- Nested data-parallel design refined to flat data-parallel design by converting nested iterators 
and nested sequences to loops with integer iterators and rectangular arrays. Flat data parallel 
programs are suitably expressed using languages such as HPE Fortran90, C* and MPL. 

- Nested (or flat) data-parallel refined to SPMD. SPMD programs have multiple threads of con- 
trol using a single shared-memory, where decomposition is under program control, varying 
from simple memory-decomposition models to complex, adaptive, load-balancing methods. 

- SPMD refined to SPMD/C, This model adds explicit communications to an SPMD program, 
eliminating the shared-memory constructs. 

- Refining to an SIMD Model. SIMD machines can be viewed as fine-grain message-passing 
machines, or as vector architectures. Refinement to an SIMD model can begin with either the 
nested or flat data-paralM versions, or it can be derived as similar to other message-passing 
versions. 

2.3 T r a n s l a t i o n  to  T a r g e t  Programming Models 

Translation of high-level data-parallel designs can target a variety languages as shown by the ver- 
tical arrows in figure 1. Different designs are matched to different languages and different parallel 
architectures. Translation from the design notation may be manual or automatic; the automatic 
translation of nested data-parallel programs to vector models is an active area of research [ 11, 4]. 

3 Case Studies: Multitarget Tracking 
In this section, we rum our attention to an example, demonstrating the methodology and the re- 
liance on particular tools used for the process. The problem chosen to solve here is that of multi- 
target tracking, and through the development process, we will develop a tree of refined algorithms 
and show the need for additional automated support. 

Multitarget tracking (MTT) can be described simply: a set of N targets are being tracked when 
new location data arrives as a set of M positions. Prediction models compute the expectedlocations 
of the tracked targets, but the new data may not coincide with the estimated positions. The problem 
is to find the joint probability that a target t, 1 < t < N, is represented by a measurement j,  1 < j  < 
M. Any algorithm that computes this result fal~s i ~ h e  category of multitarget tracking algofi'tl~m~ 
that we are studying. 



148 

3.1 Solutions to the Multitarget ~Ii'acking Problem 

We have explored two published algorithms that solve the multitarget tracking problem. The first 
is the column-recursivejointprobability data association (CR-JPDA) algorithm, since it has been 
the subject of parallel implementation studies [8, 2], Zhou and Bose also present a parallel MYr al- 
gorithm, the tree-search joint probability data association filter (ZB-JPDAF) algorithm, that per- 
forms much worse than the CR-JPDA in the worst case, but has claims of better performance in 
average and highly likely cases [14]. 

The CR-JPDA is a specific association strategy that uses a weighted average of returns. The 
column-recursive algorithm has work complexity of O ( N M 22 N), but this is improved by a factor 
of N(M+I) over the computation of all permanents of a matrix, the direct method of multitarget 
tracking. The algorithm is a dynamic programming strategy, relying on solutions for sub-problems 
to compute the answers to larger problems, 

3.2 Development and Refinement 

Figure 2 shows our development hierarchy of MTT solutions. The development of our multitarget 
tracking algorithms begins at the root with a specification of the problem to be solved. 

Below the specification are the two 
MrrTrJc~l~ 

Calumn-r~ur~vJ ZB.mOAF 

. . . . . . .  . 7 \  
CR.JPDA FletData-Parollel ~:oqMemo-lbla 

,'O e~ ea: t ~ \ /o,I , 

Fig. 2, Our development tree of the MTT algorithms. 
The grayed instances have yet to be developed. 

algorithms under consideration, the CR- 
JPDA and the ZB-JPDAR These two im- 
plementations are written in Proteus, and 
serve the purpose of achieving a baseline 
implementation with no initial concern for 
parallelism. The two implementations are 
concise, requiring about 40 lines of Proteus 
each. They were validated against one an- 
other prior to further development (details 
in [10]). 

The first descendent of the CR- 
JPDA targets parallelism, it is a nested data- 
parallel implementation in Proteus, which 
is suitable for automatic translation to C 

with vector operations. The initial version of the ZB-JPDAF, written in Proteus, is also suitable 
for translation to C with vector operations. At this level, all implementations are architecture- 
independent. 

Additional studies were performed, as outlined by the design refinements described in section 
2. A flat data-parallel version of the CR-JPDA was developed and translated manually into HPF 
and Fortran77, where memory decomposition and vectorization could be examined. An SPMD 
version of the CR-JPDA was developed, to explore assignment of work to processors, and al- 
ternate memory decompositions that improved performance. And finally, a paper study was per- 
formed to estimate the performance of a variety of message-passing implementations of the CR- 
JPDA [13]. 

3.3 Results of the Implementation Study 

A brief description of the variants of multitarget tracking programs follows. For a complete de- 
scription, including code and analysis, see [ 10]. 
Nested Data-parallel Implementations. Prototyping the CR-JPDA and the ZB-JPDAF with a 
high-level language yielded quick development and concise descriptions on which further imple- 
mentations can be based. Not only were the two prototypes validated against one another, but their 
work complexity was examined by running both on a variety of input data. As suggested by the 
authors, a memoized implementation of the ZB-JPDAF drastically improved the performance. At 
this high level, it is possible to recognize that the CR-JPDA is a dynamic programming variation 
of the ZB-JPDAF, where the tabular nature of the implementation removes all variance from the 
execution time. The CR-JDPA always has the same performance, where the ZB-JPDAF is highly 
sensitive due to data-dependent branching factors. 
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Flat  Data-parallel Implementations. The next results were from conversion to fiat data-parallel 
implementations. The (manual) transformation removes nested structures, such as nested iterators, 
nested function calls, and nested summations, turning them into loops populated with assignment 
statements. The nested data structures are also made regular (same length at in each dimension), 
where space is wasted to provide regularity. These versions, written in HPF and Fortran77, gave 
us the opportunity to explore regular data decompositions for parallel execution. Unfortunately, 
the work in the CR-JPDA is unevenly distributed over the data, so regular data decompositions 
will never balance the work evenly, necessitating further refinement for higher performance. 
SPMD Implementations. In an SPMD model, memory decomposition is under program control, 
as is work decomposition. Three versions were explored at this level: one similar to the flat data- 
parallel version (as a benchmark); an attempt to balance memory requests with a modified block- 
cyclic layout; and uneven data decomposition to balance the work. Both of the attempts to improve 
performance were successful, with good load-balancing leading to good scaling behavior. 
M e s s a g e - p a s s i n g  Studies. Our final study looked at the CR-JPDA as it might be implemented 
on a message-passing architecture (described fully in [13]). A simple model was developed to 
describe the computation and communication costs of different decompositions of the CR-JPDA. 
The initial implementation was based on the simple observation that M processors could be used 
to compute results with almost no communication. Since this provides only limited parallelism, 
several more implementations were studied in an attempt to use more processors (64-2048). It took 
substantial algorithm enhancement and complex message coordination to achieve any solutions 
that could outperform the initial solution. 
Summary of Implementations. The refinement strategy used to develop the MTI" algorithms 
cleanly separates development issues. In the prototypes, the primary concern was one of correct- 
ness and agreement between the two algorithms. The flat data-parallel implementations explored 
regular memory decompositions. The SPMD version focused on load-balancing the work and data 
with irregular decompositions. Finally, the message-passing study looked at several variants of 
the algorithm in an effort to achieve a scalable program on a given architecture. Developing cor- 
rect implementations early and quickly allowed the later developments to focus mainly on perfor- 
mance issues. 

4 Tools to support parallel software development 
The work performed in the case study used a collection of software tools that only minimally sup- 
port the task. What follows is a suggested set of tools to support the design methodology described 
here. 

- P a r a l l e l  p r o g r a m m i n g  l a n g u a g e  f o r  p r o t o t y p l n g .  The brevity, clarity, and analyzability of 
our Proteus implementations along with other implementations (Sisal implementation in [8]) 
make a strong argument for using high-level languages for prototyping. High-level program- 
ming languages help the developer gain intuition and insight about the inner workings of com- 
plex algorithms prior to exploring optimizations for high-performance. 

- Repository version manager. Developing a tree ofprograms is not a one_way process, rather 
there is constant flow of information among program instances up and down the version tree. 
It must be possible to develop new versions on the development tree by taking parts of other 
versions, or perhaps new parts, and composing them. Currently, no such tool exists, so the 
development of the versions in this report were managed manually. 

- P o w e r f u l  t r a n s f o r m a t i o n  tools .  The translation and optimization strategies developed by 
us, the Scandal group at CMU and the Sisal group at LLNL permit the developer to express 
an parallel solution in a concise, clear notation that can be translated to code that runs com- 
petitively with hand-written, hard-to-understand, low-level implementations. 

- M u l t i - l i n g u a l  p r o g r a m s .  If prototypes are refined into reliable applications, often perfor- 
mance can be increased with multi-lingual capabilities. In one instance, a small part might 
be much more efficient if rewritten in a low-level language. Rather than commit the entire 
prototype to the lower-level language, support for multi-lingual programs could drastically 
reduce development time. As an alternative, consider the integration of a prototype into a 
much larger existing system, such as a larger tracking system. 
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- I n f o r m a t i o n  g a t h e r i n g  tools. The main goal of developing parallel programs is high per- 
formance. As such, it is important to know where the program is performing and consuming 
resources as expected and where it is not. Performance analysis tools that provide information 
about highly optimized programs are key to achieving this goal. 

- Portable compilation targets. Architecture-independent compilation targets ensure the porta- 
bility and longevity of parallel applications, as is demonstrated by the Nesl project [4], the 
Sisal project [5], and the Fortran-M project [7]. 

5 Conclusions 
We have proposed a tree-based refinement strategy for developing data parallet applications. As 
development progresses down the tree, algorithms are specialized, perhaps to meet architectural 
and performance considerations. Branches represent different algorithms or different specializa- 
tions. To accommodate new target architectures, we add new branches; to accommodate specifi- 
cation changes, we retrace the refinements steps through the tree. The application is represented 
by the tree of refined programs, not one particular refined version in the tree. 

We have used the refinement methodology to develop paralIel maltitarget tracking algorithms. 
The separation of concerns allowed us first to concentrate on the correctness and high-level perfor- 
mance of 2 competing algorithms (the CR-JPDA and the ZB-JPDAF). Further refinement allowed 
the explorations of regular and irregular decomposition to achieve a balanced work-load. Addi- 
tional models were used to determine the costs of a family of message-passing implementations, 
and what was required to achieve scalable performance over a wide range of parallelism. 

References 
1. B. Alpem, L. Carter, and E. Fe~g. Uniform memory hierarchies. [n Proc. Foundations of Computer 

Science, 1990. 
2. John K. Antonio. Architectural influences on task scheduling: A case study implementation ofthejpda 

algorithm. Technical Report RL-TR-94-200, Rome Laboratory, Nov. 1994. 
3. J. Backus. Can programmingbe liberated from the von neumann style? a functional style and its algebra 

ofprograms. Comm. of the ACM, 21(8):613-641,1978. 
4. Guy E. Blelloch. Programming parallel algorithms. CACM, 39(3), Mar. 1996. 
5. David C. Cann. SISAL 1.2: A brief introduction and tutorial. Technical report, Lawrence Livermore 

National Laboratory, 1993. 
6. D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramonian, and I". yon 

Eieken. LogP: Towards a realistic model of parallel computation. In Proc. Symposium on Principles 
and Practice of Parallel Programming, 1993. 

7. Ian Foster. Designing and building parallelprograms. Addison Wesley, 1995. 
8. Richard A. Games, John D. Ramsdell, and Joseph J. Rushanan. Techniques for real-time parallel pro- 

cessing: Sensor processing case studies. Technical Report MTR 93B0000186, MITRE, April 1994. 
9. Allen Goldberg, Peter Mills, Lars Nyland, Jan Prins, John Reif, and James Riely. Specification and devel- 

opment of parallel algorithms with the proteus system. In G. Blelloch, M. Chandy, and S. Jagannathan, 
editors, Specification of Parallel Algorithms. American Mathematical Society, 1994. 

10. Lars S. Nyland, Jan E Prins, Allen T. Goldberg, Peter H. Mills, John H. Reif, and Robert A. Wagner. A 
design methodology for data-parallel applications. Technical report, Univ. of N. Carolina, 1995. Avail- 
able as http:llwww.es.unc.edulResearchlaipdesign. 

11. Jan Prins and Daniel Palmer. Transforming high-level data-parallel programs into vector operations, tn 
Proceedings of Principles and Practice of Parallel Programming, pages 119-128, San Diego, CA, 1993. 

12. Leslie G Valiant. A bridging model for parallel computation. CACM, 33(8):103, August 1990. 
13. Robert A. Wagner. Task parallel implementation ofthejpda algorithm. Technicalreport, Department of 

Computer Science, Duke University, Durham, NC 27708-0129, June 1995- 
14. B. Zhou and N. K. Bose. An efficient algorithm for data association in multitarget tracking. IEEE Trans. 

on Aerospace and Electronic Systems, 31 (1):458-468, 1995. 


