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Abstract .  A digital pattern can be represented by a stick-like subset, 
centred within the pattern. This subset can be obtained by thinning or 
skeletonizing the pattern. Although thinning and skeletonization are terms 
often used interchangeably in the literature, they are different processes and 
identify slightly different pattern subsets. Some of the numerous thinning 
and skeletonization algorithms available in the literature are briefly 
discussed. 

1 I n t r o d u c t i o n  

Picture processing necessarily involves the design of methods for both representing and 
manipulating images inside an electronic device. In particular, representation is a 
crucial task because the ability to efficiently process pictorial data greatly depends upon 
the suitability of tile encoding teclmique used to represent the input hnage. Depending 
on the specific problem, different techniques can be adopted for pictorial data 
representation. When data compression is mainly motivated by the need of reducing 
memory occupation, the coding technique should be information preserving, in the 
sense that fl~e input data should be perfectly reconstructed starting from the adopted 
representation scheme. When data compression is requh'ed in the li'mnework of feature 
extraction applications, tile ctxling technique should reduce memory occupation in such 
a way that enough informatiot~ is preserved to automatically distinguish patterns 
belonging to different classes. In this case, the coding technique produces an 
approxhnate repl'esentation. 

Thinning is useful for both data reduction mid pattern representation. Generally, it 
is performed by iteratively removing suitable contour pixels from the pattern, while 
retaining the topological properties of the original image. The terms thinning and 
skeletonization have often been used interchangeably in the literature, while a 
distinction is here made between the two. Thinning is a process that applied to 
elongated patterns characterised by nearly constant thickness (e.g., printed or 
handwritten characters, line drawings, or some biological specimens) leads to a set of 
lines centred within the pattern and retaining the relevant structural and shape 
information of the pattern. This set of lines is called here the medial line (ML, for 
short). Skeletonization is suited to patterns that me not elongated or have variable 
thickness, and originates a stick-like representation (called the skeleton) including ,also 
branches originating from contour convexities. 

2. P r e l i m i n a r y  N o t i o n s  

Let B and W be a pattern and its complement in a binary hnage I, digitised on the 
square grid. The sets B and W are also refened to as the sets of the black pixels and the 
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white pixels. The 8-metric and the 4-metric are used to define connectedness on B and 
W, respectively. Without loss of generality, we suppose that B is constituted by a 
single component; no assumption is done on the number of components constituting 
W. The frmne of I is the set of ,all pixels in the first or last row of L or the first or last 
column of L We assume that all the pixels of the lr,'une are white. 

For every black pixel p, let N(p) ={nk I l<k<8}, where nl  .... n8 are the pixels 
successively encountered while going clockwise around p starting from the pixel to the 
left ofp .  The nk are also called the neighbours ofp.  

The contour C of B includes every black pixel p for which at least one nk, k odd, is 
white. Accordingly, C is an 8-connected curve, when B is simply connected, while is 
union of 8-connected curves, when B is multiply connected. 

A 3x3 topology preserving removal operation can be designed by taking into 
account the notion of simple point [1], or by using the crossing number [2] or the 
connectivity number [3]. Alternatively, since the number of configurations of black 
and white pixels in a 3x3 neighbourhood is limited to 256, one can exhaustively 
identify ~dl the templates ~dlowing sale removal of the cenmd pixel. 

The distance trm~sform DT of B is a multivalued replica of the pattern, where each 
pixel is labelled with its distmlce fiom W. 

In the DT, the label of a pixel measures the radius of the disc that can be cenU'ed on 
the pixel m~d fits the shape of the pattern. The shape of the disc depends on the dist,'mce 
function used to compute the DT. The discs me dimnond shaped when using the city- 
block distance dl,2, and squme-shaped with the chessboard distance dl,1. The non 
circul,ar shape of these discs is due to the fact that both the city-block and the 
chessbom'd distance functions provide a quite rough approximation to the Euclidean 
distance. To get a closer approximatiou, one should suitably weigh the unit moves 
from a pixel p to any of its neighbours, so as to take into account that 
horizontal/vertical moves and diagonal moves have different Euclidean length. The 
resulting distance function is c~dled a weighted distmlce function, qk) avoid resorting to 
real numbers, suitable integer weights m'e used. A thorough investigation of the 
weighted distance functions and weight selection can be found in [4-5]. A good 
approximation is obt~dned by using the weights 3 mid 4, for the horizontal/vertical ,and 
diagonal moves, respectively. The corresponding distance function is denoted by d3,4. 
If this function is used to compute the DT, the disc associated with any pixel is 
octagon-shaped. An even better approximation of the Euclidean distance can be 
obtained by enlm-ging the set of neighbours of p, so as to include also the pixels that 
could be reached by the knight's move (in the g~une of chess). In this case, a third 
weight has to be introduced. The weights 5, 7 and 11 can satisIactorily be employed 
for the horizontal/vertical, diagonal and knight moves, respectively and the 
corresIxmding dist~mce is denoted by d5,7,11. 

A pixel is a centre of maximal disc, if the associated disc is maximal, i.e. is not 
included by any other single disc of B. Centres of maxitmd disc will be denoted by 
crud's in the following. The pattern can be recovered by the union of its maximal 
discs; the union of the maxhnal discs can be conveniently obtained by applying the 
reverse dist,'mce U'~msfonnation to the cmd's. 

3 T h i n n i n g  

Ideally, thinning is an isotropic compression process. Since compression takes place 
from all directions at the same rate, its implementation by means of a p,'uallel 
~dgorithm is a natured choice. Indeed, both pm'~dlel ~uld sequential algorithms have been 
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developed. In parallel algorithms, e.g. [6-13], the processing in an iteration is a 
function of the pattern resulted from tile previous iteration only. In sequential 
algorithms, e.g. [14-17], tile pixels are processed one after another and are updated in 
terms both of the pattern resulting from the previous iteration, and of the 
modifications produced so far in the cun'ent iteration. Thus, the medial line ML 
obtained from a sequential algorithm depends on the order in which pixels are 
processed. Sometimes, spurious branches appear in a particular order of processing, but 
do not appear in a different order. In the following we focus on parallel thinning 
algorithms, because potentially the resulting medial lines have always or never 
branches originating l~om equally shaped, differently oriented, pattern protrusions. 

It is known that a fully parallel thinning cannot guarantee global topology 
preservation, if 3• operations are used [18]. Pattern regions that are initially an even 
number of pixels in width are first thimled to two pixels wide sets and then disappear 
completely, respectively causing excessive shortening of the ML branches and 
disconnections. In fact, one side of a two pixels wide set is removed on tile assumption 
that connectedness is provided by the presence of the other side. However, since the 
operations take place in parallel, the other side is removed on a shnilar assumption. 

Some authors (see, for inst,'mce, [9]) have overcome this trouble by ex,'unining a 
larger neighbourhood. A more commonly followed alternative is to perform thinning 
by dividing each iteration into a suitable sequence of subiterations, during each of 
which thinning is performed from given directions (e.g., [1,8]). Selection of the 
thinning operation should be anyway accomplished by taking into account the adopted 
sequence. In fact, tile sequence of subitemtions generally influences the isotropy of the 
transformation [15], and may bias tile medial line structure. Moreover, it affects also 
the type of layer, whose pixels ,are tile candidates lbr removal in an iteration. 

The algorithms considered in this section represent various ways in which 
compression takes place depending on the adopted sequence of subiterations. Each 
scheme corresponds to a different type of propagation of tile background over the 
pattern. Some algorithms remove a layer that is at most an 8-connected curve per 
iteration. Others remove at most a 4-connected layer. Yet, others remove a subset of an 
8- or of a 4-c~mnected layer, depending on pattern orientation. 

In the following, thimfing algorithms are analysed in terms of the size of the 
neighbourhood, the number of subiterations, the type of layers removed per iteration, 
and the quality of the resulting ML. All tile algorithms described below adopt the 8- 
connectedness for B and tile ML. 

In [6] Stef,-melli and Rosenfeld proposed two algorithms for parallel thinning based 
on 3x3 operations. In the first algorithm, every iteration is split into four 
subiterations, respectively removing the South, North, West ,and East contour pixels, 
and two templates are used in each subiteration. Removal of a contour pixel during ,any 
subiteration may expose to the background pixels which were not origimdly contour 
pixels. These extra pixels are checked against removal ,and are possibly removed in a 
subsequent subiteration. The effect is that a 4-connected layer is removed in every 
iteration. In many cases, this algorithm gives an ML with more pixels than is 
necessary to maintain connecledness. The second ~dgorithm in [6] is derived from the 
first algorithm. It has two subiterations, obtained by combining the first and fourth 
subiterations to remove the South or East contour pixels, and tile second and third 
subiterations to remove the North or West contour pixels. In any iteration, a 4- 
connected layer is removed from tile Southeast and Northwest/'acing edges while an 8- 
connected layer is removed from the Southwest and Northeast t'acing edges. As a 
consequence, thinning is twice as fast in the Southeast ,and Northwest directions than 
in the Southwest and Northeast directions. This non isotropic compression causes an 
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unwanted bias in tile resulting medial lille. A further drawback of this algorithm is 
complete vanishing or disconnections may occur during the process. See Figure la. 
The thinning algorithm proposed by Zhang and Suen [7] is a 2-subiteration algorithm 
based on 3x3 operations. South or East contour pixels are removed in the first 
subiteration, North or West contom" pixels in the second subiteration. Removal is done 
safely, as the notion of crossing number and the c,'u'dinality of the set of the black 8- 
neighbours ,are used. A drawback is that the resulting medial line has often more pixels 
than necessary to maintain 8-connectedness. Asymmetric compression, which 
generally affects 2-subiteration thinning algorithms is prevented by checking also 
pixels that ,'u'e both North and West contour pixels in the first subiteration, and pixels 
that are both South and East contour pixels in the second subiteration. The result is 
that a 4-connected layer is removed per iteration. Complete vanishing is likely to occur 
in critical patterns and, since the end point detection criterion is not adequate for a 
correct mapping of the pattern protrusions into ML branches, excessive branch 
shortening is likely to happen. See Figure lb. In [8], two algorithms based on 3x3 
operations ,are proposed. We refer here to the first algorithm, which employs two 
subiterations. In the first subiteration, East and some of the North contour pixels are 
checked, while in the second subiteration, West and some of the South contour pixels 
are checked. In this way, differently from many algorithms with two or four 
subiterations, an 8-connected layer is removed at each iteration, instead of a 4- 
connected layer. A side effect is a reduction in speed because there ,are less pixels in ,'m 
8-connected layer than in a 4-connected layer and hence less pixels are removed per 
iteration. This algorithm always produces a one pixel thin ML, with the possible 
exception of the centred pixel in a T-junction. See Figure lc. A one-pass algorithm is 
reported in [9]. As a counterp:u't to the fact that there are no subiterations, a 4x4 
neighbourhood has to be used to detect and s~d'cly thin down two pixel wide regions. If 
a vertical two pixel wide feature is found, the East side is retained imd the West side is 
removed. If a horizont~d two pixel wide feature is found, the North side is retained ,and 
the South side is removed. This algorithm removes less pixels than there are in an 8- 
connected layer, per iteration. In fact, pixels placed in some locally concave 
configurations are not removed, even though their removal would not disconnect the 
pattern. They may be removed in a subsequent iteration if the neighbourhood 
configurations have suitably changed by then. The resulting medial line may contain 
more pixels than necesslu'y to maintain connectedness. Moreover, there are certain 
configurations which cannot be thinned down completely. See Figure ld. Finally, in 
[10] a 4-subiteration plu'idlel thinning algoritlun has been proposed, which is based on 
the use of 3x3 templates. It compresses the pattern in an octagonal manner, by 
removing a pith" of successive layers (a 4-connected layer and an 8-connected layer) 
during each iteration. This aim is reached by compressing the pattern, at each 
subiteration, from a pair of directions forming a 90 degree angle. The use of the 
octagonal meU'ic enables the placemem of the medial line in the region of the pattern, 
which can be seen as central in a quasi-Euclidean sense, and renders the ML less 
sensitive to pattern orientation. Another feature of the algorithm is a c,'u'efully chosen 
end point detection process, which allows one to have consistent results with respect 
to regular patterns such its disks and squares at vlu'ious orientations. Although the 
compression process is isou'opic, thinning is not completely isou'opic, because of the 
articulation of any iteration into subiterations. The effect of the sequentiality, 
introduced in the plu'allel process, could be that some branch of the ML is shorter than 
the others, as the end points are not detected in all the homologous positions of the 
siune contour configuration, when this is differently oriented. This degrades the 
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perform,'mce of the algorithm, but is mayhow preferable to the complete absence of one 
or more br,'mches. See Figure le. 
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Figure 1. Critical patterns for thinning. Perlormance of five p,'u'allel 
algorithms. See text. 
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4 Skeletonization 

Skeletonization of a digital pattern is a process leading to the extraction of a piecewise 
curvilinear subset, the skeleton, which is spatially placed along the medial region of 
the pattern. A skeleton is a stick-like representation of the pattern and, depending on 
the problem domain, is expected to account for different shape properties, such as 
symmetry, elongation, width, and contour curvature. Differently from thinning, 
skeletonization is generally a reversible transfonnatiou. 

Most of the research on skeletonization has been influenced, at least implicitly, by 
the work of Blum dealing with a geometry based on the primitive notions of  a 
symmetric point and a growth process [19-21]. In a continuous pattern, a point p is 
called symmetric if at le,'tst two points of the boundary exist, such that their distances 
from p me equal to the dist,ance from p to the bound,'uy. For every symmetric point, 
the associated maximal disc is the largest disc, obtained by growth of the symmetric 
point, which is contained in the pattern. The set of sylmnetric points, each labelled 
with the radius of the ~ssociated maximal disc, constitutes a skeleton of the pattern. 
The pattern can be exactly reconstructed as the union of the maximal discs, the 
envelope of the discs being die pattern bound~u'y. 

Skeletonization c~m ~dso be understood by referring to the propagation of fire fronts 
[22]. Consider a fiat uniform field of dry gr~tss embedded in an environment of wet 
grass, ~md imagine that, at a certain instant of time, a fire is lit simultaneously at all 
points on the boundary of the field. As time passes, the fire front propagates towards 
the inside with uniform velocity and disappears wherever it intersects with itself. This 
occurs at those internal points of the pattern, called extinction points, which are 
reached by the fire at d~e s~une inst~mt of time from different boundary points. Due to 
the constant velocity of propagation of the fire front, any extinction point is a 
symmetric point as defined above. The extinction points h~l'm a connected piecewise 
curvilinear set, centred within the pattern. If each extinction point is labelled with the 
value of the inst~mt of time at which it is reached by the fire front, the set of labelled 
extinction points constitutes a skeleton of the pattern. 

In the digital case, unit velocity is usually ~Lssumed for the fire front. After one unit 
of time, ~dl the pixels at unit dist~mce fi'om the fire front ~u'e reached. The label of any 
pixel is then equal to the distance of the pixel from the complement of the pattern. The 
set of pixels where the fire extinguishes includes ~dl the centres of the maximal discs, 
i.e., the discs not properly included in any other disc, and the union of the maximal 
discs coincides with the pattern. 

Although the su'ucture of the skeleton S depends on the algorithm employed for its 
computation, S always has one or more of the following properties: 1) S has the same 
number of components as B, and each component of S has the s~une number of holes 
as the con'esponding component of B. 2) S is centred within B. 3) S is a unit-wide 
union of simple arcs and curves. 4) The pixels of S are labelled with their distances 
from W. 5) S includes the centres of the maximal discs of B. 6) S has arcs that 
correspond to regions of B bounded by contour subsets with sufficiently high 
curvatures. 

Skeletonization can be achieved by repeatedly applying a contour peeling process, 
or by using a distance transform based approach. The latter method is more directly 
related to the Blum's notions of a sy~mnetric point and a growth process. In fact, in the 
dist~mce tr~msform the pixels are labelled with their distance from the complement of 
the pattern, computed according to a given distance function. Thus, the pixels 
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symmetrically placed within a digital pattern, as well as their associated radii, can be 
easily found in the DT. 

The pattern can be almost completely recovered by applying to its skeleton the 
reverse distance transformation. Complete recovery is not compatible with the 
requirement that the skeleton be one pixel wide. In fact, this requirement forces 
removal of a number of centres of maximal discs from the set of the skeletal pixels. 

Roughly speaking, a distance-driven skeletonization algorithm includes three steps: 
- distance transform computation 
- identification of a nearly thin set of file skeletal pixels (centres of the maximal 

discs - necessary to guarantee skeletonization reversibility-, saddle pixels and linking 
pixels - necess,'uy to guarantee topology preservation) 

- reduction of the set of the skeletal pixels to unit width 
Detection of the centres of tile maximal discs in tile DT can be done by suitably 

comparing the label of any pixel (i.e., tile radius of the associated disc) with the labels 
of its neighbour~ (i.e., tile radii of the associated discs). Generally, the set of the 
centres of tile maximal discs is not connected, even for a connected pattern, and is more 
than one pixel wide, wherever the thickness of tile pattern is given by an even number 
of pixels. To gain skeleton connectedness, further skeletal pixels (the saddle pixels, and 
the linking pixels) have to be found on tile distance transform. Detection of the saddle 
pixels can be done by analysing the neighbourhood of any pixel, so as to count the 
number of components of neighbours with smaller label and with larger label. 
Detection of tile linking pixels can be done by growing paths ,along tile direction of the 
steepest gradient in the distance transform, starting from any already found centre of 
maximal disc or saddle pixel. Finally, the set of tile skeletal pixels cau be reduced to 
the unit wide skeleton, by employing topology preserving removal operations, 
designed in such a way to prevent excessive shortening of the skeleton branches. 

A number of algorithms can be found in the literature, each of which tailored to a 
specific distance function [23-27]. Generally, although all these algorithms follow 
more or less the above scheme, ad hoc rules ,are often used (for instance to identify the 
centres of the maximal discs, or to obtain skeleton connectedness through the linking 
pixels) which apply only to tile specific distance case. A few algorithms can be applied 
to more than one distance transform [28,29]. Most of the available skeletonization 
algorithms do not include an important step, devoted to skeleton pruning and 
beautifying. This step should not be simply regarded as an optional postprocessing for 
a skeletonization algorithm. In fact, pruning is useful to get rid of superfluous noisy 
branches and is indispensable to make the skeleton stable under pattern rotation, by 
eliminating those branches whose presence in the skeleton depends on pattern 
orientation. In turn, beautifying can improve skeleton aesthetics and favour its use for 
shape analysis. In this paper we briefly illustrate tile algorithm introduced in [29]. A 
peculiarity of this algorithm is the inclusion of the pruning and beautifying step. The 
algorithm equally runs whichever path based distance is used. Indeed, it refers to four 
possible distances only (the city-block distance dl,2, the chessboard distance dl,  1 and 
the weighted distances d3, 4 and d5,7,11), but could apply also in case of other 
distances, if suitably slightly modified. These four distances have been chosen for the 
following reasons: the city block and chessboard distance functions are the most 
conunonly used and, due to the shape of the disc associated to any skeletal pixel by 
them, are particularly suited to tile square tessellation of tile discrete plane; the d3, 4 and 
the d5,7,11 weighted distances represent very good approximations to the Euclidean 
distance by using respectively only two ,and three weights. 
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dl,2 

dl,1 

d3,4 

d5,7,11 

Figure 2. Skeletons computed on different distance trm~slbnns. See text. 

The centres of the maximal discs m'e identified by resorting to the use of look-up 
tables, while the saddle pixels a-e delecled by means of 3x3 local operations. The 
linking pixels me idenlified by growing paths through the ascending gradient in the 
DT. Path growing is tempted each time a cenu'e of maximal disc or a saddle pixel is 
identified and mmked. The neighbour having label l~u'ger them that of the marked pixel 
and maximising the gradient is mmked as the first linking pixel in the path. Its 
neighbours me then inspected to identify the one maximising the gradient. Path 
growing terminates when the maximal gradient is no longer positive. An unmarking 
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process is then accomplished on the DT, so as to reduce to unit width the set of the 
skeletal pixels; to this purpose, st,'mdard topology preserving removal operations are 
employed to remove from any deletable pixel the marker, previously ascribed to 
distinguish it from the non-skeletal pixels of the DT. Since the set of the skeletal 
pixels can include internal pixels, to favour skeleton centrality within the pattern, 
unmarking is accomplished within two inspections of the set of the skeletal pixels. 
The pixels which are 4-internal in the set of the skeletal pixels are preliminarily 
identified. They ,are prevented from unmarking during the first inspection. All the 
marked pixels undergo the unmarking process, during the second inspection. Finally, 
an unmarking-,'md-shil'ting process is done to prune the skeleton and to improve its 
aesthetics. During this step the marker is removed from a skeletal pixel or is shifted to 
some of its non m,'uked neighbours. The main effect of beautifying consists in the 
reduction of the zigzags due to noise on the contour of B and/or to the process done to 
obtain a unit wide skeleton. Pruning is accomplished to simplify the skeleton structure 
by deleting peripheral branches that do not correspond to pattern protrusions, 
significant in the problem domain. To keep under control the loss of information 
caused by branch deletion, a criterion based on the relevance of the protrusion 
associated with the skeleton branch is used. A branch can be safely pruned if a 
negligible difference exists between the two sets recovered by applying the reverse 
distance transformation to the skeleton and to the pruned skeleton, respectively. A 
smoothed version of the input pattern is recovered starting from the pruned skeleton. 

Different distance transforms originate different skeletons for the s,'une pattern. As 
an example, refer to Figure 2 where the skeletons computed according to dl,2, dl,1, 
d3,4 and d5,7,11 ,are shown from top to bottom. For each set, the ne,'u:ly thin set of the 
skelet,'d pixels (left) and the unit wide skeleton (centre) are shown superimposed on the 
original pattern, while the pruned skeleton (right) is shown superimposed on the 
pattern recovered by the pruned skeleton itself. 
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