
C A D P
A Protoco l Val idat ion and Verif ication Toolbox*

Jean-Claude Fernandez, Hubert Garavel, Main Kerbrat,
Laurent Mounier, Radu Mateescu, and Mihaela Sighireanu

Inria/V6rimag, Miniparc Zirst, rue Lavoisier, 38330 Montbonnot St-Martin, France

1 Introduction

CADP(C/ESAR/ALDEBARAN Development Package) is a toolbox for protocol en-
gineering. It offers a wide range of functionalities, ranging from interactive sim-
ulation to the most recent formal verification techniques. A first presentation
of CADP can be found in [FGM+92]. Work on CADP started in 1985 and the
first version of the toolbox (version A) was released in 1990. The latest official
version (version Y) was released in May 1994." An improved version (version Z)
is in preparation, for which beta-releases are available.

The CADP toolbox contains several closely interconnected components:
ALDI~BARAN, BCG, CIt~SAR, CYESAR.ADT, OPEN/C~SAR and XTL. All these
components are accessible through a unified graphical user-interface developed
in the EUCALYPTUS project. We first present the overall functionalities of the
toolbox, followed by individual presentations of each component.

More recently, a prototype, named TGV (Test Generation using Verification
techniques) [FJJV96], for the automatic generation of test suites has been de-
veloped within the CADP toolbox.

The CADP toolbox has been installed in 130 sites 2 and used for a number of
case studies, e.g. [KB95, GM96], including several industrial applications, such
as the verification of the bus arbiter of Bull's POWERSCALE T M architecture.

2 Description languages and compilers

The CADP toolbox accepts three different input formalisms:

- It accepts high-level protocol descriptions written in the Iso language LOTOS
[International Standard 8807]. The toolbox contains two compilers Cs
and C/ESAR.ADT. They translate LOTOS descriptions into C code which can
be used for simulation, verification and testing purpose.

* This work has been supported in part by the European Commission, under project
ISC-CAN-65 "EUCALYPTUS-2: A European/Canadian LOTOS Protocol Tool Set".

2 The toolbox is distributed free of charge to universities and academic research centers
(under a license agreement). E-mail: caesar@imag.fr

438

- It accepts low-level protocol descriptions specified as Labelled Transition
Systems (LTs, for short), i.e., finite state machines with transitions labelled
by action names.

- A s an intermediate step, the CADP toolbox accepts networks of communi-
cating automata, i.e:, finite state machines running in parallel and connected
together using LOTOS parallel composition and hiding operators~

The latest releases of the CADP toolbox devote a growing importance to
the concept of intermediate formats and programming interfaces, which allow
the CADP tools to be applied to protocol description written in other languages
than LOTOS (e.g., SDL with the GEODE compiler, etc.).

3 Validation and verification functionalit ies

The CADP toolbox allows to cover most of the development cycle of a protocol
by offering an integrated set of functionalities. These functionalities (and tools)
are interactive or random simulation (OPEN/C~sAR), partial and exhaustive
deadlock detection (OPEN/C~sAR and ALD~BARAN), test sequences generation
(TGV), verification of behavioural specifications with respect to a bisimulation
relation (ALDI~BARAN), verification of branching-time temporal logic specifica-
tions (EVALUATOR and XTL).

All the validation and verification tools are based on a same principle con-
sisting in the exploration of an LTS describing the exhaustive behaviour of the
protocol under analysis. This LTS can be accessed through several representa-
tions: The explicit representation consists in the exhaustive list of the states and
transitions of the LTS. A compact format (BEG) is available to encode explicit
representations efficiently. The implicit representation consists in a C library
providing a set of functions allowing a dynamic exploration of the LTS. It is
well adapted to perform "on the fly" verification, avoiding the generation of the
whole LTS. The symbolic representation consists in a set of Binary Decision Di-
agrams (BDD) encoding the transition relation of the LTS. It can be built from
program's description of higher level than the LTS level, thus allowing to take
advantage of the BDD structure sharing capabilities.

4 Presentat ions of the toolbox components

1. ALDI~BARAN [FKM93] allows the comparison and the reduction of LTSs
modulo various equivalence relations (such as strong bisimulation, observa-
tional equivalence, delay bisimulation, ~-*a bisimulation, branching bisimula-
tion, and safety equivalence) and preorder relations (such as simulation pre-
order and safety preorder). The verification algorithms used in ALDEBARAN
are based either on the Paige-Tarjan algorithm for computing the relational
coarsest partition, or on the "on-the-fly" techniques proposed by Fernandez-
Mounter, or on symbolic LTS representation using Binary Decision Diagrams
(BDDs). ALDI~BARAN has diagnosis capabilities that provide the user with
explanations when two LTss are found not to be related.

439

2. BCG (Binary-Coded Graphs) is both a format for the representation of ex-
plicit LTSs and a collection of libraries and programs dealing with this for-
mat. Compared to Ascii-based formats for LTSs, the BeG format uses a
binary representation with compression techniques resulting in much smaller
(up to 20 times) files. BeG is independent from any source language but keeps
track of the objects (types, functions, variables) defined in the source pro-
grams. The following tools are currently available for this format: BCGAO
performs conversions between the BCG format and a dozen of other for-
mats; BCG_OPEN establishes a gateway between the BCG format and the
OPEN/C~sAR environment; BCG_DRAw provides a 2-dimension graphical
representation of BCG graphs with an automatic layout of states and tran-
sitions; BCG_EDIT is an interactive editor which allows to modify manually
the display generated by Bc~_DRAw.

3. C~SAR [GS90] is a compiler which translates LOTOS descriptions into LTSs.
CAESAR proceeds in several steps, first translating the LOTOS description to
compile into an intermediate Petri Net model, which provides a compact
representation of the control and data flows. Then, the LTS is produced
by performing reachability analysis on this Petri net. C~ShR only handles
LOTOS specifications with static control features, which is usually sufficient
for most applications. The current version of C~SAR allows the generation of
large LTSs (some million states) within a reasonable lapse of time. The effi-
cient compiling algorithms of C~saR can also be exploited in the framework
of the OPEN/C~sAR environment.

4. C~SAR.ADT [Gar89] is a compiler that translates the data part of LOTOS
descriptions into libraries of C types and functions. Each LOTOS sort or
operation is translated into an equivalent C type or function. One must
indicate to CYtgSAR.ADT which LOTOS operations are "constructors" and
which are not (fairly obvious, in practice). C~SAR.ADT does not allow non-
free constructors ("equations between constructors"). Translation of large
programs (several hundreds of lines) is usually achieved in a few seconds.
C~SAR.ADT can be used in conjunction with C~SAR, but it can also be
used separately to compile and execute efficiently large abstract data types
descriptions.

5. OPEN/C~sAR is an extensible programming environment for the design of
applications working with the implicit representation of LTSs. Currently,
several languages/compilers are connected to the OPEN/C/ESAR environ-
ment, including: the CyESAR and CYESAR.ADT compilers, the BcG_OPEN
gateway for explicit graphs, the ExP.OPEN gateway for networks of com-
municating automata, etc. Various application programs have already been
written in the OPEN/C/ESAR framework, including two interactive simula-
tors (with shell-like and X-window interfaces), a random execution tool, a
deadlock detection tool based on G. Holzmann's technique, a reachability
analysis tool (with r*a on-the-fly reduction), a sequence-searching tool,.an
on-the-fly evaluator for branching-time #-calculus, etc.

440

6. XTL (eXecutable Temporal Language) is a functional-like programming lan-
guage designed to allow an easy, compact implementation of various temporal
logic operators. These operators are evaluated over an LTS encoded in the
Be G format. Besides the usual predefined types (booleans, integers, etc.)
The XTL language defines special types, such as sets of states, transitions,
and labels of the LTS. It offers primitives to access the informations con-
tained in states and labels, to obtain the initial state, and to compute the
successors and predecessors of states and transitions. The temporal opera-
tors can be easily implemented using these functions together with recursive
user-defined functions working with sets of states and/or transitions of the
LTs. A prototype compiler for XTL has been developed, and several tempo-
ral logics like HML, CTL, ACTL and LTAC have been easily implemented in
NTL.

References

[FGM+92]

[FJJV96 t

[FKM93]

[Gar891

[GM96]

[Gsgo]

[KB951

Jean-Claude Fernandez, Hubert Garavel, Laurent Mounier, Anne Rasse,
Carlos Roddguez, and Joseph Sifakis. A Toolbox for the Verification of
LOTOS Programs. In Lori A. Clarke, editor, Proceedings o] the 14th In-
ternational ConJerence on Software Engineering ICSE'14 (Melbourne, Aus-
tralia), pages 246-259, New-York, May 1992. ACM.
J.C1. Fernandez , C. Jard, T. J~ron, and C. Viho. Using on-the-fly verifica-
tion techniques for the generation of test suites. In this book, 1996.
Jean-Claude Fernandez, Alain Kerbrat, and Laurent Mounier. Symbolic
Equivalence Checldng. In C. Courcoubetis, editor, Proceedings of the 5th
Workshop on Computer-Aided Verification (Heraklion, Greece), volume 697
of Lecture Notes in Computer Science, Berfin, June 1993. Springer Verlag.
Hubert Garavel. Compilation of LOTOS .Abstract Data Types. In Son T.
Vuong, editor, Proceedings of the 2nd International Conference on Formal
Description Techniques FORTE'89 (Vancouver B.C, Canada), pages 147-
162, Amsterdam, December 1989. North-Holland.
Hubert Garavel and Laurent Mounier. Specification and Verification of var-
ious Distributed Leader Election Algorithms for Unidirectional Ring Net-
works. Science of Computer Programming, 1996. To appear.
Hubert Garavel and Joseph Sifakis. Compilation and Verification of LOTOS
Specifications. In L. Logrippo, R. L. Probert, and H. Ural, editors, Proceed-
ings of the lOth International Symposium on Protocol Specification, Testing
and Verification (Ottawa, Canada), pages 379-394, Amsterdam, June 1990.
IFIP, North-Hollando
Alain Kerbrat and Slim Ben Atallah. Formal Specification of a Frame-
work for Groupware Development. In G. v. Bochmann, R. Dssoufi, and
O. Rafiq, editors, Proceedings of the 8th International Conference on For-
mal Description Techniques for Distributed Systems and Communication
Protocol FORTE'95 (Montreal, Quebec, Canada), October 1995. Short pa-
per.

