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Abs t rac t .  We present a logical formalism for expressing properties of 
continuous time Markov chains. The semantics for such properties arise 
as a natural extension of previous work on discrete time Markov chains 
to continuous time. The major result is that the verification problem 
is decidable; this is shown using results in algebraic and transcendental 
number gheory. 

Introduct ion 

Recent work on formal verification has addressed systems with stochastic dy- 
namics. Certain models for discrete time Markov chains have been investigated 
in [6, 3]. However, a large class of stochastic systems operate in continuous time. 
In a generalized decision and control framework, continuous time Markov chains 
form a useful extension [9]. In this paper we propose a logic for specifying prop- 
erties of such systems, and describe a decision procedure for the model checking 
problem. Our result differs from past work in this area [2] in that  quantitative 
bounds on the probability of events can be expressed in the logic. 

1 Continuous Markov Chains 

We will consider models of the form M = (S, A, A, 0), where S = {sl, s2, �9 �9 s~) 
is a finite set of states, A is the transition rate matrix, A is a finite set of outputs, 
and 0 : S --4 A is the output function. A path through M is a map from lR+to S 

(here lR+denotes the set of non-negative reals); SIR+ is the set of all paths. 
The transition rate matr ix  A is an I S  [ x I S  I matrix.  The off diagonal 

entries are non-negative rationals; the diagonal element ajj is constrained to be 

At state sj,  the probability of making a transition to state sk (where k r j )  in 
time dt is given by ajk dr. This is the basis for formulating a stochastic differential 
equation for the evolution of the probability distribution whose solution is 

D(t) = e At -Do 

Here Do is a column vector of dimension IS[, with the constraint that  )-~i[D0]i = 1. 
Technically, with any state s in M we associate a natural probability space 

P ~  = (US,CS,ps), where the set of all paths starting at s is the universe U s, 
and the Borel sigma field on U s gives the associated space of events C s, i.e. 
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the class of subsets of U s to which probabilities can be assigned. The transition 
rate matrix A yields the probability measure #s : g~ ._4 [0, 1]; by the measure 
extension theorem [10], tts is well defined. Given a set fl of functions from IR+to 
A, we will abuse notation and refer to the probability of fl when we mean the 
probability of the set of all state sequences starting at s which map under 0 to 
elements in ft. 

We will not dwell on the technicalities of measure theory; all the sets of paths 
defined later in this paper will be readily seen to be events, i.e. elements of g 8 . 
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Fig. 1. A continuous time Markov chain: S = {so, st, s2, s3}; only edges with positive 
weights are shown. 

2 CSL syntax and semantics  

Let M = (S, A, A, 0) be a continuous Markov chain. In this section, we develop 
formal syntax and semantics for CSL (Continuous Stochastic Logic). This logic 
is inspired by the logic CTL [4], and its extensions to discrete time stochastic 
systems (pCTL [6]), and continuous time non-stochastic systems (tCTL [1]). 

There are two types of formulae in CSL: state formulae (which are true or 
false in a specific state), and path formulae (which are true or false along a 
specific path). A state formula is given by the following syntax: 

1. a for a E A  
2. If f l  and f2 are state formula,, then so are -~fl~ f l  V f2 
3. Ifg is a path formula, then Pr>r is a state formula. (c is a rational between 

0 and 1 expressed as the ratio of two binary coded integers). 

Path formulas are formulas of the form 

- f lU[~,bdf2U[~,b:] '" fn, where f l ,  f 2 , . . ,  fn are state formulas, and al,  bl,. �9 
a~-l,br,-1 are non-negative rationals expressed as the ratio of two binary 
coded integers. 

CSL is the set of state formulae that  are generated by the above rules. 
Let f be a state formula, and g be a path formula. We now define the satis- 

faction relation (~M) using induction on the length of the formula. For a state 
formula f we u s e  [f]M to denote the set of states satisfying f .  



271 

1. f is of the form a: s ~M f iff ~(s) = a. 
2. f is of the form (-~fl): s ~M f iff s ~=M f.  
3. f is of the form (fl V f2): s ~M f iff s ~ M  fl or s ~ M  f2- 

4. "f is of the form Pr~c(g): s ~M f iff #~({ ~r E S IR+ I ~r ~ M  g}) > c. 
5. g is a path formula of the form fl U[al,bl]f2 U[~,b2]"' ' fn: ~r ~ M  g if~ there ex- 

i s t t l , . . . , t ~ - i  such that (Vi) [(a~ < ti _< hi) A (Vt 'E [ti-l , t))(~r(t) E [fi~M)] 
(where t-1 is defined to be 0 for convenience). 

Example 1. The formula r = Pr>o.o3(aU[o.o,4.o]b) is a state formula for the ex- 
ample in figure 1. It formally expresses that with probability greater that 0.03, 
the system will remain in a state where the output  is a before making a transition 
before 4.0 seconds have elapsed to a state where the  output  is b. 

The probability of the set of paths starting at so on which the output is a 
before becoming b before time tl is given by the following integral: 

f0  e �9 e �9 + (r /Ir  + 

Setting tl equal to 4.0, and taking the rates rl = 1.0, r~ = 2.0, r3 = 3.0, and r4 = 
3.0, this simplifies to (1/45) - (e-~2/18) + (e-2~ Observe that e-12118 > 
e-2~ hence the probability is bounded above by (1/45) which is less than 
0.03, and so r is false at so. 

3 C S L  m o d e l  c h e c k i n g  

The CSL model checking problem is as follows: given a continuous Markov chain 
M, a state s in the chain, and a CSL formula f ,  does s ~M f? In this section 
we establish that the model checking problem for CSL is decidable. 

T h e o r e m  1. CSL model checking is decidable. 

Proof. The non-trivial step in model checking is to model check formula of the 
form Pr>c(g). In order to do this we need to be able to effectively reason about 

the measure of the set {~r e S IR+ I 7r(0) = so A ~r ~M g} under #80. 
First, we review some elementary algebra. An algebraic complex number is 

any complex number which is the root of a polynomial with rational coefficients. 
Properties of the algebraic numbers are derived in [8]; of particular interest to 
us is the fact that they constitute a field, and that the real and imaginary parts 
of an algebraic number are also algebraic. 

We will denote the set of complex numbers which are of the form )--]j r/j e~J 
where the r/j and gj are algebraic by EA. This set is a ring, and is referred to as 
the transcendental extension of A by e [8]. 

Tarksi [11] proved that the theory of the field of complex numbers (i.e. the 
theory of the structure < r  +, • 0, 1>) was decidable; an effective (in the recur- 
sion theoretic sense) procedure for converting formulas to a logically equivalent 
quantifier free form was given. Consequences of this result include.the existence 



272 

of effective procedures for determining the number of distinct roots of a polyno- 
mial, and testing the equality of algebraic numbers defined by formulas. 

We now demonstrate how to measure the set of paths which start at a desig- 
nated state and satisfy a specified path formula. Consider a path formula of the 
form r 1,bl]r U[a2,b2]r " " �9 

First, consider the case where the time intervals [al, bl], [a2, b2],.., are non 
overlapping. 

We define the following matrices. 

- a transition matrix Qi , i  obtained from A, that  treats [ r  as an absorbing 
set of states. This is obtained by using 

q ( j ,  k )  = Aj ,k  i f  j E ~)ilM 
= 0  if j E [ r  

this enables us to model the transitions where the Markov chain remains in 

[r 
- a transition matrix Q~-l,i obtained from A, that  treats [ r  N ~r as 

an absorbing set of states. For this we use 

q ( j ,  k )  = )~j,k if j e [r U [r 

this allows us to model the transitions from [r to [[r 
- -  An indicator ma t r ix / i  for [r such that 

I ~ ( j , k ) = l  if j = k e [ r  

= 0 otherwise 

Hence, the probability of a formula of the form 

k = U[oo,bo]r (t) 

is given by 

f f ( f ~ )  = 7r, �9 P o , o ( a , )  �9 Io �9 Po ,~ (b ,  - a , )  �9 t t  �9 P t , ~ ( a 2  - b , )  �9 

I1 �9 P1,2(b2 - a~) . f2  " '"  P n - l , n ( b ,  - a n )  �9 In  �9 1 (2) 

where Pl,,~(t), t > 0 is the one step transition matrix for time t corresponding 
to the rate matrix Qz,,~, 7rs is the starting probability distribution, which in our 
case has unity for state s and zeros otherwise, and 1 is the column vector whose 
elements are all 1. For a finite state Markov chain with a transition rate matrix 
Q, this matrix is given by 

Note that Q is composed of rational entries, and the arguments of Pi=-l,i 
are rationals (since ai, bi are rational). This observation leads to the following 
lemma: 
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L e m m a  2. Each element of the Pl,m (t) matrices may be expressed as )-~j yjeSJ 

where r]j and 5j are algebraic complex numbers. 

Proo f .  Any square matrix B can always be expressed in Jordan canonical form [7], 
i.e. in the form C- J .  C -1. Here J is an upper block diagonal matrix as shown 
below: 

01 J2 o . . . o  
�9 . . J 3  0 

J .  

The diagonal entries of each Ji are the eigenvalues of B, and the remaining 
entries of J~ are unity, as shown below: 

The size of Ji is equal to the multiplicity of X~. Since the eigenvalues are the 
solutions of the characteristic equation of B and the entries of B are rationals, the 
eigenvalues are, by definition, algebraic complex numbers. Similarly, the entries 
of C, C-1 are also algebraic complex numbers. 

The matrix e s t  is equal to C .  e J t  �9 C - 1  and e J t  is of the following form: [e!0 01 e J2t 0 . . .  0 

�9 " e J 3 t . ' '  0 

�9 . . e J ~ t  

The sub-matrix e J i t  is of the %rm 

o' e ;' 't t~ ~'~ ( t '~ ' -~d"~)/(m~ - 1)! 

e ) ~ i t  

By i n s p e c t i o n ,  the elements of e y~t are members of E~t. Since EA is a ring, 
it is closed under products and sums. Hence the lemma follows. I t  also follows 
that t d ( f l )  is a member of E,4 i.e. equal to an expression of the form ~ k  r]k e~k 
where the qk, 8k are algebraic. [] 
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Consider again the expression for #~ (fl)  = ~ a  ~?ke *k �9 The (fk's are algebraic; 
since are effective procedures for checking the equality of algebraic numbers, 
#S(fl)  can be effectively simplified to an expression of the form ~ k '  ~/k 'e*k' 
where the qa,'s are non zero, and the (~k,'s are distinct. 

In order to decide i f #  ~ (f l)  > c, we exploit a celebrated theorem of transcen- 
dental number theory [8]. 

T h e o r e m  3 ( L i n d e m a n n - W e i r s t r a s s : ) .  Let e l , . . ,  cn be pairwise distinct al- 
gebraic numbers belonging to ~. Then there exists no equation ale cl + . . .  + 
ane c~ --= 0 in which a l , . . . ,  am are algebraic numbers and are not all zero. 
Historical note:This result implies the transcendence of ~r (take n = 2, cl = 
2, c2 = i~r); it was the first proof of the non-algebraic nature of 7r. For a highly 
readable account of the development of this theorem, refer to [5]. 

Suppose the expression ~ k '  ~ 'ezk' is degenerate, i.e. it consists of a single 
term of the form ~0. Then the expression denotes an algebraic number~ and it 
can be effectively checked ff it is greater than c. 

If it is not degenerate, invoking the Lindemaan-Weirstrass theorem and 
noting that  c is rational, we see that #8(f l)  can not be equal to c and so 
I c I>  0. 

Decidability of model checking follows from the following lemma. 

L e m m a  4. Given a transcendental real r of the form ~ j  ~lje 5j where the r/j and 
5j are algebraic complex numbers, and the 5j's are pairwise distinct, there is an 
effective procedure to test if r > c for rational c. 

Proof. Suppose a sequence of algebraic numbers S1, $2 , . . .  such that  I r - Sk I < 
2 -k can be effectively constructed. Let I r - c I = a > 0. By the triangle inequal- 
ity, I r - c l  < I r - R e ( S k ) [  + l R e ( S k ) - c  I. Hence I r - R e ( S k ) l  + IRe(Sk) - -c  I 
is bounded away from 0 by a. Since r is real, I r - Re(Sk) i -< I r - (Sk) ! < 2-k,  
and I r -  Re(Sk) + IRe(&)  - c I is bounded away from 0 by a, for sufficiently 
large k, it must be that I R e ( ~ )  - e I > 2-k. The sign of of Re(Sk) - c is the 
sign of r - c. 

In order to construct the sequence $1 ,32 , . . . ,  we use the fact that e ~ can 
be approximated with an error of less than e (when e < 1) by taking the first 
[(3. ] z 12/e)] + 1 terms of the Maclaurin expansion for e ~ . This can be extended 
to obtain an upper bound on the number of terms to sum for an expression of 
the form ~ j  Oje ~j (which being the finite sum of algebraic numbers is algebraic) 
in order to achieve an error of less than c. m 

Now consider the case where the successive intervals where the transitions 
are desired ([ai, bi], i = 1, 2 , . . .  are allowed to overlap. Since a formula is finite, 
we can have a finite number of overlapping intervals. A key observation is that  
the finite number of overlaps allows us to partition the time in a finite number 
of non-overlapping intervals and write the probability of the specification (set of 
acceptable paths) as a sum of the probabilities of disjoint events. This enables 
us to write #~(fl)  as the sum of exponentials of algebraic complex numbers, 
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weighted by algebraic coefficients. To illustrate this, consider the formula 

f2 = •OU[al,bi]et U[a2,b2]r 

where 0 < al < a2 < bl < b2. In this case, we may realize f2 as one of four 
disjoint cases and hence we can write 

. s  = us (r 1 ,o2] r VEo ,bl]r + U s (r UEbl,b ]r 

+ UEo2,b ]r (3) 

The first three terms are equivalent to the case with non-overlapping inter- 
vals. The last term involves having both the [r -'+ [[r and [[r -'+ 
[[r transitions in the same interval [a2, bl] in the correct order. This may be 
evaluated by integrating the probabilities over the time of the first transition. 

U~(r162162 = r ,  Po,o(a2)Io Po,o(t - a2)IoQo,lI1P1,2(bl - t ) hd t  
2 

It is clear that since the integrand involved algebraic terms and and exponentials 
in algebraic complex numbers and t, the definit.e integral with rational limits can 
be written in the form of a sum of exponentials of algebraic numbers with alge- 
braic coefficients. Hence, this term is in EA. The other three terms in equation 3 
correspond to forms equivalent to the non-overlapping intervals case, and hence 
already satisfy the decidability criteria. ., 

4 C o n c l u s i o n s  a n d  F u t u r e  W o r k  

We have defined a logic for specifying properties of finite state continuous time 
Markov chains. The model checking problem for this logic was shown to be de- 
cidable through a combination of results in algebraic and transcendental number 
theory. In practise we believe that a model checker can be built using conven- 
tional numerical methods for computing probabilities of events in continuous 
Markov chains. 

In the future, we intend to study synthesis of specifications in the logic. We 
are planning to use some of the techniques used in this paper to derive decid- 
ability results for analyzing dynamical systems which evolve using exponential 
laws. 
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