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Abst rac t .  Various models a~d equivalence relations or preorders for 
probabilistic processes are proposed in the literature. This paper deals 
with a model based on labelled transition systems extended to the prob- 
abalistic setting and gives an O(n 2. m) algorithm for testing probabilistie 
bisimulation and an 50(n 5 �9 m 2) algorithm for testing probabilistic simu- 
lation where n is the number of states and m the number of transitions 
in the underlying probabilistic transition systems. 

1 Introduction 

Transition systems have proved to be very useful for modelling concurrent pro- 
cesses. A variety of widely accepted equivalence relations and preorders for such 
systems support  the use of transition systems for the design and verification of 
concurrent systems. In this context, testing equivalences and preorders become 
important  and have been studied e.g. in [3, 4, 8, 11, 17]. For instance, (strong) 
bisimulation can be decided in time O(m. log n) [22], weak bisimulation in time 
(_9(n a) [3, 17] and strong and weak simulation in time O(n 4. m) [4] where n is the 
number of states and m the mlmber of transitions of the underlying transition 
system. 

In recent years, many researchers have focussed on reasoning about  proba- 
bilistic distributed transition systems, see e.g. I15, 18, 23, 25, 28, 29, 30]. A lot of 
work has been done to extend those models and methods which have been suc- 
cessful for the non-probabilistic case to probabilistic systems. In the literature 
a variety of models for probabilistic processes has been proposed, most of them 
based on transition systems. Two kinds of models can be distinguished: on the 
one hand, models that  replace the concept of non-determinism by probabilistic 
choice, e.g. [5, 13, 18, 26, 28], on the other hand, models which distinguish be- 
tween non-deterministic and probabilistic choice, e.g. [6, 12, 16, 25, 27, 30]. As 
pointed out in [27], the distinction between non-determinism and probabilistic 
choice is essential for concurrent probabilistic systems since some states of a 
concurrent system are inherently non-deterministic. 

Several kinds of equivalences and preorders for probabilistic processes a re  
proposed: [5, 16, 30, 28] consider testing preorders for probabilistic processes. 
Probabilistic bisimulation for processes whose behaviour are described by "de- 
terminsitic" probabilistic transition systems are introduced in [18}. [25] extends 
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probabilistic bisimulation to non-deterministic probabilistic transition systems 
and defines a" notion of probabilistic simulation which refines Milners notion of 
a simulation for non-probabilistic transition systems [21]. [15] defines an alter- 
native notion of a simulation which relates a process given by a probabilistic 
transition system and a specification which is given by a "generalized" proba- 
bilistic transition system. 

Various authors presented model-checking-algorithms for the verification of 
probabilistic processes e.g. [1, 6~ 13, 14, 19, 23, 24, 27]. But - as far as the 
author knows - algorithms for testing probabilistic (bi-)simulation are missing 
until now. In this paper we present algorithms for testing probabilistic simulation 
and bisimulation in the sense of [18, 25]. The main idea of testing simulation is 
to reduce the question of whether a state s of a probabilistic transition system 
simulates a state s ~ to a maximum flow problem in a suitable network. Using 
the O(n ~) algorithm of Malhotra et al [20] to determine the maximum flow 
we get an CO(n ~ �9 m 2) algorithm :for testing probabilistic simulation where n is 
the number of states and m the number of transitions. The idea for testing 
bisimulation is similar to the non-probabilistic case [17, 22]: the algorithm for 
testing probabilistic bisimulation is based on refinement steps which split a given 
partition of states into a finer one. The resulting time complexity of our algorithm 
is O(n 2 . m). 

The remainder of the paper is organized as follows: Section 2 introduces 
the notions of a probabilistic transition system, probabilistie bisimulation and 
simulation. Section 3 presents the algorithm for testing probabilistic simulation, 
section 4 the algorithm for deciding probabilistic bisimulation. Section 5 contains 
some concluding remarks. 

2 P r o b a b i l i s t i c  t r a n s i t i o n  s y s t e m s  

In this section we present the notions of probabilistic transition systems, bisim- 
ulation and simulation. Our model of probabilistic transition systems is closely 
related to those of [16, 30], to the "simple probabilistie automata" of [25] and 
"concurrent Markov chains" considered e.g. in [6, 12, 27]. 

A distribution on a finite set S is a function # : S --+ [0, 1] such that  
~ e s  It(s) = 1. We extend a distribution It to a function which assigns to 
each subset U of S the probability #(U) - ~ s e V  It(s) �9 In what follows, we 
suppose Act to be a nonempty and finite set of actions. A probabilistic tran- 
sition system is a pair ~q = (S,--+) where S is a finite set of states and --+ a 
finite transition relation, i.e. ~ is a finite subset of 5 • Act •  where 7)(S) 
denotes the set of distributions on S. We write s --~ It instead of (s, % It) E-+. 
Informally,. the outgoing transitions s -~ # represent the non-deterministic al- 
ternatives in the state s. It is convenient to suppose that  a scheduler resolves 
the non-deterministic choices. A transition s --4 It asserts that  in state s the 
action c~ can be performed and with probability p(t) the state t is reached'af- 
terwards, i.e. every transition represents a probabilistic choice. (Finite-state) 
probabilistic processes can be described by a probabilistic transition system and 
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an initial state (or alternatively a distribution on the possible initial states). In 
what follows a transition system means a probabilistic transition system. By a 
non-probabilistic transition system we mean a transition system where for all 
traflsitions s-%#: there is a state t with #(t) -- 1. Following [18, 25] we define 
(probabilistic) bisimulation and simulation: 

De f in i t i on  1. Let (S,--+) be a transition system. A bisimulation on S is an 
equivalence relation R on S such that  for all (s, s ~) E R: If s-%p then there is a 

transition s'-~p' with #(A) = p'(d) for all A e SIR. Here SIR denotes the set 
of equivalence classes w.r . t .R.  Two states sl and s2 are called bisimilar (denoted 
by sl ~ s2) iff there exists a bisimulation which contains (sl, s2). 

An alternative description of bisimulation is based on weight functions for dis- 
tributions [15]: 

De f in i t i on  2. Let S be a finite set, R C S • S and p, p1 E 7)(S). A weight 
function for (#, p')  w.r.t. R is a function 5 : S • S ~ [0,1] which satisfies: 

1. For all s, s' e S: E~ '~s  5(s,s') = p(s), 
2. If 5(s, s') > 0 then (s, s') e R. 

= , ' ( s ' )  

Let (S,--+) be a transition system and R an equivalence relation on S. Then 
R is a bisimulation if and only if for all (s, s') E R: Whenever (s, s') E R and 
s-%p then there exists a transition s'-%#' and a weight function for (#, #~) w.r.t. 
R. Intuitively, the weight function ~ shows how to split the probabilities #(s) 
and p'(s ' ) ,  s, s ~ E S, so that  the relation R is preserved: we "combine" the 
5(s, s~)-part of s and s'. As in the non-probabilistic case, simulation is defined 
as "uni-directional bisimulation': in the above characterization of bisimulation 
we drop the requirement that  .R is an equivalence relation. 

De f in i t i on  3. Let (S, --+)be a transition system. A simulation for (S, --~) is a 
subset R of S • S such that  for all (s, s') E R: Whenever s -% p then there 
exists a transition s ~ -% #t and a weight function ~ for (p, tt I) w.r . t .R.  We say s 
implements s p (denoted by s __. s ~) iff there exists a simulation which contains 
(8, s'). 

In the non-probabilistic case this notion of a simulation agrees with Milners 
notion of a simulation [21]. This is because the only weight function for (#,# ')  
where #, p' are distributions with #(s) = tt'(s') -- 1 is 5(u,u')  -- 0 if (u,u ' )  r 
(s, s') and 5(s, s') = 1. Hence if (S,-~) is a non-probabilistic transition system 
and R C S x S then R is a simulation in the sense of Definition 3 if and only if 
R is a simulation in the sense of Milner. It is clear that  E is a preorder whose 
kernel Nsim = U N ___-1 is coarser than bisimulation equivalence, i.e. s ,,~ s ~ 
implies s "%ira s'. As in the non-probabilistic case, "~{m does not coincide with 
bisimulation. 

E x a m p l e  4. Let (S, -+) be the transition system where S -- (So , . . . ,  ss} and 
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so-+p, s5--4 p 

Here  p(81) --. 1, ]2(81) : ~/(82) : ~(s3)  --" 1 /3  a n d  ~ ' (S l )  -" 1/4,  ~ ' ( s3)  --~ 17/24  
and p'(s4) = 1/24. Then 

sl E s2 E s3, sl E s4 E so E s~. 

The weight function 5 for (#,# ')  w.r.t. E is given by: 5(sl, sl)  = 1/4, i~(81,83) ---- 
 (sl, = 1 / 2 4 ,  = = 1 / 3 .  [ ]  

The result of Milner [21] that  in every (image-)finite non-probabilistic transition 
system bisimulation can be approximated by "finitary bisimulation" carries over 
to the probabilistic case. If (S, -r is a transition system then we define induc- 
tively equivalence relations "~n on S: ~0 = S x S and s "~.+1 s' if and only 
if: Whenever s ~ p  then there is a transition s ' ~ p '  with p(A)  = # ' (A)  for all 
A E S / , . , ,  and vice versa. Similarly~ we define "finitary simulation": s E0 s' for 
all states s, s' and s E,~+I s ~ iff whenever s 2+ # then there exists a transition 
s ~ -~ #' and a weight function 5 for (p ,# ' )  w.r.t. En. As shown in [2]: 

L e m m a  5. Let (S,--+) be transition systems and s, s' E S. Then 

(a) s E s' if and only if  s E ,  s' for all n > O. 
(b) s ~ s' if and only if  s ,.~, s' for all n > O. 

3 T e s t i n g  s i m u l a t i o n  

We present an O(n 5. m 2) algorithm for testing simulation where n is the number 
of states and m the number of transitions in the underlying transition system. 
The results of this section yield also an O(n 5 �9 rn 2) algorithm for testing bisim- 
ulation. In section 4 we improve the costs and give an O(n 2 �9 m) algorithm 
for testing bisimulation. Lemma 6 shows that  for a (finite) transition systems 
there is a natural number N which is polynomial in the size of the underlying 
transition system such that  ~ = EN. Our algorithm successively computes the 
relations E0, E l , . . . ,  EN0 W'e show that  the relation E j + I  can  be derived from 
Ej  by solving maximum flow problems in suitable networks. 

L e m m a  6. Let (S,-~) be a transition system, n the number of states in S and 
N - -  n 2. Then ~., = "~N and E = EN. 

Proof. We only show E = EN. We have ___0 __D E1 __D . . .  and s E s' iff s _Ej s ~ 
for all j (Lemma 5). Since E0 = S x S contains N elements there exists j with 
0 _< j _< N and E j + I = E j .  Then E j = E i  for all i ~ j and hence E = Ej  = EN- 
[] 

Lemma 6 tells us that  in order to compute the simulation preorder _ for finite 
transition systems one has to compute the relation E,,2. VCe do this by suc- 
cessively computing the relations Ej,  j = 0, 1 , . . . ,  N. In order to compute the 
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relation _ j + l  (where ___j is already computed) we need an algorithm which tests 
whether or not a weight function for given distributions w.r.t. E j exists. We 
present a polynomial time algorithm which tests whether a weight function for 
distributions #, p~ w.r.t, a given relation R exists. The idea of the algorithm is 
to reduce the problem of finding a weight function to a maximum flow problem 
in networks. Algorithms to compute the maximum flow are given in [7, 10, 20]. 
For further details about  maximum flow problems see e.g. [9]. 

A network is a tuple A: = (N, E, L, T, c) where (N, E) is a finite directed 
graph - where N denotes the set of nodes, E C_ N • N the set of edges - with two 
specified nodes .k (the source) and T (the sink) and a capacity c, i.e. a function 
c which assigns to each edge (v, w) e E a non-negative number c(v, w). A flow 
function f is a function which assigns to edge e a real number f(e) such that 

1. For all edges e: 0 < f(e) <_ c(e) 
2. Let in(v) be the set of incoming edges to node v and out(v) the set of 

outgoing edges from node v. Then for each node v E N \ {J_, T}: 

f(e) = ~ :(e) 

The flow 5r(f) of f is given by 

:-( :)  = :(e). 
eEou~(-L) eEin(.l.) 

The maximum flow in A: is the supremum over the flows Yr(f) where f is a flow 
function in Af. 
Let S be a finite sets, R a subset of S x S and let #, pr E D(S). Let S ~ = {t j : 
t e S} where t' are pairwise distinct "new" states (i.e. t' q~ S). We choose new 
elements .l_ and T not contained in S U S  ~, • r T. We associate with (#,#~) the 
following network H ( # ,  pt, R): The nodes are the elements of S and S ~ and • 
(the source) and T (the sink), i.e. N = {1,  T} U S U S'. The edges are 

= { ( ~ , t ' ) : ( , , t ) e ~ }  v { ( l , ~ )  : ~ e s }  u { ( t ' ,T )  : teS}. 
The capacities c(e) E [0, 11 are given by: c(J_, s) = p(s), c(t', T)  - it'(t) and 
c ( 8 , t ' )  = i. 

L e m m a  7. The following are equivalent: 

(i) There exists a weight function 6 for (#,#P) w.r.L R. 
5i) The maximum flow in Y(p,  #', R) is I .  

Proof. (i) = (ii): For each flow function f in A:(p,p',R): 

s( f )  = ~ f ( l ,~)  <_ ~ ~(• = ~ .(8) : ~. 
sES s6S sES 

Let 5 be a weight function for (#,#~) w.r . t .R.  Then we define a flow function f 
as follows: f(_L,s) = #(8), f ( g , T )  = #'(t) ,  f(s , t ' )  = 6(s,t). T h e n ~ ' ( f )  = 1. 
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Hence the maximum flow of X(# ,  #', R) is 1. 
(ii) ~ (i): Let f be a flow function with Y( I )  = 1. Since f(d_, s) < c(_l_, s) = 
p(s) and since 

:(• = 7(:) = : = ~ .(s) 
sES sES 

we get f(d_, s) = #(s) for all s E S. Similarly, we get f (g ,  T) = pP(t) for all 
t E S. Let (f(s, t) = f (s ,  t') for all (s, t) e R and (f(s,t) = 0 if (s~ t) ~ R. Then 

~. ,~(s,t) = E :(s ,t ')  = 1(•  s) = . ( s )  
~ES ~ES 

and similarly E s e s  ~(s,t) = #:(t). Hence 5 is a weight function for (/~,it') 
w.r.t. R, [] 

With Lemma 7 we get an algorithm which tests whether a weight function for 
distributions p, #~ w.r.t, a relation R exists: We apply an algorithm for finding 
the maximum flow F in A/'(#,#', R). The maximum flow in Af(p,p', R) can be 
computed e.g. with the O(n a) algorithm of Malhotra et al [20] where n is the 
cardinality of S. 

A l g o r i t h m  1. 
I n p u t :  a finite set S, distributions It, #' E 79(S) and R C S x S 
O u t p u t :  a weight function 5 for (p,p~) w.r.t. R if there exists one, "No" oth- 
erwise. 
M e t h o d :  Compute the maximum flow F of the network X(p ,  Its, R) and a flow 
function f with J:(f) = F. If F < 1 then answer "No" else answer "Yes" and 
return 

6(s,t) = ~ 0 : if (s,t) E S x S \ R  
/Cs, e ) :  i / ( s ,  t) ~ R. t 

Lemma 6 and Algorithm 1 yield an algorithm for testing simulation: 

A l g o r i t h m  2. for testing probabilistic simulation 
I n p u t :  a transition system (S,--~) 
O u t p u t :  the simulationpreorderR = {(s,t) E S x S  : s _E t } 
M e t h o d :  Let N = n 2 where n i8 the number of states ors  and let Ro = S x  S. 

For j = 1 , . . . , N  do: 
begin Rj := R j - i  

For all (s, t) E R j - :  do 
begin For all transitions s .2~ p do: 

If there does not exist a transition t --~ #~ 
such that Algorithm 1 yields a weight function 
for (p,p ')  w.r.t. Rj_:  then Rj := Rj \ {(s,t)}. 

end 
end 
Return R := RN. 
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It is clear that  Rj = _Uj and hence R = _UN = _.G. The time complexity of 
the algorithm is O(n 5 . m 2) where m is the number of transitions and n the 
number of states. Algorithm 2 can be implemented in space O(n 2 + m) because 
the maximum flow problem (and hence Algorithm 1) can be solved in space 
O(n + m) and the representation of the sets Rj needs O(n 2) space. Similar to 
Algorithm 2, an O(n 5 �9 m 2) algorithm for testing bisimulation can be given. In 
the next section we improve the time complexity giving an O(n 2 �9 m) algorithm. 

4 T e s t i n g  b i s i m u l a t i o n  

Following the idea of [17] which gives an O(n .  m) algorithm for testing (non- 
probabilistic) bisimulation we present a method for deciding probabilistic bisim- 
ulation that  works with refinement steps of partitions on the states. Given a 
transition system (S,--4) we start  with the trivial partition Xo = {S}. Then 
we successively refine the partition Xk by substituting B E X~ by the set of 
equivalence classes w.r.t, the relation s - s p iff 

1. Whenever s 2~ # then there exists a transition s' 24 #' with #(B) = #'(B) 
for all B E Xk. 

2. Whenever s' 4.% #~ then there exists a transition s 24 # with if(B) = #P(B) 
for all B E Xk. 

At most after n refinement steps the partition Xk cannot be refined. Then Xk 
is the set of bisimulation equivalence classes. 

Def in i t i on  8. A partition of a transition system (S,-4) is a set X consisting 
of palrwise disjoint subsets B of S with UBex B = S and such that  for all 
B E X and s E B: the bisimulation equivalence class [s] of s is contained in B. 

In what follows, we shortly write p(X)  to denote the vector (p(B))Bex. If s e S 
then we define X(s) = { (a,p(X))  : s ~ p }. Each partition X is associated 
with an equivalence relation - x  on S: s --x s' iff X(s) = X(s'). Having a 
partit ion X we split the elements of X into the equivalence classes w.r.t. ~ x :  
We define 

j ( x )  = U 
BEX 

L e m m a  9. Let ( S,-+ ) be a transition system and X a partition. 

(a) S / ,~  is a partition with (f(S/,'~) = S~ ,',. 
(b) J ( X )  is a partition. 
(c) , . r (x)  = x then X = S~ ~. 

Proof. (a) is clear. Let X be a partition of (S,--4). I t  is clear that  the sets 
B E J ( X )  are palrwise disjoint and that  the union of them is S. Each B E X can 
be written as disjoint union of bisimulation equivalence classes. This is because 
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s �9 B implies [s] C_ B. Hence whenever #, # '  are distributions with p(A) = #'(A) 
for all A �9 S/ ,,~ then 

p (B)  = E p ( A ) =  E # ' ( A ) =  p'(B) 
AeB/~,, AEB/~, 

for all B �9 X.  Hence s ~ s' implies s - x  s'. Therefore: If  C E J ( B ) ,  
s �9 C then C is the equivalence class of s w.r.t. - - x  and hence contains [s]. 
We conclude tha t  J ( X )  is a part i t ion of (S,--~). I f  i f ( X )  = X then - x  is a 
bisimulation. Hence s - x  d implies s ,,, s ~. Therefore s - x  s ~ iff s ,,~ s ~ 
and hence J ( X )  = S/,',,. [] 

L e m m a  10. Let (S,--+) be a transition system with n states and m transitions 
and let X be a partition of (,5', --~). Then if(X) can be computed in time O(n. rn) 
and space O(n. m). 

Proo I. For fixed B �9 X and a �9 Act let / :B,~ be the set of all pairs (p, L) where 
L is a nonempty  subset of B and p = (Pc)cex a real vector such tha t  s �9 L if 

and only if there exists a transit ion s ~ p with p(X) = p. Let s  be  the set of 
all pairs (a, L) where a �9 Act and (p, L) � 9  for some p. Then s - - x  s '  if 
and only if: 

Whenever (a,  L) �9 s then s �9 L iff s ~ �9 L. 

The  idea of computing B~ =-x is to calculate first the sets s a �9 Act, and 
then to derive the equivalence classes of B w.r.t. - x .  

Computation of s For each o~ E Act and B E X we construct  a tree TB,~ 
by successively inserting nodes and edges. The edges of TB,~ are labelled by 
real numbers  p E [0, 1]. Each leaf v has depth 1 and is labelled by an element 
(p(v),  L(v)) �9 s 
Let X = {B1, . . .  ,Bl}.  We s tar t  with TB,~ to be a tree of depth  0, i.e. a tree 

consisting of its root.  Then for each transit ion s ~ p where s �9 B we traverse 
the tree s tar t ing at  the root.  Reaching a node v of depth k we do: 

- If  k < l and there is an outgoing edge from v leading to the node w labelled 
by #(Bk+l) then we pass the edge v --4 w and continue to travel through 
TB,~ with node w. 

- I f  k < I mad there is no outgoing edge from v labelled by #(B~+I) then we 
insert a new node w and an edge from v to w labelled by #(Bk+l). In the 
case k + 1 < l we continue to travel through TB,~ with node w. If  k + 1 ---- l 
then w is a leaf and we define L(w) = {s} and p(w)  = #(X). 

- If  v is a leaf of depth  1 then we insert s into the set L(v). 

I t  is easy to see that  the leaves of TB,a represent the elements of ~B,a. Hence 
/:B is the set of all pairs (a, L(v)) where v is a leaf in TB,~. 
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Complexity. First we observe tha t  the tuples p(X) (where # ranges over all 

distributions s.t. s -~# is a transition) can be computed  in (.9(n �9 m) time: For 
each distribution # we set aB = 0 for all B E X.  Then for all s tates s E S: 
If  s E B then we replace aB by aB + p(s). Finally p(X) = (aB)sex. The 
representat ion of the tuples p(X) needs O ( n .  m) space. 

The  construction of TB,~ needs (9(mB,~.l) steps where rnB,~ is the number  of 

transitions s -~ p, s E B. Since ~ B  ~ mB,~ = m and since the cardinality 
l of X is bounded by n we get: Ranging over all B E X and a E Act the 
construction of all trees TB,~, B E X,  a E Act, takes O(n. m) steps. The  set of 
pa ths  f rom the root to a leaf in TB,~ is bounded by mB,~. Since I is the depth  
of the leaves TB,~ has at most  mB,c~" l ~- 1 nodes. Hence~ all trees TB,~ together 
have (.9(m. n) nodes and (9(m) leaves. The representation of the sets L(v) needs 
(9(IB]) space (where v is a leaf of a tree TB,~). Since IBI < n the representat ion 
of all trees TB,~ together needs O(n. m) space. 

Computation of B~ - x .  We construct a binary tree TB by successively inserting 
nodes and edges. Each leaf v has depth r and is labelled by a subset C(v) of B. 
Let ( a i ,L i ) ,  i = 1 , . . .  , r ,  be an enumerat ion of the elements of s  (Note that  
a l  = c~j~ i ~ j is possible.) We star t  with a tree of depth 0~ a tree consisting of 
its root. For each s E B we traverse the tree in the following way: If  we have 
reached a node v of depth k - L k <: r then: 

- If  v has a left son w and s E L k  then we go to w. 
- If  v does not have a left son and s E La then we create a new left son w of 

v and go to w. If k = r -  1 then we set C(w) = {s}. 
- If  v has a right son w and s ~ Lk then we go to w. 
- If  v does not have a right son and s ~ Lk then we create a new right son w 

of v and go to w. If  k = r - 1 then we set C(w) = {s}. 

If we have reached a node v of depth r then we  insert s into the set C(v) of 

s ta tes  associated with v. 
Then  we have: If v is a leaf and vo,vl~~ ~v~ = v the unique pa th  from the 

root v0 to v then C(v) = L~ N L~ M... N Ltr where L~ --- L; if v~ is the left son 
of vi-1 and L~ = B \ L~ if v~ is the right son of vi-1. Let pi = p(v)  where v is 
the leaf in TB,~, with (a~, Li) = (a, L(v)). Then for all s e B: s E C(v) if and 
only i f X ( s )  = { ( a ~ , p i )  : L, = L~ }. Hence, i f s ,  s ~ e B t h e n s  ~ x  s ' i f a n d  
only if s, s I e C(v) for some leaf v in TB. We conclude: 

B / = x  = { : v is a leaf in TB } 

Complexity. The computat ion of TB needs O(IB ] �9 r) steps. I t  is clear tha t  the 
cardinality r of s  is bounded by m. Hence we have the t ime complexity (_0(IB I �9 
m) for the construction of TB. Each leaf in TB has depth r < m. Since the leaves 
of TB correspond to the equivalence classes wx.t .  ~x  TB has at most  I B] leaves. 
Since TB is binary it has at most IB]- r + 1 nodes. Henc% all trees TB, B E X ,  
have (.9(n �9 m) nodes. Ranging over all v, the sets C(v) can be represented in 
space (.0(n). Hence we get the t ime complexity O(n .  m) for computing the trees 
TB, B E X and the space complexity O ( n .  m) for their representation. [] 
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A l g o r i t h m  3. for testing probabilistic bisimulation 
I n p u t :  a transition system ( S,--+ ) 
O u t p u t :  the set R = S/  ~ of bisimulation equivalence classes 
M e t h o d :  Let X := {S}. 

Repeat 
Y := X; X := J ( X ) ;  

until Y = X;  
Return R := X.  

It is clear that  the algorithm returns a partition T/with ,7(R) = R. By Lemma 9: 
R is the set of bisimulation equivalence classes. If the loop is performed n times 
then X consists of n one-element sets and hence J ( X )  = X. Hence the loop is 
performed at most n times. By Lemma 10 the time complexity is CO(n 2. m), the 
space complexity (.9(n �9 m). 

E x a m p l e  11. Let (S, -4) be given by: S = {sl, s2, s, t, u} and 

Or CI t3l t:~ O~ 

Sl"- )p ,  S2--~p, Sl - -~pl  ~ S2---~p2 , S--~p, t fl 

where #(u) -- 1, tO(s1) --: Hi(s2) -- pl(t) - - ' t t l (u)  -- 1/4 and #2(sl)  --= 1/2, 
p2(t) = #2(u) = 1/4. Initially we deal with the partition {S} and compute  
J ( { S } )  with the help of Lemma 10: The trees Ts,. and Ts,~ consist of a single 
edge labelled by 1. Their leaves vs, .  and vs,z are labelled by (1, {sl, s2, s}) and 
(1, {T}) respectively. This yields s  = {(or, {sl,  s2, s}), (fl, {t})} and the tree 
Ts 

where C(vl) = {sl, s2,s}, C(v2) = {t} and C(v3) = {u}. Hence J ( { S } )  = 
{B!,B2,B3} where Bi = C(v~). Next we compute J({BI,B2,B3}). Since B2 
and B3 consist of a single element we only have to consider B1. The tree TB~,~ 
can be depict as follows: 

0~.~__ 0 :z. 1---*-v2 

where L(vl) = (sl, s2} and L(vz) = {sl, s2, s}. This yields the tree TB~: 

where C(vl) = {sl, s2}, C(v2) = {s}. We obtain the partition X which consists 
of {s~,s2}, {s}, {t} and {u}. The next step yields J ( X )  = X and hence X = 
S/ , . . .  r-1 
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5 Concluding remarks 

We gave an algorithm for testing probabilistic bisimulation in time O(n 2 �9 m). 
Compared With the non-probabilistic case where the best known algorithm for 
deciding bisimilarity has the time complexity O(m. log n) [22] the cost of our 
algorithm seem to be acceptable. It is an open problem whether the t ime com- 
plexity of our algorithm can be improved in a similar way as the O(m �9 log n) 
algorithm of [22] improves the O(n. m) algorithm of [17]. The algorithm which is 
implemented in the Concurrency Workbench [4] tests non-probabilistic simula- 
tion in time O(n 4. m). It works similar to the bisimulation equivalence algorithm 
of [17]. It is an open question whether our O(n 5. m 2) result can be improved 
by a partioning technique. Our methods applied to "deterministic" probabilis- 
tic transition systems yield time complexity O(n 7) for deciding simulation and 
time complexity O(n 3) for deciding bisimulation. (In "deterministic" transition 
systems, for every state s and action a there is at most one outgoing transition 
labelled by a. Hence, for fixed action set, the total  number m of transitions is 

In this paper  we only considered strong (bi-)simulation which does not ab- 
stract  from internM actions. It would be interesting if the algorithms presented 
here can be modified to check weak (bi-)simulation. 
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