
Polynomial Time Algorithms for Testing Probabilistic
Bisimulation and Simulation

Christel Baler

FakultEt fiir Mathematik & Informatik
Universit~t Mannheim, 68131 Mannheim, Germany

baier~pil.informatik.uni-mannheim.de

Abst rac t . Various models a~d equivalence relations or preorders for
probabilistic processes are proposed in the literature. This paper deals
with a model based on labelled transition systems extended to the prob-
abalistic setting and gives an O(n 2. m) algorithm for testing probabilistie
bisimulation and an 50(n 5 �9 m 2) algorithm for testing probabilistic simu-
lation where n is the number of states and m the number of transitions
in the underlying probabilistic transition systems.

1 Introduction

Transition systems have proved to be very useful for modelling concurrent pro-
cesses. A variety of widely accepted equivalence relations and preorders for such
systems support the use of transition systems for the design and verification of
concurrent systems. In this context, testing equivalences and preorders become
important and have been studied e.g. in [3, 4, 8, 11, 17]. For instance, (strong)
bisimulation can be decided in time O(m. log n) [22], weak bisimulation in time
(_9(n a) [3, 17] and strong and weak simulation in time O(n 4. m) [4] where n is the
number of states and m the mlmber of transitions of the underlying transition
system.

In recent years, many researchers have focussed on reasoning about proba-
bilistic distributed transition systems, see e.g. I15, 18, 23, 25, 28, 29, 30]. A lot of
work has been done to extend those models and methods which have been suc-
cessful for the non-probabilistic case to probabilistic systems. In the literature
a variety of models for probabilistic processes has been proposed, most of them
based on transition systems. Two kinds of models can be distinguished: on the
one hand, models that replace the concept of non-determinism by probabilistic
choice, e.g. [5, 13, 18, 26, 28], on the other hand, models which distinguish be-
tween non-deterministic and probabilistic choice, e.g. [6, 12, 16, 25, 27, 30]. As
pointed out in [27], the distinction between non-determinism and probabilistic
choice is essential for concurrent probabilistic systems since some states of a
concurrent system are inherently non-deterministic.

Several kinds of equivalences and preorders for probabilistic processes a re
proposed: [5, 16, 30, 28] consider testing preorders for probabilistic processes.
Probabilistic bisimulation for processes whose behaviour are described by "de-
terminsitic" probabilistic transition systems are introduced in [18}. [25] extends

51

probabilistic bisimulation to non-deterministic probabilistic transition systems
and defines a" notion of probabilistic simulation which refines Milners notion of
a simulation for non-probabilistic transition systems [21]. [15] defines an alter-
native notion of a simulation which relates a process given by a probabilistic
transition system and a specification which is given by a "generalized" proba-
bilistic transition system.

Various authors presented model-checking-algorithms for the verification of
probabilistic processes e.g. [1, 6~ 13, 14, 19, 23, 24, 27]. But - as far as the
author knows - algorithms for testing probabilistic (bi-)simulation are missing
until now. In this paper we present algorithms for testing probabilistic simulation
and bisimulation in the sense of [18, 25]. The main idea of testing simulation is
to reduce the question of whether a state s of a probabilistic transition system
simulates a state s ~ to a maximum flow problem in a suitable network. Using
the O(n ~) algorithm of Malhotra et al [20] to determine the maximum flow
we get an CO(n ~ �9 m 2) algorithm :for testing probabilistic simulation where n is
the number of states and m the number of transitions. The idea for testing
bisimulation is similar to the non-probabilistic case [17, 22]: the algorithm for
testing probabilistic bisimulation is based on refinement steps which split a given
partition of states into a finer one. The resulting time complexity of our algorithm
is O(n 2 . m).

The remainder of the paper is organized as follows: Section 2 introduces
the notions of a probabilistic transition system, probabilistie bisimulation and
simulation. Section 3 presents the algorithm for testing probabilistic simulation,
section 4 the algorithm for deciding probabilistic bisimulation. Section 5 contains
some concluding remarks.

2 P r o b a b i l i s t i c t r a n s i t i o n s y s t e m s

In this section we present the notions of probabilistic transition systems, bisim-
ulation and simulation. Our model of probabilistic transition systems is closely
related to those of [16, 30], to the "simple probabilistie automata" of [25] and
"concurrent Markov chains" considered e.g. in [6, 12, 27].

A distribution on a finite set S is a function # : S --+ [0, 1] such that
~ e s It(s) = 1. We extend a distribution It to a function which assigns to
each subset U of S the probability #(U) - ~ s e V It(s) �9 In what follows, we
suppose Act to be a nonempty and finite set of actions. A probabilistic tran-
sition system is a pair ~q = (S,--+) where S is a finite set of states and --+ a
finite transition relation, i.e. ~ is a finite subset of 5 • Act • where 7)(S)
denotes the set of distributions on S. We write s --~ It instead of (s, % It) E-+.
Informally,. the outgoing transitions s -~ # represent the non-deterministic al-
ternatives in the state s. It is convenient to suppose that a scheduler resolves
the non-deterministic choices. A transition s --4 It asserts that in state s the
action c~ can be performed and with probability p(t) the state t is reached'af-
terwards, i.e. every transition represents a probabilistic choice. (Finite-state)
probabilistic processes can be described by a probabilistic transition system and

52

an initial state (or alternatively a distribution on the possible initial states). In
what follows a transition system means a probabilistic transition system. By a
non-probabilistic transition system we mean a transition system where for all
traflsitions s-%#: there is a state t with #(t) -- 1. Following [18, 25] we define
(probabilistic) bisimulation and simulation:

De f in i t i on 1. Let (S,--+) be a transition system. A bisimulation on S is an
equivalence relation R on S such that for all (s, s ~) E R: If s-%p then there is a

transition s'-~p' with #(A) = p'(d) for all A e SIR. Here SIR denotes the set
of equivalence classes w.r . t .R. Two states sl and s2 are called bisimilar (denoted
by sl ~ s2) iff there exists a bisimulation which contains (sl, s2).

An alternative description of bisimulation is based on weight functions for dis-
tributions [15]:

De f in i t i on 2. Let S be a finite set, R C S • S and p, p1 E 7)(S). A weight
function for (#, p') w.r.t. R is a function 5 : S • S ~ [0,1] which satisfies:

1. For all s, s' e S: E~ '~s 5(s,s') = p(s),
2. If 5(s, s') > 0 then (s, s') e R.

= , ' (s ')

Let (S,--+) be a transition system and R an equivalence relation on S. Then
R is a bisimulation if and only if for all (s, s') E R: Whenever (s, s') E R and
s-%p then there exists a transition s'-%#' and a weight function for (#, #~) w.r.t.
R. Intuitively, the weight function ~ shows how to split the probabilities #(s)
and p'(s ') , s, s ~ E S, so that the relation R is preserved: we "combine" the
5(s, s~)-part of s and s'. As in the non-probabilistic case, simulation is defined
as "uni-directional bisimulation': in the above characterization of bisimulation
we drop the requirement that .R is an equivalence relation.

De f in i t i on 3. Let (S, --+)be a transition system. A simulation for (S, --~) is a
subset R of S • S such that for all (s, s') E R: Whenever s -% p then there
exists a transition s ~ -% #t and a weight function ~ for (p, tt I) w.r . t .R. We say s
implements s p (denoted by s __. s ~) iff there exists a simulation which contains
(8, s').

In the non-probabilistic case this notion of a simulation agrees with Milners
notion of a simulation [21]. This is because the only weight function for (#,# ')
where #, p' are distributions with #(s) = tt'(s') -- 1 is 5(u,u') -- 0 if (u,u ') r
(s, s') and 5(s, s') = 1. Hence if (S,-~) is a non-probabilistic transition system
and R C S x S then R is a simulation in the sense of Definition 3 if and only if
R is a simulation in the sense of Milner. It is clear that E is a preorder whose
kernel Nsim = U N ___-1 is coarser than bisimulation equivalence, i.e. s ,,~ s ~
implies s "%ira s'. As in the non-probabilistic case, "~{m does not coincide with
bisimulation.

E x a m p l e 4. Let (S, -+) be the transition system where S -- (So , . . . , ss} and

53

so-+p, s5--4 p

Here p(81) --. 1,]2(81) : ~/(82) : ~(s3) --" 1 /3 a n d ~ ' (S l) -" 1/4, ~ ' (s3) --~ 17/24
and p'(s4) = 1/24. Then

sl E s2 E s3, sl E s4 E so E s~.

The weight function 5 for (#,# ') w.r.t. E is given by: 5(sl, sl) = 1/4, i~(81,83) ----
 (sl, = 1 / 2 4 , = = 1 / 3 . []

The result of Milner [21] that in every (image-)finite non-probabilistic transition
system bisimulation can be approximated by "finitary bisimulation" carries over
to the probabilistic case. If (S, -r is a transition system then we define induc-
tively equivalence relations "~n on S: ~0 = S x S and s "~.+1 s' if and only
if: Whenever s ~ p then there is a transition s ' ~ p ' with p(A) = # ' (A) for all
A E S / , . , , and vice versa. Similarly~ we define "finitary simulation": s E0 s' for
all states s, s' and s E,~+I s ~ iff whenever s 2+ # then there exists a transition
s ~ -~ #' and a weight function 5 for (p ,# ') w.r.t. En. As shown in [2]:

L e m m a 5. Let (S,--+) be transition systems and s, s' E S. Then

(a) s E s' if and only if s E , s' for all n > O.
(b) s ~ s' if and only if s ,.~, s' for all n > O.

3 T e s t i n g s i m u l a t i o n

We present an O(n 5. m 2) algorithm for testing simulation where n is the number
of states and m the number of transitions in the underlying transition system.
The results of this section yield also an O(n 5 �9 rn 2) algorithm for testing bisim-
ulation. In section 4 we improve the costs and give an O(n 2 �9 m) algorithm
for testing bisimulation. Lemma 6 shows that for a (finite) transition systems
there is a natural number N which is polynomial in the size of the underlying
transition system such that ~ = EN. Our algorithm successively computes the
relations E0, E l , . . . , EN0 W'e show that the relation E j + I can be derived from
Ej by solving maximum flow problems in suitable networks.

L e m m a 6. Let (S,-~) be a transition system, n the number of states in S and
N - - n 2. Then ~., = "~N and E = EN.

Proof. We only show E = EN. We have ___0 __D E1 __D . . . and s E s' iff s _Ej s ~
for all j (Lemma 5). Since E0 = S x S contains N elements there exists j with
0 _< j _< N and E j + I = E j . Then E j = E i for all i ~ j and hence E = Ej = EN-
[]

Lemma 6 tells us that in order to compute the simulation preorder _ for finite
transition systems one has to compute the relation E,,2. VCe do this by suc-
cessively computing the relations Ej, j = 0, 1 , . . . , N. In order to compute the

54

relation _ j + l (where ___j is already computed) we need an algorithm which tests
whether or not a weight function for given distributions w.r.t. E j exists. We
present a polynomial time algorithm which tests whether a weight function for
distributions #, p~ w.r.t, a given relation R exists. The idea of the algorithm is
to reduce the problem of finding a weight function to a maximum flow problem
in networks. Algorithms to compute the maximum flow are given in [7, 10, 20].
For further details about maximum flow problems see e.g. [9].

A network is a tuple A: = (N, E, L, T, c) where (N, E) is a finite directed
graph - where N denotes the set of nodes, E C_ N • N the set of edges - with two
specified nodes .k (the source) and T (the sink) and a capacity c, i.e. a function
c which assigns to each edge (v, w) e E a non-negative number c(v, w). A flow
function f is a function which assigns to edge e a real number f(e) such that

1. For all edges e: 0 < f(e) <_ c(e)
2. Let in(v) be the set of incoming edges to node v and out(v) the set of

outgoing edges from node v. Then for each node v E N \ {J_, T}:

f(e) = ~ :(e)

The flow 5r(f) of f is given by

:-(:) = :(e).
eEou~(-L) eEin(.l.)

The maximum flow in A: is the supremum over the flows Yr(f) where f is a flow
function in Af.
Let S be a finite sets, R a subset of S x S and let #, pr E D(S). Let S ~ = {t j :
t e S} where t' are pairwise distinct "new" states (i.e. t' q~ S). We choose new
elements .l_ and T not contained in S U S ~, • r T. We associate with (#,#~) the
following network H (# , pt, R): The nodes are the elements of S and S ~ and •
(the source) and T (the sink), i.e. N = {1, T} U S U S'. The edges are

= { (~ , t ') : (, , t) e ~ } v { (l , ~) : ~ e s } u { (t ' ,T) : teS}.
The capacities c(e) E [0, 11 are given by: c(J_, s) = p(s), c(t', T) - it'(t) and
c (8 , t ') = i.

L e m m a 7. The following are equivalent:

(i) There exists a weight function 6 for (#,#P) w.r.L R.
5i) The maximum flow in Y(p, #', R) is I .

Proof. (i) = (ii): For each flow function f in A:(p,p',R):

s(f) = ~ f (l ,~) <_ ~ ~(• = ~ .(8) : ~.
sES s6S sES

Let 5 be a weight function for (#,#~) w.r . t .R. Then we define a flow function f
as follows: f(_L,s) = #(8), f (g , T) = #'(t) , f(s , t ') = 6(s,t). T h e n ~ ' (f) = 1.

55

Hence the maximum flow of X(# , #', R) is 1.
(ii) ~ (i): Let f be a flow function with Y(I) = 1. Since f(d_, s) < c(_l_, s) =
p(s) and since

:(• = 7(:) = : = ~ .(s)
sES sES

we get f(d_, s) = #(s) for all s E S. Similarly, we get f (g , T) = pP(t) for all
t E S. Let (f(s, t) = f (s , t') for all (s, t) e R and (f(s,t) = 0 if (s~ t) ~ R. Then

~. ,~(s,t) = E :(s ,t ') = 1(• s) = . (s)
~ES ~ES

and similarly E s e s ~(s,t) = #:(t). Hence 5 is a weight function for (/~,it')
w.r.t. R, []

With Lemma 7 we get an algorithm which tests whether a weight function for
distributions p, #~ w.r.t, a relation R exists: We apply an algorithm for finding
the maximum flow F in A/'(#,#', R). The maximum flow in Af(p,p', R) can be
computed e.g. with the O(n a) algorithm of Malhotra et al [20] where n is the
cardinality of S.

A l g o r i t h m 1.
I n p u t : a finite set S, distributions It, #' E 79(S) and R C S x S
O u t p u t : a weight function 5 for (p,p~) w.r.t. R if there exists one, "No" oth-
erwise.
M e t h o d : Compute the maximum flow F of the network X(p , Its, R) and a flow
function f with J:(f) = F. If F < 1 then answer "No" else answer "Yes" and
return

6(s,t) = ~ 0 : if (s,t) E S x S \ R
/Cs, e) : i / (s , t) ~ R. t

Lemma 6 and Algorithm 1 yield an algorithm for testing simulation:

A l g o r i t h m 2. for testing probabilistic simulation
I n p u t : a transition system (S,--~)
O u t p u t : the simulationpreorderR = {(s,t) E S x S : s _E t }
M e t h o d : Let N = n 2 where n i8 the number of states ors and let Ro = S x S.

For j = 1 , . . . , N do:
begin Rj := R j - i

For all (s, t) E R j - : do
begin For all transitions s .2~ p do:

If there does not exist a transition t --~ #~
such that Algorithm 1 yields a weight function
for (p,p ') w.r.t. Rj_: then Rj := Rj \ {(s,t)}.

end
end
Return R := RN.

56

It is clear that Rj = _Uj and hence R = _UN = _.G. The time complexity of
the algorithm is O(n 5 . m 2) where m is the number of transitions and n the
number of states. Algorithm 2 can be implemented in space O(n 2 + m) because
the maximum flow problem (and hence Algorithm 1) can be solved in space
O(n + m) and the representation of the sets Rj needs O(n 2) space. Similar to
Algorithm 2, an O(n 5 �9 m 2) algorithm for testing bisimulation can be given. In
the next section we improve the time complexity giving an O(n 2 �9 m) algorithm.

4 T e s t i n g b i s i m u l a t i o n

Following the idea of [17] which gives an O(n . m) algorithm for testing (non-
probabilistic) bisimulation we present a method for deciding probabilistic bisim-
ulation that works with refinement steps of partitions on the states. Given a
transition system (S,--4) we start with the trivial partition Xo = {S}. Then
we successively refine the partition Xk by substituting B E X~ by the set of
equivalence classes w.r.t, the relation s - s p iff

1. Whenever s 2~ # then there exists a transition s' 24 #' with #(B) = #'(B)
for all B E Xk.

2. Whenever s' 4.% #~ then there exists a transition s 24 # with if(B) = #P(B)
for all B E Xk.

At most after n refinement steps the partition Xk cannot be refined. Then Xk
is the set of bisimulation equivalence classes.

Def in i t i on 8. A partition of a transition system (S,-4) is a set X consisting
of palrwise disjoint subsets B of S with UBex B = S and such that for all
B E X and s E B: the bisimulation equivalence class [s] of s is contained in B.

In what follows, we shortly write p(X) to denote the vector (p(B))Bex. If s e S
then we define X(s) = { (a,p(X)) : s ~ p }. Each partition X is associated
with an equivalence relation - x on S: s --x s' iff X(s) = X(s'). Having a
partit ion X we split the elements of X into the equivalence classes w.r.t. ~ x :
We define

j (x) = U
BEX

L e m m a 9. Let (S,-+) be a transition system and X a partition.

(a) S / ,~ is a partition with (f(S/,'~) = S~ ,',.
(b) J (X) is a partition.
(c) , . r (x) = x then X = S~ ~.

Proof. (a) is clear. Let X be a partition of (S,--4). I t is clear that the sets
B E J (X) are palrwise disjoint and that the union of them is S. Each B E X can
be written as disjoint union of bisimulation equivalence classes. This is because

57

s �9 B implies [s] C_ B. Hence whenever #, # ' are distributions with p(A) = #'(A)
for all A �9 S/ ,,~ then

p (B) = E p (A) = E # ' (A) = p'(B)
AeB/~,, AEB/~,

for all B �9 X. Hence s ~ s' implies s - x s'. Therefore: If C E J (B) ,
s �9 C then C is the equivalence class of s w.r.t. - - x and hence contains [s].
We conclude tha t J (X) is a part i t ion of (S,--~). I f i f (X) = X then - x is a
bisimulation. Hence s - x d implies s ,,, s ~. Therefore s - x s ~ iff s ,,~ s ~
and hence J (X) = S/,',,. []

L e m m a 10. Let (S,--+) be a transition system with n states and m transitions
and let X be a partition of (,5', --~). Then if(X) can be computed in time O(n. rn)
and space O(n. m).

Proo I. For fixed B �9 X and a �9 Act let / :B,~ be the set of all pairs (p, L) where
L is a nonempty subset of B and p = (Pc)cex a real vector such tha t s �9 L if

and only if there exists a transit ion s ~ p with p(X) = p. Let s be the set of
all pairs (a, L) where a �9 Act and (p, L) � 9 for some p. Then s - - x s ' if
and only if:

Whenever (a, L) �9 s then s �9 L iff s ~ �9 L.

The idea of computing B~ =-x is to calculate first the sets s a �9 Act, and
then to derive the equivalence classes of B w.r.t. - x .

Computation of s For each o~ E Act and B E X we construct a tree TB,~
by successively inserting nodes and edges. The edges of TB,~ are labelled by
real numbers p E [0, 1]. Each leaf v has depth 1 and is labelled by an element
(p(v), L(v)) �9 s
Let X = {B1, . . . ,Bl}. We s tar t with TB,~ to be a tree of depth 0, i.e. a tree

consisting of its root. Then for each transit ion s ~ p where s �9 B we traverse
the tree s tar t ing at the root. Reaching a node v of depth k we do:

- If k < l and there is an outgoing edge from v leading to the node w labelled
by #(Bk+l) then we pass the edge v --4 w and continue to travel through
TB,~ with node w.

- I f k < I mad there is no outgoing edge from v labelled by #(B~+I) then we
insert a new node w and an edge from v to w labelled by #(Bk+l). In the
case k + 1 < l we continue to travel through TB,~ with node w. If k + 1 ---- l
then w is a leaf and we define L(w) = {s} and p(w) = #(X).

- If v is a leaf of depth 1 then we insert s into the set L(v).

I t is easy to see that the leaves of TB,a represent the elements of ~B,a. Hence
/:B is the set of all pairs (a, L(v)) where v is a leaf in TB,~.

58

Complexity. First we observe tha t the tuples p(X) (where # ranges over all

distributions s.t. s -~# is a transition) can be computed in (.9(n �9 m) time: For
each distribution # we set aB = 0 for all B E X. Then for all s tates s E S:
If s E B then we replace aB by aB + p(s). Finally p(X) = (aB)sex. The
representat ion of the tuples p(X) needs O (n . m) space.

The construction of TB,~ needs (9(mB,~.l) steps where rnB,~ is the number of

transitions s -~ p, s E B. Since ~ B ~ mB,~ = m and since the cardinality
l of X is bounded by n we get: Ranging over all B E X and a E Act the
construction of all trees TB,~, B E X, a E Act, takes O(n. m) steps. The set of
pa ths f rom the root to a leaf in TB,~ is bounded by mB,~. Since I is the depth
of the leaves TB,~ has at most mB,c~" l ~- 1 nodes. Hence~ all trees TB,~ together
have (.9(m. n) nodes and (9(m) leaves. The representation of the sets L(v) needs
(9(IB]) space (where v is a leaf of a tree TB,~). Since IBI < n the representat ion
of all trees TB,~ together needs O(n. m) space.

Computation of B~ - x . We construct a binary tree TB by successively inserting
nodes and edges. Each leaf v has depth r and is labelled by a subset C(v) of B.
Let (a i ,L i) , i = 1 , . . . , r , be an enumerat ion of the elements of s (Note that
a l = c~j~ i ~ j is possible.) We star t with a tree of depth 0~ a tree consisting of
its root. For each s E B we traverse the tree in the following way: If we have
reached a node v of depth k - L k <: r then:

- If v has a left son w and s E L k then we go to w.
- If v does not have a left son and s E La then we create a new left son w of

v and go to w. If k = r - 1 then we set C(w) = {s}.
- If v has a right son w and s ~ Lk then we go to w.
- If v does not have a right son and s ~ Lk then we create a new right son w

of v and go to w. If k = r - 1 then we set C(w) = {s}.

If we have reached a node v of depth r then we insert s into the set C(v) of

s ta tes associated with v.
Then we have: If v is a leaf and vo,vl~~ ~v~ = v the unique pa th from the

root v0 to v then C(v) = L~ N L~ M... N Ltr where L~ --- L; if v~ is the left son
of vi-1 and L~ = B \ L~ if v~ is the right son of vi-1. Let pi = p(v) where v is
the leaf in TB,~, with (a~, Li) = (a, L(v)). Then for all s e B: s E C(v) if and
only i f X (s) = { (a ~ , p i) : L, = L~ }. Hence, i f s , s ~ e B t h e n s ~ x s ' i f a n d
only if s, s I e C(v) for some leaf v in TB. We conclude:

B / = x = { : v is a leaf in TB }

Complexity. The computat ion of TB needs O(IB] �9 r) steps. I t is clear tha t the
cardinality r of s is bounded by m. Hence we have the t ime complexity (_0(IB I �9
m) for the construction of TB. Each leaf in TB has depth r < m. Since the leaves
of TB correspond to the equivalence classes wx.t . ~x TB has at most I B] leaves.
Since TB is binary it has at most IB]- r + 1 nodes. Henc% all trees TB, B E X ,
have (.9(n �9 m) nodes. Ranging over all v, the sets C(v) can be represented in
space (.0(n). Hence we get the t ime complexity O(n . m) for computing the trees
TB, B E X and the space complexity O (n . m) for their representation. []

59

A l g o r i t h m 3. for testing probabilistic bisimulation
I n p u t : a transition system (S,--+)
O u t p u t : the set R = S/ ~ of bisimulation equivalence classes
M e t h o d : Let X := {S}.

Repeat
Y := X; X := J (X) ;

until Y = X;
Return R := X.

It is clear that the algorithm returns a partition T/with ,7(R) = R. By Lemma 9:
R is the set of bisimulation equivalence classes. If the loop is performed n times
then X consists of n one-element sets and hence J (X) = X. Hence the loop is
performed at most n times. By Lemma 10 the time complexity is CO(n 2. m), the
space complexity (.9(n �9 m).

E x a m p l e 11. Let (S, -4) be given by: S = {sl, s2, s, t, u} and

Or CI t3l t:~ O~

Sl"-)p , S2--~p, Sl - -~pl ~ S2---~p2 , S--~p, t fl

where #(u) -- 1, tO(s1) --: Hi(s2) -- pl(t) - - ' t t l (u) -- 1/4 and #2(sl) --= 1/2,
p2(t) = #2(u) = 1/4. Initially we deal with the partition {S} and compute
J ({ S }) with the help of Lemma 10: The trees Ts,. and Ts,~ consist of a single
edge labelled by 1. Their leaves vs, . and vs,z are labelled by (1, {sl, s2, s}) and
(1, {T}) respectively. This yields s = {(or, {sl, s2, s}), (fl, {t})} and the tree
Ts

where C(vl) = {sl, s2,s}, C(v2) = {t} and C(v3) = {u}. Hence J ({ S }) =
{B!,B2,B3} where Bi = C(v~). Next we compute J({BI,B2,B3}). Since B2
and B3 consist of a single element we only have to consider B1. The tree TB~,~
can be depict as follows:

0~.~__ 0 :z. 1---*-v2

where L(vl) = (sl, s2} and L(vz) = {sl, s2, s}. This yields the tree TB~:

where C(vl) = {sl, s2}, C(v2) = {s}. We obtain the partition X which consists
of {s~,s2}, {s}, {t} and {u}. The next step yields J (X) = X and hence X =
S/ , . . . r-1

60

5 Concluding remarks

We gave an algorithm for testing probabilistic bisimulation in time O(n 2 �9 m).
Compared With the non-probabilistic case where the best known algorithm for
deciding bisimilarity has the time complexity O(m. log n) [22] the cost of our
algorithm seem to be acceptable. It is an open problem whether the t ime com-
plexity of our algorithm can be improved in a similar way as the O(m �9 log n)
algorithm of [22] improves the O(n. m) algorithm of [17]. The algorithm which is
implemented in the Concurrency Workbench [4] tests non-probabilistic simula-
tion in time O(n 4. m). It works similar to the bisimulation equivalence algorithm
of [17]. It is an open question whether our O(n 5. m 2) result can be improved
by a partioning technique. Our methods applied to "deterministic" probabilis-
tic transition systems yield time complexity O(n 7) for deciding simulation and
time complexity O(n 3) for deciding bisimulation. (In "deterministic" transition
systems, for every state s and action a there is at most one outgoing transition
labelled by a. Hence, for fixed action set, the total number m of transitions is

In this paper we only considered strong (bi-)simulation which does not ab-
stract from internM actions. It would be interesting if the algorithms presented
here can be modified to check weak (bi-)simulation.

References

1. R. Alur, C. Courcoubetis, D. Dill: Verifying Automata Specifications of Probabilis-
tic Real-Time Systems, Proc. REX Workshop, Mook, The Netherlands, Real-Time:
Theory in Practice, J.W. de Bakker, C. Huizing, W.P. de Roever, C. Rozenberg
(eds.), Lecture Notes in Computer Science 600, pp 27-44, 1991.

2. C. Baler, M. Kwiatkowska: Domain Equations for Probabilistic Processes, submit-
ted for publication.

3. T. Bolognesi, S. Smolka: Fundamental Results for the Verification of Observational
Equivalence: a Survey, Protocol Specification, Testing and Verification, Elsevier
Science Publishers, IFIP, pp 165-179, 1987.

4. R. Cleaveland, J. Parrow, B. Steffen: A Semantics-Based Verification Tool for Fi-
nite State Systems, Protocol Specification, Testing and Verification IX, Elsevier
Science Publishers, IFIP, pp 287-302, 1990.

5. R. Cleaveland, S. Smolka, A. Zwarico: Testing Preorders for Probabilistic Pro-
cesses, Proc. ICALP 1992, Lecture Notes in Computer Science 623, Springer-
Verlag, pp 708-719, 1992.

6. C. Courcoubetis, M. Yannai~kis: Verifying Temporal Properties of Finite-State
Probabilistic Programs, Proc. 29th Annual Syrup. on Foundations of Computer
Science, pp 338-345~ 1988.
E. Dinic: Algorithm for Solution of a Problem of Maximal Flow in a Network with
Power Estimation, Soviet. Math. Dokl., Vol. 11, pp 1277-1280, 1970.
R. Enders, T. Filkorn, D. Taubner: Generating BDDs fir Symbolic Model checking
in CCS, Distributed Computing, Vol. 6~ pp 155-164, 1993.
S. Even: Graph Algorithms, Computer Science Press, 1979.
L. Ford, D. Fulkerson: Flows in Networks, Princeton University Press, 1962.

7o

8.

9.
10.

61

11. J. Groote, F. Vaandrager: An Efficient Algorithm for Branching Bisimulation and
Stuttering Equivalence, Proc. 17th International Colloqium Warwick, Automata~
Languages and Programming, Lecture Notes in Computer Science 443, pp 626-638,
1990.

12. H. Hansson: Time and Probability in Formal Design of Distributed Systems,
Ph.D.Thesis, Uppsala University, 1994.

13. H. Hansson, B. Jonsson: A Logic for Reasoning about Time and Probability, Formal
Aspects of Computing, Vol. 6, pp 512-535, 1994.

14. S. Hart, M. Sharir: Probabilistic temporal logic for finite and bounded models,
Proc. 16th ACM Symposium on Theory of Computing, pp 1-13, 1984.

15. B. Jonsson, K.G. Larsen: Specification and Refinement of Probabilistic Processes,
Proc. 6th IEEE Syrup. on Logic in Computer Science, 1991.

16. B. Jonsson, W. Yi: Compositional Testing Preorders for Probabilistic Processes,
Proc. 10th IEEE Syrup. on Logic in Computer Science, pp 431-443, 1995.

17. P. Kannelakis, S. Smolka: CCS Expressions, Finite State Processes and Three Prob-
lems of Equivalence, Proc. 2nd ACM Symposium on the Pronciples of Distributed
Computing, pp 228-240, 1983.

18. K. Larsen, A. Skou: Bisimulation through Probabilistic Testing, Information and
Computation, Vol. 94, pp 1-28, 1991.

19. D. Lehmann, S. Shelah: Reasoning with Time and Chance, Information and Con-
trol, Vol. 53, pp 165-198, 1982.

20. V. Malhotra, M. Pramodh Kumar, S. Maheshwari: An O(]V 3 I) Algorithm for Find-
ing Maximum Flows in Networks, Computer Science Program, Indian Institute of
Technology, Kanpur 208016, 1978.

21. R. Milner: Communication and Concurrency, Prentice Hall, 1989.
22. R. Paige, R. Tarjan: Three Partition Refinement Algorithms, SIAM Journal of

Computing, Vol. 16, No. 6, pp 973-989, 1987.
23. A. Pnueli, L. Zuck: Verification of Multiprocess Probabilistic Protocols, Distributed

Computing, Vol. 1, No. 1, pp 53-72, 1986.
24. A. Pnueli, L. Zuck: Probabilistic Verification, Information and Computation, Vol.

103, pp 1-29, 1993.
25. R. Segala, N. Lynch: Probabilistic Simulations for Probabilistie Processes, Proe.

CONCUR 94, Theories of Concurrency: Unification and Extension, Lecture Notes
in Computer Scieuee 836, Springer-Verlag, pp 492-493, 1994.

26. R. van Glabbeek~ S. Smolka, B. Steffen: C. Torts: Reactive, Generative, and Strat-
ified Models for Probabilistic Processes, Proc. 5th IEEE Symposium on Logic in
Computer Science, pp 130-141, 1990.

27. M. Vardi: Automatic Verification of Probabilistic Concurrent Finite-State Pro-
grams, Proc. 26th Syrup. on Foundations of Computer Science, pp 327-338, 1985.

28. S. Yuen, R. Cleaveland, Z. Dayar, S. Smolka: Fully Abstract Characterizations of
Testing Preorders for Probabilistic Processes, Probabilistic Simulations for Prob-
abilistic Processes, Proc. CONCUR 94, Theories of Concurrency: Unification and
Extension, Lecture Notes in Computer Science 836, Springer-Verlag, pp 497-512,
1994.

29. W. Yi: Algebraic Reasoning for Real-Time Probabilistic Processes with Uncertain
Information, Formal Techniques in Real Time and Fault Tolerant Systems, Lecture
Notes in Computer Science 863, Springer-Verlag, pp 680-693, 1994.

30. W. Yi, K. Larsen: Testing Probabilistic and Nondeterminsitic Processes, Protocol,
Specification, Testing and verification XII, Elsevier Science Publishers, IFIP, pp
47-61, 1992.

