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Abs t r ac t .  In this paper, we propose an approach for managing struc- 
tural evolutions through views. Evolutions are not actually performed 
but simulated, thus the database schema is preserved for both users and 
existing applications. Furthermore, the approach avoids costly database 
reorganizations. This results from the multi-schema architecture which 
is introduced and from the isolated management of additional data. 
In our approach, the concept of virtual class is complemented through the 
notion of virtual schema, encompassing several classes and their possible 
inheritance or derivation relationships with their own properties. The 
inter-view visibility is enhanced with the main advantage of improving 
view re-use. 

1 I n t r o d u c t i o n  

In relational systems, views are widely used for controlling access, simplifying 
queries, or providing users with a mere and accurate vision of da ta  as regards 
their  needs. 
In an object-oriented context, the application scope of views has been extended 
[1, 5, 14, 10, 11, 17]. In particular,  some approaches consider views as a rel- 
evant mechanism when managing structural  evolutions [5, 10, 17]. Actually, 
modifications of an Object-Oriented Database  (OODB) schema can be captured 
through views, without altering the DB schema and thus without reorganizing 
the database  and maintaining existing application programs. In fact, s tructural  
evolutions are simulated through views and not actually performed within the 
DB schema. 

Views definition for OODBMS has been addressed in different approaches among 
which two trends can be distinguished depending on whether the views are in- 
cluded in the database schema or not, i.e. managed in isolation. For the first 
trend,  considering views as parts  of the DB schema means inserting new virtual  
classes in the inheritance hierarchy of the application [11, 10, 17]. Although base 
classes are preserved, the schema itself no longer reflects the real world since it is 
enforced with additional classes, perhaps not meaningful for users in part icular  
if they stand for "some external vision" of data. Furthermore,  these virtual class 
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insertions complicate the inheritance hierarchy [5]. The second trend [5] diverges 
significantly from the first one by considering two clear cut levels: on one hand 
the base classes describing the application schema, and on the other hand the 
virtual classes representing views. This clear distinction is part icularly relevant 
when considering the cumbersome phenomenon of view proliferation which hap- 
pens over time, all along the application life. 

The proposed approach is ra ther  close to the second described trend but  it 
boosts the separation between views and database schema by introducing a 
middle level, called the "Federated Schema", which offers an overview of both  
base classes of the schema and virtual classes of views. This schema provides a 
relevant knowledge of both structural  and behavioural aspects of applications. 
More precisely, schema modifications are not actually performed but  are cap- 
tured by defining views. Thus the database schema is never altered (likely until 
an entire reorganization becomes necessary). We believe tha t  in such a frame- 
work, sharing and re-using views could be significantly improved. Furthermore,  
views are not only derived from a single class but they could result from any 
query involving several classes. When additional information (i.e. non derived) 
is captured through the creation of new properties in a virtual class, it is not 
actually stored in the database.  In fact, the structural  enrichment is reflected 
in the federated schema, while inserted values are stored in the federated base. 
The lat ter  base is an additional storage for da ta  added all along the application 
life. With  this approach, we can insert new properties in any virtual class even 
if it is derived from several classes. 

The paper  is organized as follows. Section 2 proposes an overview of our approach 
and focusses on the multi-level schema architecture that  we define. Schema def- 
inition is also addressed. Section 3 is devoted to the manipulat ion language 
provided to handle views. An implementat ion experiment is described in section 
4. In section 5, we give an overview of related work. As a conclusion, we compare  
our proposal to other approaches. 

2 The  Federated Approach: An ove rv i ew  

2.1 P r e a m b u l e  

In our approach,  designers can handle both base classes defined in the applica- 
tion schema and virtual classes initially derived from the former classes. Virtual  
classes can capture evolutions concerning a single class, such as deletion, mod- 
ification or insertion of properties which can be either at t r ibutes  or methods.  
But they can also represent creations of new relationships between classes, with 
their possible own properties ("relationship" is intented in the sense of the En- 
t i ty/Relat ionship model). In such cases, the underlying virtual classes are derived 
from several base classes. 
Thus users can handle the virtual classes through their virtual schemas. A vir tual  
schema is a set of virtual classes which are related by IS_A links or reference links. 
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Thus, such a schema captures a set of modifications applying to different classes 
(including references between classes) but also IS_A links. Furthermore, each 
virtual class in a virtual schema is associated to at least another class belonging 
to the base schema or being virtual, through derivation links. Inheritance and 
derivation hierarchies are both constrained by construction rules which avoid, in 
particular, cycles when defining virtual schemas. 

Virtual schemas defined by designers as well as the DB schema are integrated in 
the federated schema. This schema offers an overview of all the available struc- 
tural components of an application. Thus it provides designers with a framework 
in which new virtual schemas can be created. When evolutions capture new in- 
formation, i.e. new properties, it is actually stored in the federated schema. The 
associated values are managed in isolation from the original database. In fact 
additional data axe stored in the federated database. The possibility of includ- 
ing additional properties in a virtual class allows the views to be augmented 
independently from the base classes. Figure 1 depicts the proposed approach for 
managing views. 

Base Schema ] 

Derived.from"~'lP@ 
Augmented-by 

L j ' ...... 

Pointers on bose objects" 
and wduesCulditionaf~ropertles 

Federated Database 

Fig. 1. The Federated Approach 

2.2 Definitions 

Since our approach fits in an OO context, we assume that the DB schema is 
an inheritance hierarchy of classes (above called base classes) with possible ref- 
erences between classes (expressed through attribute domains). For setting the 
groundwork of our manipulation language, we formally define the described con- 
cepts. 
In this paper, we consider, like in [6], a typical object model: An object is de- 
fined by properties which may be either attributes or methods. Objects sharing 
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common properties, i.e. same attr ibutes and behaviour, are grouped into classes. 
Classes are related by IS_). links through an inheritance hierarchy or by reference 
links (an at tr ibute with a domain being another class). Multiple inheritance is 
allowed but  the following condition must hold: two super-classes of a class have 
necessarily a common super-class. A base schema, or merely a schema, is defined 
as follows. 

D e f i n i t i o n  1 S c h e m a  
A database schema S is defined as a directed acyclic graph S = (C, IS_A)  where 
C stands for the set of classes and IS_A for the IS_A links such that: 

- there is no IS_A cycle in the graph; 

- two directed paths of IS_A links sharing the same origin have to be extended 
to  a common super-class. 

A virtual class is derived from one or more source classes which may be ei- 
ther base or virtual classes. Nevertheless, the derivation process is constrained 
according to the following definition. 

D e f i n i t i o n  2 D e r i v a t i o n  l inks  
The derivation links must respect the following condition: 
the virtual class includes an attribute referencing each one o] its source classes. 

A virtual schema includes several classes possibly related by IS_A links, and 
initially derived from a base schema. 

D e f i n i t i o n  3 V i r t u a l  S c h e m a  
A virtual schema S ,  is defined by a triplet S ,  = (C, ,  I S _ A v , D e r i v , )  such that: 

- (C,,  IS_Av)  satisfies Definition 1; 
- Derivv is a set of derivation links (according to Definition 2); 
- there is no derivation cycle in Sv. 

The federated schema is then defined from a base schema and the various virtual 
schemas "derived" from it. 

D e f i n i t i o n  4 F e d e r a t e d  S c h e m a  
The federated schema SF = (CF, I S - A F ,  Der ivF)  of a base schema S = (C, IS_A) 
from which n virtual schemas Sv~ = ( Cv~ , I S-Avi , Derivv~ ) are derived is defined 
by: 

i = l  i = - i  i----1 
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3 Creating and Manipulating Views 

The following section describes, in an intuitive way 3, some of the most interesting 
operations provided for creating and manipulating views. 

Example  1 Our illustrating example, all along the paper, is managing university 
students. Let us consider the following base schema, graphically described in Figure 
2, and from which we will derive our view examples. It is complemented by a textual 

Class C_Person ~ C_Address 

/ 
Class C_Student ~ C_Course 

Fig. 2. The Univers i t y  Schema 

Notation: 
reference link 

ts_A l i~. ._ 

descmption: 

schema University; 

class C_Person 

type tuple (name: string, 

flrstname: string, 

address: C_Address ); 

methods ... 

end; 

class C_Student inherit C-Person 

type tuple (id: string, 

courses: set (C_Course)); 

methods ... 

end; 

0 

class C_Address 

type tuple (number: integer, 

street: string); 

methods ... 

end; 

class C_Course 

type tuple (title: string, 

discipline: string); 

methods ... 

end; 

3.1 Schema Defini t ion Language 

This section is devoted to the schema definition language, provided for creating 
virtual schemas and classes. This language can be used by designers while end- 
users are provided with the manipulation language described in section 3.2. 

3 The evolution operations are fully described in [4]. 
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F e d e r a t e d  S c h e m a  C r e a t i o n  The federated schema results from the union of 
the base schema and its associated virtual schemas (Cf. Definition 4). Therefore, 
on an implementation level, the federated schema is necessarily initialized to the 
base schema. Then virtual schemas being derived are integrated in the feder- 
ated schema. Creating a federated schema is performed through the following 
statement: 

c r e a t e  f e d e r a t e d  schema F e d e r a t e d S c h e m a N a m e  
from B a s e S c h e m a N a m e  ; 

At this step, the federated schema F e d e r a t e d S c h e m a N a m e  is merely the same 
than the base schema 4. 

Example  2 Let us consider the federated schema generated by: 

create federated schema OniversityFed from University; 

where UniversityFed is the federated schema name associated to the base schema 
University.  The principle of such an initialization operation is illustrated in Figure 
3. It has no effects on the base schema nor on the database where data are actu- 
ally stored (University Base). Through the federated schema, designers can handle 

University Schema Included_in ~niversity Fed Schema~ 

Fig.  3. The U n i v e r s i t y F e d  Federated Schema 

the base classes and derive from them new virtual classes which enrich the federated 
schema: UniversityFed Schema. When additional information is captured through vir- 
tual classes, it will be managed in isolation from the original database (as illustrated in 
Example 4 ) I-3 

V i r t u a l  S c h e m a  a n d  Class  C r e a t i o n  The federated schema provides the 
groundwork in which new virtual schemas can be defined, by using the following 
creation operation: 

4 In fact, on an implementation level, pointers are initialized to the base classes of the 
specified schema. 
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crea te  v i r t u a l  schema V i r t u a l S c h e m a N a m e  

from F e d e r a t e d S c h e m a N a m e  ; 

Example 3 Within the IJaiversityFed Schema, we consider a virtual schema Marks, 
yielded by the operation. 

create virtual schema Marks from OniversityFed; 

U ~ Derived-from / 
' ]  Augmented-by ~ 

I . . . . . . . . . . . . . . . . . . . . .  

Fig. 4. The M a r k s  Virtual Schema 

In this virtual schema, initially empty, new virtual classes can then be created, as shown 
in Figure ~D 

When defining new virtual classes which enrich the virtual schema, designers 
specify queries necessarily applying to classes in the federated schema. Thus 
virtual classes are provided with a structure or schema (attributes specified in 
the S e l e c t  clause of the query and which reference other classes) and an extension 
(objects retrieved by the query). Virtual class creation is merely performed by: 

c rea te  v i r t u a l  c lass  C l a s s N a m e  from l i s t o f C l a s s N a m e s  as Q u e r y ;  

where Q u e r y  is a retrieval order which could be expressed by using whatever DB 
manipulation language. For exempliflying this principle, we choose a language 
similar to 0 2 S Q L  [16]. 

Example 4 In the virtual schema Marks, we imagine that the designer wants to pro- 
vide users with a virtual class Student_Mark capturing marks of each student for each 
taken course. For defining this virtual class, the first step necessarily specifies "what 
is derived", i.e. which attributes in which virtual or base classes are considered. This 
creation is performed as follows: 

create virtual class Student_Mark from C_Student, C_Course as 

(select s :C_Student, c :C_Course 

from s in C_Student, c in C_Course 

where c in s.courses); 

Resultin9 from this operation, the virtual class Student_Mark encompasses objects hav- 
ing their own identifier and defined as tuples of references which are stored in the 
database as illustrated in Figure 6. More precisely, each object captures a relation- 
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Class C_Student  C_Course 

," . . . . . . . . . . . . . . . . . .  "I . . . . . . .  5"; < 
class S t u d e n t M a r k  : 

",. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .' 
Marks Schema 

Notation: 
- -> DerivationLink 

Fig .  5. The M a r k _ S t u d e n t  Virtual Class 

~ Derived-from I 
Augmented-by 

i 
J Included_in ~ versity Fed Schema ,I .................. " ' ~ . ~ t u a l S c h e m a ~  University Sch 
i 

Pointers o~n 
base objects 

University Fed Base 

Fig .  6. The M a r k _ S t u d e n t  Objects in the Federated Database  

ship between an existing student (for instance, object Osl ) and a course. For exam- 
ple, objects Omsa = (idmsl, (*os1,'or and Om82 = (idms'2, (*o~1,'or capture the 
fact that student o~1 has taken the courses ocl and oc2. Thus objects in Student_~ark 
are defined through their identifier and a couple of pointers referencing the classes 
C_Student and C_Course (Cf. Example 1). Figure 5 partially illustrates the federated 
schema OniversityFed as yielded by the operations described so far. For the sake of 
clearness, we do no fully represent the federated schema, i.e. the inheritance hierarchy 
and composition graph of base classes (Cf. Figure 2). We just consider the two base 
classes: C_Student and C_Courne. The latter classes are related by derivation links to 
the virtual class Student_~ark which is the single class in the virtual schema Marks D 

Inserting additional at tr ibutes in a virtual class is the mechanism for support ing 
view augmentation.  By this way, real world changes consisting of da ta  enrichment 
are taken into consideration. The associated s ta tement  is the following: 

add a t t r i b u t e  At t r ibu te  : A t t r i b u t e D e s c r i p t i o n  t o  C l a s s N a m e ;  

E x a m p l e  5 Let us resume the virtual class Student~ark,  derived in the previous 
example. Since no marks are stored in the original database, the virtual class must be 
complemented to fully capture the semantics intented by designers. Thus a new attribute 
marks  is added by the following operation: 

add a t t r i b u t e  marks: s e t ( r e a l )  to Student_bIark; 
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Furthermore, a new method is required for getting values of the added attribute. This 
is done by: 

add method getmarks (C_Student,C_Course) to Student_Mark; 

Mark values of the virtual class are then stored in the federated database, as illustrated 
in Figure 7. When defining additional attributes, pointers on objects in the associated 

11~ ~ Derived-from I 
Ausmented'by 

University Schema ] Included_in [ ~ niversity Fed Sche ) "  .................. ' " ~ l  Schem~ z) 

P~ ~ base'~Jec'tSMark values 

University Fed Base 

Fig. 7. Adding Values in the Federated Database 

virtual class become persistent. In addition, persistency can apply to the class, merely 
by specifying it as a persistency root, in a similar way than in 02 [16]: 

name themarks: set(Student_Mark) ; 

[] 

This approach requires an accurate management of update operations applying 
to the original database, because these operations must be propagated to virtual 
classes. When such propagations involve persistent virtual classes, it is necessary 
to evaluate once again the definition query of the considered class. We do not 
develop this aspect since the object update propagation is beyond the scope of 
this paper. 
When attributes of referenced classes are not necessary in the virtual class, they 
can be hiden. Thus the designer can refine the external vision of data, offered 
by the new class, to fully meet user's expectations. In the associated statement, 
specified attributes can only be attributes of classes related by derivation links 
to the virtual class under examination: 

hide l i s t o f A t t r i b u t e N a m e s  to  Mark C l a s s N a m e ;  

Example 6 When defining the virtual class Student_Mark, the designer aims to pro- 
vide a mere view of student's results. In particular, attributes courses in C_Student and 
discipline in C_Course are not necessary and thus they are discarded from the user's 
view of Student_Mark by: 

hide (courses, discipline) to Student_Mark;[] 
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All the operations previously described can be grouped together  within a sin- 
gle declaration of virtual class, including the query specification, a t t r ibute  and 
method insertion, and at t r ibute  hiding. 

c r e a t e  v i r t u a l  c l a s s  C l a s s N a m e  f rom l i s t o f C l a s s N a m e  a s  Q u e r y ;  
add a t t r i b u t e  A t t r i b u t e N a m e  : A t t r i bu t eDescr ip t i on ;  
add method M e t h o d N a m e  : M e t h o d D e s c r i p t i o n  ; 
h i d e  l i s t o f  A t t r i b u t e N a m e s  ; 
end;  

E x a m p l e  7 Student-Mark could have been defined as follows: 

create virtual class Student_Mark from C_Student, C_Course as 

(select s :C_Student, c : C_Course 

from s in C_Student, c in C_Course 

where c in s.courses); 

add attribute marks: set(real); 

add method getmarks (C_Student,C_Course) ; 

hide (courses, discipline); 

end; 

[3 

A d d i t i o n a l  F e a t u r e s  In this section, we briefly present two additional features 
of our approach. The first one is the inter-view visibility. With such a capability, 
it is possible for a virtual schema to re-use classes defined in another  virtual 
schema. Sharing classes is a relevant mechanism for avoiding redundant  defini- 
tions of virtual classes but also for simplifying derivations. 
An existing class in a virtual schema can be visible, and then used, in another  
schema through the following export  order: 

e x p o r t  v i r t u a l  c l a s s  C l a s s N a m e ;  

In our approach, a second feature to be underlined is the creation of vir tual  
attr ibutes.  Virtual at tr ibutes are just at t r ibutes of a virtual class yielded by 
its definition query (and not user-defined, Cf. Section 3.2). A virtual class can 
be complemented by inserting new virtual at tr ibutes.  Let us notice tha t  virtual 
a t t r ibutes  can merely reflect base attr ibutes.  But  they can also capture  additional 
semantics hiden in the original database,  by performing calculus. In such cases, 
the a t t r ibute  must be given a name by user. 

E x a m p l e  8 We imagine that a virtual schema Averages, illustrated in Figure 8, is 
defined, including a single class Course_hverage. This class is derived from the virtual 
class Student_Mark (which must be previously exported) through a query performing an 
object grouping. The performed orders are the following: 

export virtual class Student_Mark; 

create virtual schema Averages from UniversityFed; 

create virtual class Course_Average from Student_Mark as 

(group sm in Student_Mark 

by (t: sm.course.t i t le));  
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Class C_Student C_Course 

/ ~ .... ========================== . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

i class Student_Mark .~, . . . . . . . . . .  class Course Average 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ' Averages  Schema 
Marks  Schema 

Fig.  8. Two Virtual Schemas 

The class Course_AveraEe is complemented by adding a new attribute average reflecting 
the average marks of students for courses. This attribute is virtual since its values can 
be computed from Student_Mark through a mere query, as shown in the following order: 

add virtual attribute average as 

(select avg(sm.partition.marks) from sm in Course_Average); 
hide (address ,name, firstname, libelle, id) ; 

where partition is obtained from the previous query [] 

3.2 Schema Manipulation Language 

For updating their virtual schemas, users are provided with evolution capabil- 
ities, enhanced through the proposed manipulation language. In fact, each DB 
programmer or user only accesses his own schema and update operations must 
not alter schemas of other users. 
In an OO context, the evolution issue has been widely addressed [2, 3, 8, 9, 18]. 
In particular, a set of primitives proved to be minimal and complete is proposed 
by R. Zicari in [19]. By combining these primitives, any more complex evolution 
can be expressed. In our approach, we resume these basic operations and adapt  
them to our view context. These operations are insertion or deletion of property, 
class and IS_A link. 
In the following sub-sections, we present, in an informal and illustrated way, 
the different operations provided for updating virtual schemas, along with their 
possible effects on other virtual schemas and the federated schema. 

A d d i n g  P r o p e r t y  Adding a property (attribute or method) in a virtual class 
cannot be merely seen as the modification of some class in the federated schema 
because such an operation can have consequences for other existing virtual 
schemas. Critical side-effects can occur when the updated class is exported or 
derived for a re-use concern. Thus it is necessary to restrict the application scope 
of property insertions to the single virtual schema in which the concerned virtual 
class is defined. With this constraint, virtual schemas using the complemented 
class are garanteed to be consistent. For enhancing such a constraint, our ap- 
proach redefines the virtual class to be modified. In fact, the property insertion 
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is not actually performed in the original class but  in a simulated copy (by a 
virtual class) of it. This copy is created and managed by the system, and it is 
not visible for the user. From the designer's viewpoint, he is provided with an 
alias of the virtual class, denoted by the key word is-used-as. 

Example  9 Let us imagine that, for meeting an application or user need, the final 
marks of students for the taken courses must be captured. An attribute insertion in the 
virtual class Student_Mark can be performed in the following way: 

add attribute finalmark: real to Student_Mark; 

Class C_Student C_Course 

" . .  % 

." . . . . . . . . . . . . . . . . . . . .  -r--~-~ ~'- ~ % 

i class Student Mark'  " 
:, ?."~. ?'I ~".~.  '.'t"~eS~. ?':"."~'- " r ~  . . . . . . . . . . . .  . . . . . . . . . . . .  :~ . . . . . . . . . . . . . . . . . . .  

Marks Schema class Student_Mark 
/ 

/ 

r 

class Course_Average 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 

Averages Schema 

Fig.  9. The Final Virtual Schemas after an Insertion 

However, since Student_Mark is re-used by the virtual class Mark_hverage, the insertion 
does not actually alter StudentA4ark, but a virtual copy of it: Student_Mark'. Figure 9 
proposes the low-level representation of our federated schema example, but for designers 
the federated schema remains the very same (apart from the provided alias) [] 

IS__A L ink  a n d  Clas s  C r e a t i o n  New classes can be created by specifying 
their inheritance relationship with one or several existing classes, by using the 
following order: 

virtual class I n h e r i t e d C l a s s N a m e  inherit C l a s s N a m e ;  

In addition, a class can be declared as being the super-class of another one: 

v i r t u a l  c l a s s  S u p e r C l a s s N a m e  SuperClass  of  C l a s s N a m e  
[hide  l i s t o f  A t t r i b u t e s  ] ; 

Example  10 In Figure I0, the virtual class ltonours_Student, in the virtual schema 
Marks, is defined as a sub-class of Student.Mark merely by specifying an inheritance 
link between them: 

virtual class Honours_Student inherit Student_Mark; 

[] 
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Class C_Student 

class Student_Mark' 
S t u d e n t _ M a r k '  i s _ u s e d _ a s  S t u d e n t _ M a r k  

class Honours_Student 

�9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Marks Schema 

C_Course 
X'-, 

.-..:.~.~ -~ ............................. 

class Student_Mark 

I 

I 

I 

class Course_Average 
�9 ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  �9 

Averages Schema 

Fig. 10. The H o n o u r s _ S t u d e n t  Virtual Class 

De le t ing  a P r o p e r t y  Deleting property from a virtual class must preserve 
the consistency of all the virtual schemas within the federated schema. Like for 
property insertion, if the virtual class is re-used, the operation is performed on a 
copy of the concerned class by hiding the property to be deleted. It is propagated 
to possible sub-classes within the considered virtual schema, once again by using 
the hide clause. 

Example 11 I f  the user wants to discard Address from the virtual class Student..blark, 
he can use: 

hide (address) to Student_Mark; 

As a result, the attribute is no longer visible for the user, in particular in the sub-class 
Honours_Student, but the operation applies on the copy Student_blark'. Thus the single 
virtual schema to be modified is Harks [] 

De le t ing  a Class In an inheritance hierarchy, deleting a class is usually per- 
formed by removing it while relating its possible sub-classes to its super-class(es) 
[19]. However, in our context, class deletion must be examined by paying partic- 
ular attention to derivation links. In fact, exactly like for property insertion or 
deletion, the operation effects must be located within the single virtual schema 
from which a class must be removed. In our approach, class deletions are guaran- 
teed to be without side-effets, once again by using the copy mechanism. Now, let 
us consider the modified virtual schema. If the user intends to remove a virtual 
class having sub-classes, the deletion is necessarily propagated to the sub-classes. 
Actually, sub-classes cannot be preserved, since a main part of their semantics 
is captured through the definition query of their super-class. 

Example 12 I f  the user deletes the virtual class Student.)la.rk in the virtual schema 
Harks, its sub-class Honours_Student is automatically removed (Figure 11). In fact 
deletion applies to the virtual copy Student~ark',  thus the virtual schema Averages 
is preserved. 
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Class C_Student C_Course 

~ . "  . . . .  ~ ' k  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

class Mark_Student 

I 

I 

I 

class Course_Average 
. ~  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Averages Schema 

Fig. 11. Federated Schema after Student_Mark Deletion 

4 A n  I m p l e m e n t a t i o n  u s i n g  t h e  0 2  D B M S  

4.1 System Architecture 

Based on the approach described in this paper, a prototype [7] is currently devel- 
opped on top of the 02 DBMS: S E T V  (Schema Evolution Through Views). It 
provides both the view definition and manipulation languages. Figure 12 gives an 
overview of S E T V  architecture. Within the system, the component Virtual Ob- 
ject Manager maintains relationships between virtual objects and the associated 
base objects. 
When a virtual class is derived from several classes, its objects must be provided 
with their own OID, created and managed by the system all along the workses- 
sion. For additional attributes added in virtual classes, values are get through 
an "init" method which includes a "new" operator. 
There are two pure ways to perform query processing against views: materi- 
alization and query transformation. The first one is to materialize all derived 
classes referenced by the query. The other consists of transforming a query into 
an equivalent set of subqueries refering to base classes. 
In our implementation, we adopt a dynamic materialization for composite vir- 
tual object. However, the materialized virtual objects must be maintained for 
reflecting the update operations on the database. In our system, this consistency 
is verified through triggers related to update actions in the same way as in [3]. 

4.2 Sys tem Classes 

The components of S E T V  are implemented as system classes. A part of the 
S E T V  Meta-Schema hierarchy is presented in Figure 13. We just give an ex- 
ample including system classes representing a virtual class with the 02 data 
definition language: 
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SETV Parser ] 

I Virtual Schema I Builder 

I I [ Virtual Object Materializer Manager I 

I c  Si2';eTcy I 

lJ 

Fig. 12. The S E T V  Architecture 

J 02 Meta-Schema 
Manager 

Object 

j 7  
S E ~  Schema SETV Classes 

SETV_Bc~e_Sc S E ~  Federated_Schema SETV_Base Classes SETV_Virtual_Classes 

SETV_Virtual_Schema 

Fig. 13. The System Classes 

class SETV_virtual_classes inherit SETV_classes 
public type tuple( 
range: string, /* class visibility */ 
from: set (SETV~ase_classes), /* base class names */ 
extension: SETV_extensions, /* virtual class extension */ 
attributes: set(SETV_attr), /* virtual class attributes */ 
methods: set(SETV~ethods), /* virtual class methods */ 
has_additional: integer, /* flag for additonal property */ 
has_init: integer) /* flag for init method */ 
end; 

class SETV_extensions 
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public type tuple( 
name: string, /* extension name */ 
class: SETV_virtual_classes, /* related virtual class name 
is_materialized: integer, /* flag for materialization */ 
query: string, /* for populating virtual class */ 
is_persistent: integer, /* flag for peristent extension */ 
end; 

, /  

5 R e l a t e d  W o r k  

The concept of schema virtualization is introduced by K. Tanaka et al. [15]. A 
more sophisticated view language is proposed in [1] for the 02  object model. It 
includes a set of view primitives (creation of virtual classes, imaginary classes, 
virtual attributes, OID creation for imaginary objects). The concepts described 
in [1] are extended and implemented in the prototype O2Views on top of the 
OODBMS 02  [13]. However, capacity augmenting views are not allowed. There- 
fore, O2Views cannot be used for simulating schema evolutions. 
By using the view mechanism, the approach proposed in [5] enhances various 
DB features such as: dynamic sets, parti t ion of classes, schema evolution and 
versions. The author shows how most of the schema changes can be simulated 
by view creation. In [17], the simulation process is enhanced and included in an 
external schema definition. An external schema is defined as a subset of base 
classes and a set of views corresponding to the schema modifications. Besides, 
this external schema has to be closed. More recently, the Multi-view system [12] 
is enhanced for supporting schema evolutions [11]. However, the issue concern- 
ing capacity-augmenting views derived from several base classes is not addressed. 

A very important  question to be answered concerning the simulation of schema 
evolution is: can all schema modifications be simulated? An answer can be found 
in [17] where schema modifications are classified according to their impact on 
the object modelling capacity. In fact, three kinds of transformations are consid- 
ered depending on whether they preserve, reduce or augment capacity. All theses 
transformations could be simulated with views. But,  when considering views as 
integrated in the base schema, capacity augmenting operations necessarily re- 
quire a data  reorganization [17, 11]. Let us notice that  integrating views in the 
base schema reveals another defect: fully artificial classes can be necessary when 
a view is derived from several classes [17]. These artificial classes can be cumber- 
some for users since they only result from intermediary steps when computing 
views. By using the proposed federated approach, such problems are avoided. 

6 C o n c l u s i o n  

In this paper, we propose an approach for managing structural evolutions through 
views. Evolutions are not actually performed but  simulated, thus the DB schema 
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is preserved for both users and existing applications. Furthermore, the approach 
avoids costly database reorganizations. This important  advantage results from 
the multi-schema architecture which is introduced and from the isolated man- 
agement of additional data  (within the federated base). 
In our approach, the concept of virtual class (widely used in related work) is com- 
plemented through the notion of virtual schema, encompassing several classes 
and their possible inheritance or derivation relationships. Furthermore, through 
the concept of federated schema, the inter-view visibility is enhanced with the 
main advantage of improving view re-use. With the proposed clear cut separa- 
tion between the federated and base schemas, none operation needs an actual 
database reorganization, even if it is capacity augmenting. By this way, our ap- 
proach boosts the simulation capabilities when compared to [11]. Furthermore, 
artificial classes are not necessary for defining views. 
View definition and manipulation languages are defined for designers and users. 
They  provide the required functionalities for handling views. Furthermore when 
manipulating classes, modification operations are guaranteed without side-effects 
for other users. With this approach, each user is provided with a great autonomy 
for updating his virtual classes while taking advantage of other user's manipu- 
lations through the federated schema. 
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