
Mult i -Data Models Translations In
interoperable Information Systems

Christophe NicoUe, Djamal Benslimane, Kokou Yetongnon

Laboratoire LIESIB
Facultds de Sciences Mirande

Universitd de Bourgogne
21000 Dijon, FRANCE

Email : {cnicolle, benslima, kokou}~satie.u-bourgogne.fr

Abs t rac t . Interoperation of :heterogeneous and autonomous informa-
tion systems has traditionally been hampered by semantic differences
in their data models. In this paper, we address the problem by defin-
ing a methodology called TIME, which is based on an extensible meta
model. Its key features are : a set of meta-types which can be used to
represent the syn tax and the semantics of data modeling concepts, a
knowledge base of transformation rules that map a recta-type into other
meta~types, and an inference engine which uses the transformation rules
to translate schema from source to target models. The extensibility of
the recta-model is achieved by organizing the recta-types into a general-
ization hierarchy that record similarities among modeling concepts. The
hierarchy of recta-types allows the reuse of transformation rules during
automatic generation of data model translators.

1 Introduction

To facilitate information exchanges between different databases, several systems
tha t highlight the evolution of information sharing have been developed in the
course of these last years. This evolution goes from a simple exchange of mes-
sage (cooperative system) to a total unification of a set of databases as a unique
database (federated and distributed system). These systems requires the deft-
nition of concepts to allow the interoperation of heterogeneous computers and
local databases systems. The heterogeneity can take on several aspects such op-
erating systems, semantics and internal physical organization, models. In this
article, we are interested only in heterogeneity semantic problems that result
from differences in the structure, da ta manipulation languages and content of
database information. These problems complicate the interoperation between
the different information systems.

A classic solution is to integrate the local schemas into a global schema.
Usually, the global schema is expressed in a common data model, in which the
user expresses his queries [12]. The integration of a large number of data schema
is nevertheless an expensive and intensive task [11]. An alternative is to place
translation tools between the different data models within a federation. Thus,
users of the federation access information from their local da ta model [14, 15].

177

The responsibility of translating from concepts of one model into another model
is left to the user or to the administrator of the local system. But, this solution
rapidly becomes too complex to implement when the number of heterogeneous
databases wishing to communicate becomes large. This method is not therefore
well adapted to a heterogeneous databases federation [8, 9].

Our objective is to define an environment tha t provides a tool to help solve
the problem of translation in a heterogeneous database federation. In order to
do so, we propose a methodology of data models translation based on an exten-
sible meta-model called TIME (Traducteur Intelligent avec M@tamod~le Exten-
sible). TIME is composed of a minimum set of modelisation concepts which can
be specialized to represent different data models. The main advantages of this
methodology is tha t it enables the reuse of translation rules between different
models.

The remainder of the article is organized as follows. In section 2, we present
a discussion of different approaches of data model translation. Section 3 presents
our meta-model (its structure, its meta-types and associated translation rules).
In section 4, we describe translation rules tha t are associated with the meta-
model, and we define the notion of meta- type correspondence. Section 5 discusses
examples of specifications of the relational and object oriented data models. An
example of scheme translation is presented in section 6. And finally, section 7
provides a conclusion to the article and a discussion of our future themes of
research.

2 D i s c u s s i o n

Data model translations has been the subject of intensive research recently. The
different solutions can be classified into 3 main approaches.

The first approach deals with one to one translations betweem two specific
data models. This type of solution can be used for the migration of a database
from a semantically poor model to a richer model or for conceptual design of
database by first representing the system in a rich data model and translat ing
the conceptual representation into a target model [3, 4]. This type of translation,
where each concept of a source model finds its equivalent in the target model
insures a great reliability of conversion. Nevertheless it is not well adapted for
the interoperability of heterogeneous systems, where a considerable number of
translators may be required (for N different models it is necessary N*(N - 1)
translators). The addition of a new database with a new model necessitates the
creation of as many translators as there are different models in the system.

The second approach, which is based on the utilization of a global model,
is generally used in distributed systems. It allows for a one to many type of
translation that is used to integrate the various databases into one system. The
objective is to provide an interface between a user and the group of databases.
The advantage of this solution is the reduction of the number of translators
required. To add a database with a new data model and langage, it suffices to

178

create its equivalent in the global model. Users queries are posed on the global
schema and mapped into queries on the local schemas.

To facilitate the integration of databases some solutions use a meta-model
[1, 2, 10]. A meta-model is well suited for resolving semantic heterogeneity among
data models. However, this solution requires users to express their queries with
higher order logical predicates. An alternative is to map the meta-model back
in the local user model. Thus allowing users to express queries in their native
model.

The third approach is based on the utilization of a canonical or pivot model
that allow the translation of N data models into M data models. This type
of translation is very difficult to implement and generally corresponds to the
specification of N+M one to one translations between the pivot model and the
other models.

The above approaches have pointed out the need to reduce the number of
translators requires to allow interoperability of information systems. Tools that
are based on the reuse of pre-defined concepts and translations can be used to
facilitate the generation of one to one data model translators [7, 13]. The semi-
automatic or automatic generation of one to one translators thus facilitates the
translation in both federated and distributed systems. To acheive this goal, we
propose a data translation methodology called TIME (Traducteur Intelligent
avec M6ta-mod~le Extensible) that uses an extensible meta-model, a knowledge
base and an inference engine. The data model contains a reduced set of meta-
types that are linked by generalization/specialization relationships. We use the
specialization link as a mechanism for extending the meta-model by specializ-
ing existing meta-types to define new meta-types. As in object oriented models,
an inheritance link between two meta-types allows the reuse of both structural
properties and meta-type constraints. The inference engine uses a knowledge
base containing a set of transformation rules to translate schema from source
models to target models. The translation rules are expressed in first order logi-
cal predicate. The advantage of this methodology is to simplify the translation
process by reusing translation paths between different models.

3 S t r u c t u r e o f T I M E M e t a - m o d e l

TIME defines two main components : a set of meta-types, and a knowledge base
containing a set of basic transformation rules (Figure 1). The meta-types are
used to capture the semantics of different categories of modeling concepts. There
are two sorts of meta-types. Meta-object types represent concepts which can be
used to model real entities while meta-link types denote data model concepts
which characterize relationships among entities. To achieve extensibility, the
meta-types of the meta-model are organized in a specialization (generalization)
hierarchy. Thus, a new meta-type can be defined by specializing an existing meta-
type. Initially, the meta-type hierarchy contains 5 basic meta-types: META,
MComplex-Object, MSimple-Object, MN-Link and MBinary-link (figure 1). The
knowledge base (KB) initially contains a set of basic transformation rules that

179

can be used to transform an instance of a basic meta-type into an other basic
meta-type and a set of facts describing meta-types correspondence, These rules
are expressed in a first order logical predicates that are utilized by the inference
engine.

I /

t
] MSimple-Objecq

META I \
MNary-Link I

I I, ', ,ll I,
I I]Basic Transformation R u l e ~ )

MBinary-Link [i~ | ' :j

Basic Metatypes

: Inheritance 5nk
:: Metatype

Knowledge Base (KB)

Fig. 1. Structure of the metamodel

A meta-type M is defined by a tuple M --- (AM,CM,PM), where AM is a
set of syntactic elements that describe the structure of M. CM is a set of user
defined constraints that are used to restrict the meta data constraints associated
with the super meta-type of which M is a specialization. PM is a set operations
or methods. It is used to model methods of the object oriented (or any similar)
model. PM is empty for data models (e.g. relational model) which do not allow
the encapsulation of data and operations into a type. We give below an informal
definition of the meta-types. A formal BNF 1 definition is given in appendix.

3.1 Definition of Meta-type META

The highest meta-type in the specialization (generalization) hierarchy is a generic
meta-type, META, with an empty structure. Its purpose is to define meta-data
constraints and operations that can be shared by all meta-types. It is defined by
META=([], CM~ta, []). CMet,~ comprises a set of data modeling constraints. For
example, CMeta contains an ID function that uniquely identifies the instances of
meta-types.

3.2 Definition of Meta-type M C o m p l e x - O b j e c t (CO)

Meta-type CO represents modeling concepts that are used to describe complex
structure entities such as : OBJECT in object oriented model, ENTITY TYPE

1 Backus Normal Form

180

in the Entity-Relationship model and RECORD in the Codasyl data model.
Meta-type MComplex-0bject is specified by CO = (Aco , Cco, P c o) , where
Aco is defined using the usual tuple and set constructions on meta-object types.
The component Cco and Pco are not redefined at this level, but are inherited
from the super meta-type META. An example showing an instance PERSON of
meta-type MComplex-Object is given by:

PERSON =(ApERSON := [Name : Str ing,
Address : [Street : String, Town : String],
Childs : [FirstName : String, BirthDate : String] (0,20),
Age : integer],

CeERSON : = [],
PPERSON := [])

3.3 Definition of MSimple-Objeet (SO)

Meta-type SO, which is a specialization of meta-type CO, represents modeling
constructs with fiat structure. It is defined by SO = (Aso, Cso, Pso) where
the attr ibute structure Aso inherits the tuple structure Aco of meta-type CO,
but restricts the type of its components to primitive domains. The components
Cso and Pso are inherited from the meta-type MComplex-Object.

3.4 Definition of MNary-Link (NL)

Meta-type NL models types that represents connections between real world en-
tities. Links can carried attributes. It is defined by NL = (ANL, CNL, PNL).
The component CNL and PNL are not redefined at this level, but are inherited
from the super meta-type META. An example showing an instance OWN of an
MNary-Link is given by :

OWN = (AowN := [PERSON : (1,n) , CAR : (1,'1), DATE : (1,n)],
CowN := [],
POWN := [])

3.5 Definition of MBinaxy, link (BL)

Meta-type BL categorizes binary connections involving real world object types.
It is a special case of NL and it is defined by BL = (ABL, CBL, PBL).

4 T r a n s l a t i o n o f m e t a - t y p e s

To allow the translation of schema with the meta-model, we define two types of
transformation rules. The first, basic transformation rule allow the transforma-
tion between instances of two basic meta-types directly linked in the inheritance
lattice. The second, non-basic transformation rules allow the transformation be-
tween one or more instances of non-basic meta-types (4.2),

181

4.1 Notion of correspondence

To allow the specification of a new meta-type in the meta-model we define the
notion of meta-type correspodences to detect which existing meta-types we link
with the new one. A good definition of these correspondences allows for a better
definition of transformation rules between these meta-types and avoid semantic
losses. In function of these correspondences, the system defined the type of the
inheritance link between the meta-types (specialization link, may-be a link).

We define three meta-types correspondences : strong correspondence, simple
correspondence and weak correspondence, the correspondence between meta-
types M1 and M2 can be different from the one between meta-types M2 and
M1.

St rong Correspondence : M1 and M2 are in strong correspondence re-
lationship, that is to say that an instance of one can be transformed into an
instance of the other without semantic loss if and only if :

M~=M2

In this case M1 and M2 are equivalents.

The existing meta-type is used to represent the new one. The system estab-
lishes a virtual link between the concept of the model and the existing meta-type.

Simple Correspondence : M1 is in relationship of simple correspondence
with M2, that is to say that during the transformation of an instance of M2 in
an instance of M1, programs, constraints or structures can be lost, if and only
if:

(M1 C M2)

In this case, a specialization link is introduced between M1 and M2. For exam-
ple, MSimple-Object is in relationship of simple correspondence with MComplex-
Objet (Figure 1) .

Weak Correspondence : M1 is in relationship of weak correspondence with
M2, that is to say that during the transformation of an instance of M2 in an in-
stance of M1, constraints and structures can be lost. In this case, a specialization
link is introduced between M1 and M2. Moreover, to avoid semantic losses, the
system compares others meta-types with M1 in order to link the new meta-type
with another type by a Maybe a link. For example, in figure 3, MRelation is in
relationship of weak correspondence with MSimple-Object. This is due to inclu-
sion dependencies. The system links MRelation with MBinary-link to represent
these dependencies by links during the transformation process.

If more of one existing meta-types are in weak equivalence with the new meta-
type, the system choose the existing meta-type where differences are smaller.

182

4 . 2 B a s i c t r a n s f o r m a t i o n r u l e s

A transformation rule converts an instance of a basic meta-type to one or more
instance(s) of the basic meta-type which are directly connected in the specializa-
tion (generalization) hierarchy. Transformation rules are expressed in first order
logical predicate of general form Rb (I1 ,Ml,I2,M2), where I1 is the source meta-
scheme, I2 is the target meta-scheme, MI and Ms are basic meta-types. This
rule produces the target meta-scheme I2 from I1 by converting all instances of
meta-type M1 in the source meta-scheme I1 into one ore more instance(s) of
meta-type Ms. There are four transformation rules:

- Rb(Ii,nl,Is,bl) transforms an n-ary meta-type NL into a set of binary Link.
Note that in some cases an n-ary link (NL) can be converted into both a meta
object MO and a set of binary links where the participant meta-types of the
initial n-ary link are linked to MO by the binary links. This is necessary to
preserve the semantic correspondence between I1 and I2 when the participant
object meta-types have cardinalities of (1,N) or (0,N). This rule is formally
described in appendix 8.2.

- Rb (I1 ,bl,Is,nl): this transformation rule noted only has a trivial case since by
definition a binary link is a an Nary-Link.

- Rb(I1, so,I2, co) by definition this transformation is trivial since simple ob-
jects (SO) are complex objects with flat structures. In some cases, however,
i t may be necessary to restructure two or more simple objects linked by
binary links into a complex object.

- Rb (I1 ,co,Is,so) flattens all complex structures into a set of objects with simple
structure, and generates a set of binary link meta-types (BL) to connect the
newly created simple objects to the original object.

A formal description of the first transformation rule, Rb (I1 ,nl,I2,bl), is given
in appendix.

Figure 2 shows the use of the transformation rule Rb(I1 ,co,Is,so). This rule
translate the source meta-scheme I1 into a target meta-scheme I2 by replacing
the complex-object PERSON with three instances of meta-type MSimple-Object
PERSON, CHILDS, ADDRESS linked by two instances of meta-type MBinary-
Link SPERSON-CHILDS$, SPERSON-ADDRESS$.

5 D a t a m o d e l s s p e c i f i c a t i o n

The specification of a data model in TIME is accomplished in two steps :

- Step 1 defines meta-types corresponding to the concepts of the data model
by specializing existing meta-types or by adding new meta-types.

- Step 2 defines and associates transformation rules between the meta-type
created and their respective super meta-types in the generalization hierarchy.
In this step meta-type correspondence is defined, and the knowledge base is
completed by adding new rules to the set of transformation rules and new
meta-types correspondences to the fact base.

183

PERSON

[Name : String,
Address : [Street : String,

Town : Siring],
Childr : { [FirstName : String,

BirthDate : String]
}(0,20)

Age : Integer]

PERSON

[Name : String,
Age : Integer]

Rb(I,, co, 12, so)~

0 4) I

CHILDS

[FirstName : String,
BitlhDate : String]

- I (1,1)

ADDRESS I

[s~eet : sniag, [
Town : String]l

Fig. 2. An example of transformation of MComplex-Object into MSimple-Object and
MBinary-Link

In this section we present an example to illustrate the specification of concepts
of the relational and object oriented models. The specification of other models
in the meta-model TIME is given in [6]. Figure 3 depicts two levels. The top
level shows the basic meta-types, basic transformation rules and basic meta-type
correspondence. The second level displays the meta-types that correspond to the
modeling concepts of the Relational and Object oriented data models, and the
transformation rules between these new meta-types, their super-meta-types and
the new meta-types correspondences.

Setofbasicmetatypes [META]

/ \
I=co=,tex-ob 4, I I

" =oobj j I elatio. I I OOIsa-L I

Set of non basic metatypes

Basic Transformation Rules

Non Basic Transformation Rules

: Specialisation link

- - - -2~ : May be a link
I - - J : Relational metatype

I I : Object oriented metatype

KB

: Basic metatype

Fig. 3. Specification of two data models

184

5.1 S p e c i f y i n g t h e R e l a t i o n a l M o d e l in t h e m e t a - m o d e l T I M E

In this section we specify the concepts of the relational model in the meta-model
TIME. We follow this with a description of the transformation rules of each
concept.

The specification of the relational data model in TIME consists to define
a meta-type MRelation (REL) which represents the concept RELATION (rela-
tion name, monovalued attributes on simple domains, functional and inclusion
dependencies). It is defined by REL=(AREt., CREL, PREL). As shown in figure
3, MRelation specializes the meta-type MSimple-Object. Thus, the structure
AREL is identical to the structure of Aso. MRelation, in CREL, refines the ID
function defined in META to correspond to the precise definition of the relational
primary key; namely, a sub-sequence of attribute labels that uniquely identify
the tuples of a relation. PREL is empty.

Two non-basic transformation rules expressed in the first order logical pred-
icate are associated with meta-type MRelation. They are used to convert in-
stances between MSimple-Object and MRelation meta-types. They are infor-
mally defined as follows :

- Rt(I1 ,so,I2,rel) transforms directly an instance of a meta-type SO into an in-
stance of a meta-type R. To complete the definition of this new instance, the
system analyzes links and cardinalities associated with the initial instance
of SO to define primary key and foreign key constraints.

- Rt(Ii,bl,I2,rel) transforms an instance of a meta-type BL into attributes
defining foreign key constraints on the instance of meta-type REL.

- Rt(Ii,rel,I2,so) transforms an instance of a meta-type REL into an instance
of a meta-type SO. The constraint on keys defined in REL is translated into
instance of BL to conserve the same semantic during the transformation.

5.2 S p e c i f y i n g t h e o b j e c t o r i e n t e d m o d e l in t h e m e t a - m o d e l T I M E

This section presents the specification of the concepts of the object oriented data
model, and gives a description of the transformation rules.

Meta-types MOObject (00) and MOOIsa-Link (OIL) represent the object
oriented concepts, object and IS-A link, respectively. As illustrated in figure
3, the meta-type MOObject specializes the meta-type MComplex-Object. It is
defined by OO = (Aoo, Coo, Poo) . The structure Aoo is identical to the struc-
ture of Aco. Conversely, The meta-type MOObject refines the component Pco
to introduce the behavioral aspect of the objects. A detailed and formal descrip-
tion of methods is beyond the scope of this paper. Thus the component P o o is
not presented. Coo is empty. The meta-type MOOIsa-link is a binary link. In
addition to the constraints inherited from meta-type MBinary-Link, it maintains
a subset constraints between the population of the specialized and generalized
meta-types which generalizes the concept of inheritance of the object oriented
data model. Moreover, MOOIsa-Link specialises the structure of MBinary-Link
to represent connection without attribute. The meta-type MOOIsa-Link is de-
fined by OIL = (Aozz,, Coz/~, []).

185

Rt(II,co,I2,0o) transforms directly an instance of a meta-type MComplex-
Object into an instance of a meta-type MOObject. The composition links
are transformed into instance of MNary-Lin_k meta-type.

- Rt(I1 ,oo,I2,co) transforms an instance of a meta-type MOObject into an in-
stance of a meta-type MC0mplex-Object. The transformation of the behav-
ioral aspect is not presented here to simplify our discussion. The composition
links are transformed into instance of MNary-Link meta-type.

- I~(I1 ,nl,I2,0o) transforms an instance of a meta-type MNary-Link into ref-
erence attribute in the structure of the instance of MOObject meta-type
MOObject.

- Rt (I1 ,bl,I2,oil) directly transforms an instance of a meta-type MBinary-Link
into an instance of a meta-type MOOIsa-Link. The identical attributes in
instances 01 and 02 in the are absorbed into the sub-type 002 .

- Rt(Ii ,oil,I2,bl) transforms an instance of a meta-type MOOIsa-Link into an
instance of a meta-type MBinary-Link. The attributes of the surper type
instance are created into the sub-type instance.

6 T r a n s l a t i o n F r o m R e l a t i o n a l t o O b j e c t O r i e n t e d M o d e l

In this section we first describe the principles of the translation process give an
example to illustrate the translation between a relational data model and an
object oriented data model.

6.1 Pr inc ip les

Let RS be a relational scheme. Our goal is to use the meta-model TIME to
obtain an equivalent scheme in an object oriented data model. This requires
three steps:

- S tep 1 : Translate the initial relational scheme into an intermediate meta-
scheme I1 that includes instances of meta-type MRelation and key con-
straints expressions.

Fact B a s e ~ K B : l n f e r i n g ~

Fig. 4. Transformation of I1 into I2

- S tep 2 : Transform I1 in to I2 by replacing all instances of meta-type MRe-
lation by instances of meta-types MOObject and MOOIsa-Link.This is done
with the inference engine by applying basic mad non-basic transformation
rules (Rb and Rt) on the instances of meta-scheme (11) (cf. Figure 4).

- S t e p 3 : Translate the meta-scheme I2 into a final object oriented scheme.

186

6.2 Example

Let RS be the following relational scheme :
PERSON (PersonN#, Name)
CHILDREN (PersonN#, BirthDate)
ADDRESS (AddressN#, Number, Street, Town)
LIVE (People, House, Since)
CAR (CaxN#, Color, Type, Owner, Date)

and let the constraints which define the foreign keys be given by :

CHILDREN.PersonN# C PERSON.PersonN#
CAR.Owner C PERSON.PersonN#
LIVE.People C PERSON.PersonN#
LIVE.House C ADDRESS.AddressN#

The first step of the translation process is to create a meta-model instance for
each concept in the scheme. In this case, we must create instances of the meta-
type MRelation for each relation. The application of the translation rules to the
relational scheme example yields the following intermediate meta scheme I1 that
includes instances of meta-type MRelation and key constraints expressions.

I1 = (PERSON = (APERSO~=[PersonN#:String, Name:String],
CpERso~=[PERSON(PersonN#) ~ PERSON(Name)I,
PPERSON=[]),

CHILDREN = (AcHiLDaEN=[PersonN#:String, BirthDate:String],
C C H I L D RE N =[CHILD REN (PersonN #) -~ CHILDREN(BirthDate),

CHILDREN.Person N# C PERSON.PersonN#],
PCHILDREN=[]),

ADDR--- (AADDR=[AddrN#:String, Num:String, Street: String, Town:String],
C A D D R -~- [ADDR(AddrN#) -~ ADDR(Num,Street,Town)],
PADDR=[]),

CAR = (AvAR=[CarN#:String, Type:String, Owner:String, Date: String],
CeAR=[CAR(CarN#) ~ CAR(Type), CAR(CaxN#,Owner) ~ CAR(Date),

CAR.Owner C PERSON.PersonN#],
PCAR=[]),

LIVE = (AbivE=[People:String, House:String, Since:String],
CLrvE=[LIVE(People, House) --> LIVE (Since),

LIVE.People C PERSON.PersonN#,
LIVE.House C ADDRESS.AddressN#],

PLIVE=[]))

Next, we map the above instances of relational meta-types MRelation into a
scheme containing instances of basic meta-types. The goal is to obtain a meta-
scheme that contains object oriented meta-constructs. We achieve this by follow-
ing the translation paths form MRelation to the meta-type MOOBject and by

187

applying transformation rules among the basic meta-types. We use the foreign
key constraints to classify the relations into MSimple-Object or MBinary-Link
types. Labels of the form 'XXX' are intermediate instances generated by the
translation process. The results of this step are given by following the interme-
diate meta scheme (I1).

I i ' = (PERSON = (ApsRsolv=[PersonN#:String, Name:String],
C~,~Rso~=[],
PP~RSON=[]),

CHILDREN = (ActH L D REN=[BirthDate:String],

PCHILDR~N=[]),
ADDR -- (AADDa=[AddrN#:String, Num:String, Street: String, Town:String],

CaDDR= [],
PADDa=[]),

CAR = (AcAR=[CarN#:String, Type:String, Date:String],
CcAR=[],
PVAR=[]),

LIVE = (A L w E=[Since:String],
C L i v e = [],
PLWE=[]) ,

$PEOPLE-LIVE$ = (AsPEOPLE-LIV~$ = [PERSON:(1,n), LIVE: (1,1)],
C,~o~-LIvE, = [],

PSPEOPLE--~IVE$ = []),
$HOUSE-LIVE$ = (A*HoUSE--L~VES = [ADDR:(1,n), LIVE: (1,1)],

C,.o~:sE-L,vE~=[],
e~.o~sE-L~v~,=[]),

OWN = (AowN = [PERSON:(1,n),CAR:(L1), [Date:String]J,
CowN = [],
POWN = [1),

$PERSON-CHILDREN$ =
(A$PERSON_CHILDREN $ = [PERSON:(0,1), CHILDREN:(1,1)],
CSpERsoN_CHILDREN $ ~ [],
PSPEnSON-CHILDREN$ = [1)]

To obtain inheritance link, we transform instances of MBinary-Link (Only
instances on the general structure : [Object1 : (0,1), Object2 : (1 ,n)]) into
instances of MInheritance Link.

To obtain object types, the simple object meta-types are first changed into
complex object meta-types which generalize the object oriented type. This trans-
formation is straightforward. It follows from the generalization link between
MSimple-Object and MComplex-Object. Next, we use rules Rt(I i" ,nl,I2,co) and
Rt(Ii" ,co,I2,oo) to translate object and relationship meta-types into object ori-
ented meta-type as defined below :

I2 = (PERSON = (ApERsoN=[PersonN#:String, Name:String],
CwRsoN=[],
PVERSON=[]),

188

CHILDREN = (AcsrLDREN=[BirthDate:String],
COH,LDREN=[],
PO.XLDREN=[]),

ADDR = (AADDR=[AddrN#:String, Num:String, Street:String,Town:String],
CADDR= [],
PADDR=[]),

CAR = (AcAR=[CarN#:String, Type:String, Own:PERSON, Date: String],
CCAR=[],
PeAR=I]),

LIVE = (ALlvm=[Since:String, People:PERSON, House:ADDR],
CLIVE=[],
PLIVE=[]) ,

SPERSON-CHILDREN$ =
(ASe~RSO~-CHILDR~N$ = [PERSON:(0,1), CHILDREN:(1,1)],
CSPERSON-OHILDREN$ = [],
P$PERSON-CHILDREN$ = [])]

After the step 3 we obtain the following target object oriented scheme :

Class
Type

Class
Type

Class
Type

Class
Type

Class
Type

PERSON
Tuple (PersonN# : string, Name : String)

CHILDREN inherit PERSON
Tuple (BirthDate : String)

ADDR
Tuple (AddrN# : String, Num : String, Street : String, Town : String)

CAR
Tuple (CaxN#:String, Type: String, Own : PERSON, Date : String)

LIVE
Tuple (Since : String, People : PERSON, House: ADDR)

7 Conclus ion

In this paper we have presented a methodology for translating multiple data
models. We addressed the problem by defining an extensible meta-model called
TIME and used it as a data model translator design tool. The main character-
istics of the meta-model are :

- It provides a minimum set of meta-types that capture the semantics of dif-
ferent categories of concepts found in most data models.

- It achieves extensibility by organizing the meta-types in an specialization/generalization
hierarchy. Thus, a new meta-type is defined by specializing an existing meta-
type.

- It achieves translation by defining a knowledge base composed of a set of
transformation rules.

189

- It allows the reuse of transformation rules and sharing of translation step
between multi- models translation.

Our future objectives are first to use the notion of correspondence to place
new meta-types in the inheritance lattice of our meta-model. We will work to
associate the notion of correspondence with the notion of distance to measure
the level of semantic losses during the translation process. Next, we need to
extend the above results, and to define a formal methodology and algorithm for
heterogeneous query processing. This will allow us to define a query interface
for the interoperation or migration of existing systems. Last, to use the meta-
types generalization hierarchy, the knowledge base of transformation rules and
the reusability property of the model to automatically or semi-automatically
generate data model translators.

8 A p p e n d i x

8.1 BNF description of the meta-types

This section presents the description for each basic meta-types and for the meta-
types MRelation, MOObject and MOOIsa-Link.

M C o m p l e x - O b j e c t : CO = (Aco, [~, N) where Aco is described in BNF
by :

Let A a set of labels,
Aco := [structure_CO] I { structure_CO } (m,n) I {structure_CO }
structure_CO := a : T I a : T, structure_CO
where a is an attribute name (a E A),
T := D I Aco
D := String I ... I Integer
m : = 0 1 n
n : = 1 1 2 1

M S i m p l e - O b j e c t : SO = (Aso, [], []) where Aso is described in BNF by :
Aso := [structure_SO]
structure_SO := a : T [a : T, structure_SO
where a is an at tr ibute name (a E A),
T : = D

M N a r y - L i n k : NL = (A/vL, D, []) where A/VL is described in BNF by :
ANL := [structure_NL]
structure_NL := M : (m,n), M : (m,n) I M : (m,n), M : (m,n), A c o I

M : (m,n), structure_NL
where a is an at tr ibute name (a E A),
where the type of M is a CO or SO and M E A

M B i n a r y - L i n k : BL = (ABL, N, []) where ABL is described in BNF by :
ABL := [structure_BL]
structure_BL := M : (m,n), M : (m,n) [M : (m,n), N : (m,n), Aco

190

where a is an attr ibute name (a 6 A),
where the type of M is a CO or SO and M 6 A

M R e l a t i o n : REL -- ([], CREL, ~), the constraints CREL are defined by
three axioms as follows : Let RI, R2 be instances of REL, Ai a sub-sequence of
attr ibute labels and Fk the ID function defined in META,

A x i o m 1 defines a key is not null is given by :

V RI 6 REL, V A~ 6 RI, V Fk 6 ID(RI), RI.Fk(Ai) # NULL

A x i o m 2 defines a primary key, whose attribute(s) define(s) uniquely all non
key attribute(s) is given by :

V R1 6 REL, V A1, A2 6 R1, V Fk 6 ID(R1),
where R1.Fk(A1), RI(A1) -~ R2(A2)

A x i o m 3 defines a foreign key, who are key attribute(s) of an instance R1
of REL define(s) uniquely a sub-sequence of non key attribute(s) of an instance
R= of REL.

V R1, R2 6 REL, V A1, A2 6 R1, V A2 6 R2, V Fkl 6 ID(R1)
with R1.Fkl(A1), V Fk2 6 ID(R2) where R2.Fk2(A2), RI(A2) C R2(A2).

M O O b j e e t : OO = (Aoo, H, P o o) where Aoo is described in BNF by :
A o o := [structure_OO] { {structure_OO } (m,n) I {structure_O0 }
structure_OO := a : T I a : T, s tructure_O0
where a is an attribute name (a 6 A),
T := D { Aco { t ' where the type o f t ' is a O 0 and t ' 6 A
D := String {... { Integer
m:=01n
n : = l [2 1 . . .
The term P o o is not developed in this paper.

M O O I s a - L i n k : OIL = (AoIL, COIL, H)" The structure ABL and the con-
straints CBL are refined in the meta-type MOOIsa-Link as follows :

AOIL := [structure_OIL]
structure_OIL := M �9 (0,1), M : (1,1)
where a is an attribute name (a 6 A),
where the type of M is a O 0 and M 6 A

COIL is defined as follows,
Let OO1 and 0 0 2 instances of the meta-type MOObject ,

A x i o m 4 : V, O O 1 , 0 0 2 ,
OIL = [OO, : (0,1), 0 0 2 : (1,1)] =~ (V e : O01(e) =~ OO2(e))

This constraint defined that 0 0 2 is a subtype of O01.

191

8.2 F o r m a l d e s c r i p t i o n o f Rb(I1, nl, I2, bl)

V M,,t = (Ant, Cn~, P,,z) instance of MNary-Link

rb(M,m nl, Mbz, bl) --~ Mb~ instance of MBinary-Link,
Nj instances of MBinary-Link (j = 1, 2, ..., m),
Moc instance of MComplex-Object,

- Two objects are linked by the instance of meta-type MNary-Link.
V AMnl := [M1 : (Cminl, Cmaxl) , M2 : (Cmin2, Cmax2)] 2
=> Creation of one instance Mbl with the same name of Mnt with type of
MBinary-Link were

AMb~ := [M1 : (Cminl,Cmaxl),M2 : (Cmin2,Cmax2)]

- More of two object are linked by the instance of MNary-Link, maximal car-
dinalities of these object are sup of 1.
V AMn~ := [M1 : (Cminl, Cmaxl),.. . , M~ : (Cmin2, Cmax2), [r~ : t~]],
n > 2
=~ Creation of one instance of Moc where AMoc := [ri : ti] 3

Creation of a set of instances of MBinary-Link N i = (Aj, Cj, Pj) , linking
the new object and each participant object in M~t [

ANj := [Moc :(1, 1),Mi:(Cmini,Cmaxi)],j = 1,2, ...,m;i = 1,2, . . . ,n

- More of two objects are linked by the instance of MNary-Link, at least one
object has a maximal cardinalities equal to one 4.
V AMnl := [M1 : (Cminl, Cmaxl),.. . , Mn : (Cmin2, Cmax2)], n > 2 and
3 Cmaxk = 1, k = 1, 2, ..., n.
=~ Creation of a set of instances of MBinary-Link Nj = (Aj, Cj, Pj) , j = 1,
k, linking objects Mk with others participant objects of Mn~ [
ANj := [Mk : (Cminl, 1),Mi : (Cmin~,Cmaxi)],k ~ i

R e f e r e n c e s

1. Paolo Atzeni, Riccardo Torlone : "A Metamodel Approach for the Management of
Multiple Models in CASE Tools", Proceedings of the DEXA International Confer-
ence in Berlin, Federal Republic of Germany, 1991

2. Thierry Barsalou, Dipayan Gangopadhyay : "M(DM) : An Open Framework for
Interoperation of Multimodel Multidatabase Systems" ,Proceedings of the 8th In-
ternational Conference of Data Engineering, Tempe, Arizona, pp 218 - 227, Feb
3-7, 1992.

2 This rule is done if AMnI has attributes
3 or AMoe := [], if M~l has not attribute
4 if M~l has attributes, independent of the ca~dinalities, we apply the last rule.

192

3. M.Bouzeghoub, G. Gardarin, E. Metais : "Database Design Tools : An Expert
System Approach", Proceedings of VLDB 85, Stockholm August 1985.

4. M.Bouzeghoub, E. Metais : "Semantic Modelling of Object Oriented Databases",
Proceedings of the 17th International Conference on Very Large Databases
(VLDB), Barcelona, pp3-14, September 91.

5. S.A. Demurjian, D.K. Hsiao : "Towards a Better Understanding of Data Models
Through the Multilingual Data system", IEEE Trans on Software Engineering, pp
946-958, Vol 14, N7, July 1993

6. Christophe Nicolle, "TIME, un Traducteur Intelligent avec M~ta-Mod~le Extensi-
ble", Technical Report N94/01, November 94, University of Burgundy

7. Christophe Nicolle, Djamal Benslimane, Nadine Cullot, Kokou Yetongnon, "A
Metamodel Based Methodology lot Translating Data Models in Interoperable In-
formation System", Proceeding of DATASEM, October 8-10, 1995.

8. David K. Hsiao, "Federated Database and Systems : Part I. A Tutorial on their
Data Sharing" VLDB journal 1, pp127-179, Dennis Mc Leod Editor, 1992.

9. David K. Hsiao, "Federated Database and Systems : Part II. A Tutorial on their
Resource Consolidation" VLDB journal 1, pp285-310, Dennis Mc Leod Editor,
1992.

10. Manfred A. Jeusfeld, Uwe A. Johnen : "An Executable MetaModel for Re-
Engineering of Database Schemas", Proceedings in the International Conference
on Entity-Relationship Approach, Manchester, December, 1994.

11. Laks V.S. Lakshraanan, Fereidoon Sadri, Iyer N. Subramian. : "On The Logical
Foundations Of Schema Integration And Evolution In Heterogeneous Database
Systems.", DOOD 93, PhSnix, USA, in Computer Sciences 760, Spring Valley, Dec
93.

12. Amit P. Sheth, J.A. Larson : "Federated Database Systems, for Managing Dis-
tributed, Heterogeneous, and Autonomous Databases", pp183-235, ACM Comput-
ing Surveys, V ol 22, N3, September 90.

13. Stefano Spaccapietra, Martin Andersson, Yann Dupont, Kokou Yetongnon, Chris-
tine Parent, Christophe Nicolle, " Integrating Schemas of Heterogeneous Database
Systems", in the Second Meeting on the Interconnection of Molecular Biology
Databases (MIMBD95), July 20-22, 1995 in Cambridge, United Kingdom,

14. Susan D. Urban : "A Semantic Framework for Heterogeneous Database Environ-
ments", First International Workshop on interoperability in Multidatabase Sys-
tems, Kyoto, Japan, pp 156-165, April 1991.

15. Susan D. Urban : "Resolving Semantic Heterogeneity Through the Explicit Repre-
sentation of Data Model Semantics". Sigmod Record, Vol 20, N4, December 1991.

