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Abstract .  This paper presents a novel framework, based on maximum 
likelihood, for training models to recognise simple spatial-motion events, 
such as those described by the verbs pick up, put down, push, pull, drop, 
and throw, and classifying novel observations into previously trained 
classes. The model that we employ does not presuppose prior recognition 
or tracking of 3D object pose, shape, or identity. We describe our gen- 
eral framework for using maximum-likelihood techniques for visual event 
classification, the details of the generative model that we use to char- 
acterise observations as instances of event types, and the implemented 
computational techniques used to support training and classification for 
this generative model. We conclude by illustrating the operation of our 
implementation on a small example. 

1 I n t r o d u c t i o n  

People can describe what they see. Not only can they describe the objects that  
they see, they can also describe the events in which those objects participate.  
So if you were to see a person pick up a pen, you could describe that  event by 
saying The person picked up the pen. In doing so you classify the two part icipant  
objects as a person and a pen respectively. You also classify the observed event as 
a picking-up event. Almost all recognition work in machine vision has focussed 
on object classification. In contrast, this paper is an a t t empt  to address the 
problem of event classification. 

While we are not the first to address this problem, our work differs from prior 
approaches (Badler, 1975; Nagel, 1977; Tsuji, Morizono, & Kuroda,  1977; Okada, 
1979; O'Rourke & Badler, 1980; Rashid, 1980; Tsotsos, Mylopoulos, Covvey, 
& Zucker, 1980; Abe, Soga, & Tsuji, 1981; Marburger, Neumann,  & Novak, 
1981; Waltz, 1981; Marr & Vaina, 1982; Neumann & Novak, 1983; Thibadeau,  
1986; Yamamoto ,  Ohya, & Ishii, 1992; Pinhanez & Bobick, 1995) in a number  
of impor tan t  ways. First, we apply our methods to camera input, in contrast to 
synthetic input. Second, we group naturally occurring events into classes that  
correspond to pre-theoretic notions described by simple spat ial-motion verbs like 
pick up, put down, push, pull, drop, throw, and so forth. While people may  be 
able to perceive many  other kinds of differences between two motion sequences , 
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we are only interested in detecting those differences that  can be described using 
ordinary verbs. Finally, we use an approach based on maximum likelihood. We 
determine the parameters of a general model empirically from training data  
instead of formulating detailed logical and geometric descriptions of event classes 
by hand. 

The vision community has done much prior work on processing image se- 
quences, particularly sequences involving motion. Examples of such work include 
optical flow, 2D and 3D object tracking, and shape from motion, to name a few. 
While our work bears superficial resemblance to such work, we wish to stress 
that  we are concerned with a fundamentally different problem that  is orthogo- 
nal to the ones addressed by such prior work. For example, we are interested in 
event classification and not 3D tracking. For us, techniques like 3D tracking are 
relevant only in so far as they might facil i tate--or be facilitated by--event  clas- 
sification. In fact, the techniques that  we describe in this paper do not perform 
detailed shape recovery, object classification, or 3D pose estimation. 

Siskind (1992, 1995) proposed a technique for classifying events by recovering 
changing support, contact, and at tachment relations between participant objects 
using a kinematic simulator driven from the output of 3D tracking. A tacit as- 
sumption behind this prior work was that  object recognition is a prerequisite 
for event recognition. While at tempting to implement the aforementioned tech- 
niques, we conducted a simple experiment that calls into question the validity 
of this assumption. 

We took several movies of simple spatial-motion events in ordinary desk-top 
environments. These events included picking-up, putting-down, pushing, and 
pulling boxes, dropping erasers, and various collisions between objects. These 
movies were filmed using an off-the-shell SunVideo system recording image se- 
quences with a resolution of 320 • 240 at 30 frames-per-second compressed using 
Sun's CellB format. We then applied an edge detector and line finder to each 
of the images in each movie and animated the resulting output.  One original 
movie and the edge-detected images that  correspond to that  movie are shown in 
figure 1. 

Frame 0 Frame 4 

Qj t 
Frame 8 Frame 12 

I" \"X 

Frame 16 Frame 20 

Fig. 1. Several frames from a movie depicting a pick up event along with the result of 
applying an edge detector and line finder to that movie. 
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The results of this experiment are striking. Edge detection and line finding 
collectively reduce the amount of information in the movie from 76,800 bytes 
per frame to roughly 25 line segments, or 100 bytes, per frame. This corresponds 
to a factor-of-768 lossy data compression. When watching such edge-detected 
output, either as isolated frames or as animated line movies, humans cannot 
reliably recognise the objects that appear in the images. Yet.despite such lossy 
data compression, humans can still reliably recognise the depicted events when 
viewing an animation of the line drawings. 

In retrospect, these results are not surprising. They are very much in-line with 
the point-light studies of animate-body motion performed by Johansson (1973) 
and others. They do, however, call into question the assumption of prior work, 
namely that event recognition presupposes object recognition. The information 
required to classify objects and recover their 3D pose over time is simply not 
available in the animated line drawings that we constructed. Yet even without 
such information, event recognition is a very robust process. 

This leads us to conjecture, instead, that human event perception does not 
presuppose object recognition. We conjecture that event recognition is performed 
by a visual pathway that is separate from object recognition. Furthermore, we 
conjecture that this pathway requires far lower information bandwidth than 
object recognition. If this is true, then it may be the case that event recognition 
is an easier problem than object recognition and more amenable, in the short 
term, to synthetic engineered implementations. The rest of this paper offers 
precisely that: one possible framework for building an event-recognition engine. 

2 T h e  F r a m e w o r k  

Linguistic evidence indicates that humans characterise events in terms of char- 
acteristic changes in the properties of, and relations between, objects that par- 
ticipate in those events. For example, a pick up event typically consists of a 
sequence of two subevents. During the first subevent, the hand of the agent 
moves toward the patient ,  2 the object being picked up, while the patient rests 
on the source object. The agent then comes into contact with, and grasps, the 
patient. During the second subevent, the agent moves together with the patient 
away from the source, while supporting the patient. Similarly, a throw event 
typically consists of a sequence of two subevents. During the first subevent, the 
patient moves with the agent while the agent grasps, supports, and applies force 
to the patient. This subevent ends when the agent releases the patient. During 
the second subevent, the patient continues in unsupported motion after leaving 
the patient's hand in a trajectory that results, in part, from the force applied 
by the agent during the first subevent. The types and properties of the partici- 
pant objects have little importance in defining these event types. Any agent can 
throw any patient or pick up any patient from any source. Objects simply fill 
roles of an event type. While some event types are characterised by the types 

2 The term 'patient' is being used here to denote the object affected by an action. 
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and potentially changing properties of participant objects, events described by 
simple spatial-motion verbs are largely characterised by the changing spatial and 
force-dynamic relations between objects. This paper focuses solely on such event 
types. Our long-term goal is to charazterise and recognise simple spatial-motion 
events by recovering changing force-dynamic relations in addition to changing 
spatial relations. Mann, Jepson, and Siskind (1996) present some work along 
these lines. This paper, however, describes techniques for event recognition that 
are based solely on modelling the characteristic motion profiles, changing over 
time, of objects that participate in different simple spatial-motion events. 

We partition the event recognition task into two independent subtasks. The 
lower-level task performs 2D object tracking, taking image sequences as input 
and producing as output a stream of 2D position, orientation, shape, and size val- 
ues for each participant object in the observed event. This 2D pose information 
takes the form of a set of parameters for ellipses that abstractly characterise the 
position, orientation, shape, and size of the participant objects. This lower-level 
tracking is done without any constraint from event models. The upper-level task 
takes as input the 2D pose stream produced by lower-level processing, without 
any image information, and classifies such a pose stream as an instance of a given 
event type. We use a maximum-likelihood approach to perform the upper-level 
task. In this approach we use a supervised learning strategy to train a model for 
each event class from a set of example events from that class. We then classify 
novel event observations as the class whose model best fits the new observation. 

3 T r a c k i n g  

Our tracker uses a mixture of colour-based and motion-based techniques. Colour- 
based techniques are used to track objects with uniform distinctive colour, such 
as the blocks, even though such objects might not be in motion, or might be 
in motion for only part of the event. Motion-based techniques are used to track 
moving objects, such as the hand of the agent, even though the colour of such 
objects might not be uniform or distinctive and thus would not be detected by 
the colour-based techniques. 

Our tracker operates on a frame-by-frame basis, tracking coloured objects 
and moving objects independently. To track coloured objects it first determines 
a set of 'coloured pixels' in each frame. Pixels are considered to be coloured if 
their saturation and value are above specified thresholds. Figure 2(b) shows the 
coloured pixels derived from the input image in figure 2(a). Such pixels are then 
classified into bins using a histogram clusterer based on hue. 

After finding coloured regions in each frame, our tracker then finds mov- 
ing regions. To do so it determines a set of 'moving pixels' for each frame by 
thresholding the absolute value of the difference between the grey scale values 
of corresponding pixels in adjacent frames. Figure 2(d) shows the set of moving 
pixels recovered by this technique for the image in figure 2(a). 

Each hue cluster might, however, be spread over noncontiguous regions of the 
image. There might also be multiple moving objects, so the set of moving pixels 
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Fig. 2. The processing stages of our tracker. (a) shows an input image. (b) shows the 
coloured pixels. (c) shows the output of the region grower on (b). (d) shows the moving 
pixels. (e) shows the output of the region grower on (d). (f) shows the combination 
of (c) and (e). (g) shows the ellipses that are fit to the regions from (f). 

might also be spread over noncontiguous regions. We apply a proximity clustering 
technique to divide each hue cluster and the set of moving pixels into contiguous 
subclusters. We employ a simple region-growing algorithm that groups pixels into 
equivalence classes. Two pixels are placed in the same equivalence class when the 
Euclidean distance between the (x, y) coordinates of those two pixels is less than 
a specified threshold. We then discard equivalence classes that have fewer than a 
specified number of pixels. This eliminates small spurious regions, such as those 
that  appear in figures 2(b) and 2(d). Figure 2(c) shows the result of applying 
our region-grower to the hue clusters in the image in figure 2(b). Figure 2(e) 
shows the result of applying our region-grower to the image in figure 2(d) while 
figure 2(f) shows the combined colour-based and motion-based output  of our 
tracker. At this point, a movie is represented as a set of regions for each frame, 
where each region is a set of pixels. 

We now abstract each region in each frame as an ellipse. To do so, we com- 
pute the mean and covariance matrix of the two-dimensional (x, y) coordinate 
values of the pixels in a given region. We take the ellipse for that  region to 
be centered at the mean and to follow a contour one standard deviation out 
from the mean. Thus the orientation of the major axis of the ellipse is along the 
primary eigenvector of the covariance matr ix and the lengths of the major  and 
minor axes of the ellipse are given by the eigenvalues of the covariance matrix.  
Figure 2(g) shows the ellipses generated for the regions in figure 2(f). All sub- 
sequent processing ignores the underlying image pixel data  and uses only the 
derived ellipse parameters. 

The operation of fitting ellipses to image data  is done independently for each 
frame in the movie. Such independent processing suffers from two limitations. 
First, it does not recover the intra-frame correspondence between ellipses. We 
require this internal correspondence in order to track object position over time. 
Second, different frames can contain different numbers of ellipses. There may 
be situations, as is the case in figure 2(g), where the tracker produces spurious 
ellipses that  do not correspond to objects that  participate in events in the movie. 
There may also be situations where the tracker fails to produce an ellipse to rep- 
resent an object that  does participate in an event. Such drop outs can happen 
for a variety of reasons, such as inappropriate settings for the various threshold 
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parameters. These drop outs and spurious ellipses make the intra-frame corre- 
spondence task more difficult. Subsequent processing can overcome the limita- 
tions of the tracker by robustly determining intra-frame correspondence between 
ellipses. 

We employ a simple technique to determine intra-frame correspondence be- 
tween ellipses in a single movie. First, we group ellipses believed to track the same 
object between frames into ellipse chains. We use a weighted five-dimensional 
Euclidean distance metric on ellipse parameters to determine object continuity 
between adjacent frames. The chains are contiguous sequences that  track the 
motion of a single ellipse for a subrange of frames in the movie. Due to noise, 
chains might not span the entire movie. Thus we subsequently relax the frame- 
adjacency requirement and attempt to attach the ends of the chains together to 
produce contiguous sequences of ellipses that  span the entire movie. Relaxation 
of the frame-adjacency requirement reduces the problem of ellipse drop outs, 
while elimination of short chains reduces the problem of spurious ellipses. The 
final result of this technique is a set of ellipse sequences that track all of the 
participant objects in the event through the entire movie. 

The result of applying our tracker to several complete movies is shown along 
with the original movies in figure 3. Only a small subset of key frames for each 
movie is shown. These movies depict pick up, put down, push, pull, drop, and 
throw events respectively. In these movies, the intra-frame ellipse correspondence 
is indicated by line thickness. Notice that it is fairly easy for a human to recognise 
the depicted event solely from the ellipse data. Our event recogniser attempts 
to mimic this ability. 

4 E v e n t  R e c o g n i t i o n  

The output of our tracker consists of a stream of five parameters for each ellipse 
in each frame of each movie. Since movies typically have from two to five objects, 
this constitutes roughly 10 to 25 floating point numbers per frame. From this 
data  stream we compute a larger feature vector. This feature vector contains 
both absolute, and relative, ellipse positions, orientations, velocities, and accel- 
erations. More specifically, our feature vector includes the following features for 
each frame: 

- Absolute features 
1. the magnitude of the velocity vector of the centre of each ellipse, 
2. the orientation of the velocity vector of the centre of each ellipse, 
3. the angular velocity of each ellipse, 
4. the first derivative of the area of each ellipse, 
5. the first derivative of the eccentricity of each ellipse, 
6. the first derivatives of each of the above five features, 

- Relative features 
1. the distance between the centres of every pair of ellipses, 
2. the orientation of the vector between the centres of every pair of ellipses, 
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Fig.  3. Sample frames from several movies depicting six different events along with the 
result of applying our tracker to those movies. 
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3. the difference between the orientations of the major  axes of every pair 
of ellipses, 

4. for every pair of ellipses, the difference between the orientation of the 
major  axis of the first ellipse and the orientation of a vector from the 
centre of that  ellipse to the centre of the second ellipse, and 

5. the first derivatives of each of the above four features. 3 

In the above, all derivatives are calculated as finite differences between two 
adjacent frames. 

Using this feature vector, we adopt a maximum-likelihood approach to event 
recognition. We use supervised learning techniques to train a generative model 
for each class of  events, from a set of training examples for each class, and sub- 
sequently use the derived generative models to classify new observations into 
existing classes. More specifically, if P l , .  �9 PL constitute the feature vector se- 
quences for a set of L movies, we find the parameters  r for the generative model 
that  maximise the joint likelihood of generating all of the training sequences. 

L 
TRAIN({pl , . . . ,  PL}) ~- argmax H P(Pz Ir (1) 

r . I=l 

Then, i f r 1 6 2  constitute the parameters  for J different event types, we 
classify a new feature vector sequence p as the class j that  is most  likely to have 
generated p. 

CLASSIFY(p) ~ a r g m a x P ( p ] r  (2) 
J 

We adopt Hidden Markov Models (HMMs) as the generative model within 
the above maximum-likelihood framework. Each event class j is described by 
a uj-s tate  model. 4 We intend these states to represent the major  subevents 
of each event type. For instance, a pick up event might consist of two states. 
During the first state, the agent characteristically will move toward the patient  
while the patient  is s tat ionary above the source. During the second state, the 
agent will move together with the patient away from the source. Similarly, our 
HMMs can part i t ion the other event types into distinct states representing easily 
interpretable subevents. 

The HMMs in our implementat ion assume independent normal  probabil i ty 
distributions over each feature in the feature vector. The mean and variance of 
each feature in each state of each model  are adjusted in order to maximise the 
likelihood of that  model generating the training data.  The assignment of high 
and low variances to different features is t an tamount  to learning which features 

3 The results that we report in this paper are based on a simpler feature vector that 
contains only the first two of the aforementioned absolute and relative features along 
with their first derivatives. While we obtain good results with this smaller feature 
set, when classifying a small set of different event types, we believe that the larger 
feature set will be necessary to classify a larger set of event types. 

4 Currently, the number of states used to represent each event type is specified man- 
ually as a parameter to the training process. 



355 

are relevant to each subevent of each event type, and which are not, since the 
likelihood is more sensitive t o  changes in the values of those features having 
low variance than it is to those features having high variance. For example, the 
variance of the first derivative of the distance between the agent and the patient 
during the first state of a pick up event will be low, indicating that  that  feature is 
relevant, while the variance of the orientation of the velocity vector of the agent 
will be high, since the angle of approach during a pick up can vary significantly, 
indicating that  that  feature is not relevant. In contrast, the variance of that  
feature, namely the orientation of the velocity vector of an object, will be low 
during a drop event, since objects typically fall straight downward. 

We train the parameters of the HMMs with the Baum-Welch reestimation 
procedure (Baum, Petrie, Soules, ~; Weiss, 1970) and use the Viterbi procedure 
(Viterbi, 1967) for classification. During training, we restrict the state-transition 
matr ix  to be upper triangular, thus disallowing non-self cycles in the state- 
transition graph. Our experience shows that  such non-ergodic models generalise 
much better to new observations. This is not a severe restriction, since none of 
the event types that  we have considered require repetitive subevents. 

The training and classification procedures are somewhat more complex than 
the standard Baum-Welch and Viterbi procedures for a number of reasons. First, 
our tracker does not provide object-identity information. While our tracker does 
track the position of objects through time in the movie with ellipse sequences, it 
does not identify the objects that it is tracking. Second, our tracker can produce 
an ellipse sequence for an object that  does not participate in the event or an 
object that  does not really exist, for example a shadow. This is problematic 
because we need to know which tracked objects in the movie are participating 
in the event and what role those objects play within the event. Each event type 
specifies a fixed number of participant objects and each object plays a well- 
defined role in a given event type. Roles must be assigned to tracked objects 
both during training, to group together ellipse sequences from different movies 
that  play the same role, and during classification, to assign ellipse sequences 
to existing roles in a model. We refer to this grouping problem as the external 
correspondence problem. 

We determine the external correspondence among members of the training 
set by examining a set of candidate correspondences. Each candidate correspon- 
dence contains a subset of the ellipse sequences for each movie in the training 
set. Each subset is ordered to match corresponding ellipse sequences across the 
training movies. Conceptually, an HMM can be trained on each candidate cor- 
respondence, and the best correspondence can be chosen to be that  which leads 
to a model that  has the highest likelihood of generating the event instances in 
the training set. 

Since evaluating all possible candidate correspondences would be intractable, 
we use a variant of the greedy algorithm to choose which candidate correspon- 
dences to evaluate. We choose one particular movie from the training set to be 
the canonical event. The movie chosen to represent the canonical event must 
contain the same number of ellipse sequences as there are participant objects 
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in the given event type. An arbitrary order is chosen for the set of ellipse se- 
quences in the movie representing the canonical event. Ordered subsets of the 
set of ellipse sequences in every other movie are then chosen to establish a can- 
didate correspondence with the ordered set of ellipse sequences in the canonical 
event. This choice is done incrementally. First, a candidate correspondence is 
established between the canonical event movie and one other movie chosen from 
the training set. This correspondence is chosen by training an HMM on every 
possible correspondence between the canonical event and the other movie and 
choosing the HMM that  has the highest likelihood of generating these two event 
instances. We then explore successively larger candidate correspondences. At 
each stage we maintain a set of r candidate correspondences for n movies and 
choose as the candidate correspondences for n -4- 1 movies the r best ways of 
augmenting a previous candidate with a new movie. At the last iteration we 

choose the best HMM among the r candidates correspondences constructed for 
the entire training set. 

During classification, ellipse-sequence role assignments are determined in the 
following manner. We examine all possible permutations of all subsets of the 
set of ellipse sequences derived from a new observation. We then compute the 
likelihood that  that  sequence was generated by each of the models that  specifies 
the same number of participant objects as the number of ellipse sequences in that  
candidate. The new observation is classified as being generated by the model that  
assigns the highest likelihood to some permutation of some subset of the set of 
ellipse sequences derived from that  observation. 

5 E x p e r i m e n t s  

To test our techniques, we filmed 72 movies using a SunVideo system to record 
image sequences with a resolution of 320 x 240 at 30 frames-per-second com- 
pressed in JP EG format. These 72 movies comprised twelve instances for each 
of the six event types pick up, put down, push, pull, drop, and throw. All of these 
movies were filmed in a relatively uncluttered desk-top environment, though 
some movies contain extraneous objects. The camera position changed some- 
what from movie to movie. Four coloured foam blocks (one red, one blue, one 
green, and one yellow) were used as props to enact the six different event types. 
We clipped these movies by hand so that  the beginning and end of the event 
coincided with the beginning and end of the movie. The pick up and put down 
movies were uniformly clipped to be 50 frames long, the push and pull movies 
were uniformly clipped to be 35 frames long, while the drop and throw movies 
were uniformly clipped to be 20 frames long. We then processed each of the 
72 movies with our tracker. Of these 72 movies, 36 were randomly selected as 
training movies, six movies for each of the six event types. We constructed 
six five-state non-ergodic Hidden Markov Models, one for each of the six event 
classes. We then classified all 72 movies, i.e. both the original training data  as 
well as the data  not used for training, against all six event classes. Our model 
correctly classified all 36 of the training movies and correctly classified 35 out of 
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the 36 test movies. One drop movie was misclassified as a ' throwing' event. Our 
classifier, however, selected 'drop' as the second-best choice for this movie. This 
misclassification appears to result from poor tracking. 5 

6 Discuss ion 

We are cautiously optimistic with our results. We plan to test our techniques 
with a larger set of event types using a wider range of participant objects filmed 
in different length movies in a wider range of environments. We also plan to 
evaluate the robustness of these techniques in the face of event occurrences that  
exhibit larger variance in motion profile. Furthermore, while our event recogniser 
can work with output  from any tracker, the class of events that  we can classify 
is to some extent dependent on the properties of our current tracker. We have 
built a variety of trackers to drive our recogniser and are currently tuning a more 
sophisticated tracker that  we believe will allow us to apply our event recogniser 
to a wider class of events and environments. A longer-term objective is to elim- 
inate the need for manually specifying the beginning and end of each event by 
automatically performing temporal segmentation among events that  potentially 
overlap in space and time. 

Our work has surprising similarities with earlier work on event recognition 
reported in Siskind (1992, 1995). That  work suggests that  event classes can be 
described with temporal-logic formulas, such as 

. . . . .  Z TRANSLATING(W)̂  \ 1 
A [ DISJOINT[,, w)A ~ x I / CONTACTS(w, y)A ~ / 

/ ~PPoa~s~=, y~ l I / SVPPOaTS(=, y),', / l 
, ,  . . . . . . . .  ( " " / /  \ T . . . . . . . . . .  ( , ) ) J  

over a set of primitives that describe spatial relations, motion, and force-dynamic 
relations such as support, contact, and attachment.  On the surface, the approach 
taken in that  work might appear to be fundamentally different from the approach 
taken here. There are deep similarities, however. The features used as input to 
our HMMs are analogous to conceptual-structure representations proposed by 
Jackendoff (1990). For example, the orientation of the velocity of the centre 
of each ellipse can be viewed as a quantified representation of the conceptual 
structures GO(x ,UP)  and GO(z,  DOWN). Similar analogies can be drawn for 
all of the remaining features. 

Temporal-logic formulas can be viewed as regular expressions over sym- 
bols that  represent the occurrence of primitive events described by these Jack- 
endovean representations. Such symbols can be viewed as thresholded feature 
values, while the temporM-logic formulas can be viewed as finite-state recog- 
nisers over these thresholded values. Our HMMs can be viewed as probabilistic 
finite-state recognisers over the same features. Thus, while Siskind (1992, 1995) 
only presents techniques for using event descriptions to recognise events, as- 
suming that  event descriptions are produced by hand, the work presented here 

5 All of our training and test data, as well and source code for our implementation is 
available from h t tp  : / / w ~ .  cs. toronto,  edu/-qobi. 
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extends this approach to learn event descriptions in a supervised fashion. The 
work presented here, however, uses only spatial motion features and not force- 
dynamic ones. We pursued this approach because of our initial concern that it 
would be difficult to robustly recover force-dynamic relations from camera input. 
Mann et al. (1996), however, present some encouraging results that show that 
recovery of force-dynamics relations from camera input is feasible. In the future 
we hope to integrate the force-dynamics recovery techniques described in that 
paper with the event-recognition techniques described here. 

7 Conclusion 

Event perception is a fundamental cognitive faculty. Any solution to the ultimate 
goal of artificial intelligence, namely endowing a computer with human-level 
intelligence, must embody a mechanism for perceiving events. Event recognition 
plays a central role in human cognition, perhaps even a more central role than 
object recognition. Consider, for instance, the fact the sentence structure of 
natural languages is built around verbs rather than nouns. Furthermore, event 
recognition appears to be easier than object recognition, and to rely on less 
information. It may even be the case that event recognition is an evolutionarily 
more primitive faculty. 

Earlier work adopted the tacit assumption that object recognition precedes 
event recognition. It is interesting to consider the reverse assumption. If event 
recognition is easier and evolutionarily more primitive than object recognition, 
perhaps object recognition can be facilitated by information provided by prior 
event recognition. For instance, it might be difficult to reliably segment, recog- 
nise, and track a hammer on the basis of an object model, geometric or otherwise. 
Yet, it might be easy to recognise the characteristic motion of a hammering event 
even without detecting a hammer. Having hypothesised a hammering event, and 
produced a course abstract object pose sequence in the process of forming such 
a hypothesis, it might be possible to use that knowledge to guide the search for 
a hammer to confirm that hypothesis. Prior event recognition could prune the 
space of object models to consider and also provide course grouping and tracking 
data, using a novel source of top-down constraint. 

We have applied a particular strategy to event classification, namely maxi- 
mum likelihood. To the best of our knowledge this approach has not been previ- 
ously applied to this task. Maximum-likelihood methods, however, have proven 
extremely successful in machine analysis of speech. These methods provide sev- 
eral important methodological advantages. First, they provide graded levels of 
performance rather than monolithic success or failure. This is crucial when work- 
ing on hard problems for which there is no unequivocally successful method in 
sight. Second, they provide two well-defined methods for improving performance: 
additional training data and more accurate generative models. The course of 
speech recognition research over the past few decades can be seen as long inter- 
vals of shallow but steady performance growth punctuated by a small number of 
discontinuous paradigm changes. Third, systems that maintain graded decisions 
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internally, delaying all categorical decisions as long as possible, are more robust 
than those that operate as a pipe of categorical decision processes. Systems in 
the later category are brittle, since a minor inaccuracy can affect a categorical 
decision early in the pipe and that decision can irrevocably affect the ultimate 
outcome. Visual event perception shares much in common with speech analysis 
in that both deal with time-varying signMs. It is not surprising that techniques 
that have been applied to speech could also be applied to visual event perception. 
The success of maximum-likelihood methods should not be taken to imply that 
they are the only feasible approach to performing event classification. Rather, 
we intend the results of this paper to be taken simply as encouragement that the 
problem of event classification can be solved. Given this realisation, we encourage 
other researchers to explore alternate techniques for solving this problem. 
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