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Abstract. An active contour model is proposed for contour extraction of 
objects in complex natural scenes. Our model is tbnnulated in an analytical 
t?amework that consists of a colour contrast metric, an illumination parameter 
and a blurring scale estimated using hennite pol3alomials. A distinct 
advantage of this t?amework is that it allows for automatic selection of 
thresholds trader conditions of uneven ilhunination and image blur. The 
active contour is also initialised by a single point of maximum colour contrast 
between the object and background. The model has been applied to synthetic 
images and natural scenes and shown to pertbrm well. 

1 Introduction 

Shape analysis is very important in computer vision and has been widely used for 
recognition and matching purposes in many applications. Important iifformation 
about the shape of the object can be provided by its contour. Active contour models 
have been successfidly applied to the problem of contour extraction and shape 
analysis since its introduction by Kass et. al. 14] as snakes. These active contour 
models [1,11] are attracted to image features such as lines and edges, whereas 
internal forces impose a smoothness constraint. However, existing models are not 
well adapted for object segmentation ill a complex image scene as they are easily 
distracted by uneven illumination, image blur, texture and noise. Several 
noteworthy variants were therefore proposed to allow active contour models to 
handle a complex scene. One class of active contour models [14] uses a priori  

knowledge about the expected shape of the features to guide the contour extraction 
process. When no knowledge of the expected object geometry is available, Lai et. 
al. [6] proposed a global contour model based on a regenerative shape matrix 
obtained by shape training. Region-based strategies to guide the active contours to 
the object boundaries were also proposed by Rolffard [ 101. To distinguish the target 
object in a scene comprising of multiple objects, a local Gaussian law based on 
textural characteristics of objects [2] was introduced. 

However, there are still several unresolved issues in applying active contour 
models to a complex natural scene. One issue is that current active contour models 
have not considered the effects of blurring, For example, Dubuisson et. al. [3] 
assumed that moving objects in an outdoor scene are not blurred. The reason is that 
blurring corrupt salient features like edges, lines and image contrast which is used 
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to guide the active contour to the object's boundary. Blurring also makes the location 
the exact edge's position difficult. Unfortunately image blur cannot be prevented in 
many applications. In a scene consisting of multiple objects, the limited depth of 
field of the camera's lens will cause some objects to be out of focus. Objects can also 
be blurred by motion when lighting conditions do not permit a fast shutter speed. 

The performance of current active contour models also depends on the initial 
contour position and the proper selection of internal parameters and thresholds 
[13]. The common experience among users is that if the initial position and 
thresholds are not chosen properly, the active contour may be trapped in a local 
minima resulting in a sub-optimal solution. The selection of internal parameters 
and thresholds are done heuristically through several times of trial and error. Thus, 
for a complex natural scene, the active contour has to be initialised near the object's 
boundary and this requires human interaction and knowledge of the object's shape. 
To overcome tile problem of initial position, Lai et. al. [6] had proposed the use of 
Hough Transform to initialise the active contour. However, computations and 
processing time are increased. Vieren [121 used a "border snake" to initialise and 
enclosed the object as it entered the scene by its periphery. 

In this work, an active contour model robust to uneven illumination and image 
blur has been proposed to extract object contours in complex natural scenes. Our 
model is formulated in an analytical framework consisting of a colour contrast 
metric, a bhn-ring parameter estimated using hermite polynomials and an 
illumination parameter. The distinct advantage of our model over current models is 
its robustness to an arbitrary complex natural scene achieved by the automatic 
threshold selection. Our active contour model is initialised by a single point in the 
object of interest with no a priori knowledge of the shape. However, the point of 
initialisation must lie in the region with maximum colour contrast between the 
object and background. It is argued that locating a point with maximum contrast is 
computationally more efficient than initialising an entire contour near the object's 
boundary. 

2 Model  Formulation 

In this section, the proposed automatic threshold framework will be presented. 

Details of the other aspects of tile model can be found in [8]. 

2.1 Colour Contrast 

The logarithmic colour intensity has been chosen to determine the minimum 
threshold value. The purpose is to provide a high gain at the low and central portion 
of the camera's response and decreasing gain at the positive extremes. This is 
consistent with our human eye which is sensitive to low and normal lighting but 
saturates when the lighting is bright. The colour contrast between a point of colour 

intensity (r,g,b) and a reference point with colour intensity (ro, g~bo) is defined as 
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C = lnZ[(l + r)/(1 +ro)] + ln2[(1 + g)/(1 +go)l + ln2[(1 + b)/(1 +bo)] (l) 

2.2 A u t o m a t i c  T h r e s h o l d  Se lect ion  

The threshold of  the active contour has to be adaptively determined because of  
uncertainties introduced by noise, uneven illumination and image blur. Setting the 
correct threshold will ensure that the active contour remain at the desired edges of  
the object. For real images, we characterise edges by a Gaussiml model with a scale 
Ob. This scale parameter is related to our human experience of  blurness. A high 
value of  Ob will result in a very blurred edge while a sharp edge has a small value. 
The Gaussian edge model used is 

where 

L e  

c 
0 
d 
err 

I(x, y) = L e + @eft [(x cos 0 + y sin 0 - d ) / O b ]  

: the mean value of  the edge's" intensity 
: the colour contrast of  the edge in (1) 
: the orientation of  the edge 
: perpendicular distance from the centre ofwindowJhnction 
: error function 

(2) 

The Gaussian blur which is one of  the most commonly encountered description 
of  blur has been assumed. It has been shown that the blur due to camera defocuses 
can well be approximated by a 2-D Gaussian kernel 19]. The case of  Gaussian 
blurring is also easy to tackle mathematically. In this respect, the Hermite 
polynomials are chosen as a basis since it is orthogonal to the Gaussian window [7]. 

An input imagef(x,y) can be decomposed into the sum of several images using a 
window fimction w(x,y) given as 

f(x, y) = ~ Z fix, y) �9 w ( x -  p, y -  q) h(x,y) (p,q)~ S 
(3) 

where h(x,y) is tile periodic weighting function 

h(x, y) = Y~ w ( x -  p, y -  q) (4) 
(p,q)~ S 

for all sampling position (p,q) in sampling lattice S. The windowed image is then 
approximated by a polynomial with orthonormal the basis fimctions ~p given as 

w(x-  p, y -  q)[ffx, y) - s E f~ ..... (p, q)tp ..... m (x - p, y - q) l = 0 (5) 

If  file window fimction is chosen to be Gaussian with a window spread of o,  the 
coefficients of  tile polynomial can be evaluated as 

fn ... . . .  (P, q) = I~',2 I-+,.~ fix, y)a ....... (x - p, y -  q) dxdy (6) 



where  
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am,n-m (X, y) = 1 I x y -(x2+y z) - " Hm(~')H,-m(7) e x p ( ~ )  l~oz 

H,,(x) is the Hermi te  po lynomia l  of  degree  n in x. 

It has been shown [5,7] that  the analys is  funct ion %,. ...... o f  order  n is the n ~ 
order  der iva t ive  of  the Gauss ian  i.e. 

an(X) ---- 1 n x n d / d (  o ) I o-"~-n-n exp(-x2/o2)] (7) 

F r o m  (6) and  (7), the he rmi te  coefficients of  a b lu r red  edge with  a scale of  Ob up 
to the th i rd  order  can be wri t ten  as 

f0 = L~ + (C/2)ertl(d/o)/~] 1 + (Oh/O) 2 ] 

fl = [1/~/1 + (~b/d) 2 ](C/2q~-) exp(-(d/c02/(l  + (~b/O)2)) 

f2 = [1/~] 1 + (Oh/C02 ]2(C/2q~)[(d/o)/~] 1 + (Ob/O) 2 ] exp(-(d/o)E/(1 + (t~b/~)2)) 

f3 = [1/~/1 + (oh/o)2 13(c/24~-)(-~--)[(2(d/o)/1 + ( t r i o ) b -  11 exp(-(d/t~)2/(1 + (db/~)2)) 

(8) 

and  the far  solut ion 

Ob/@ = [(2e~le~- ~6-e31el)- 11 I/2 

is va l id  for  all  o ther  cases. 

(14) 

We der ived  the edge pa ramete r s  f rom the hermi te  coefficients  as 

OblO= [(2e~le~ + ~ -e31e , ) -  11 '/2 (9) 

d/o = ~/~, (2~/~, ~ _ ~ ~/~1)-1 (10) 

C = el 2,/'~- (2e~/ef + .,/'6" e3/e,)-'/2 exp(e~/e~(2e]/e~ + ,/-6 e3/e,) -' ) (11) 

where  the n 'h order  local  energy is e 2 = Z ~  

F r o m  (9), there  are  two poss ible  solutions.  The  f irst  so lut ion k n o w n  as the near  
solut ion 

OblO= [(2e~le] + 4~" e31e,) - 111/2 (12) 

is val id when the centre of  the w indow funct ion is near the edge i.e. 

(d/o)2/(1 + (OhiO) 2) < 112 (13) 
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The threshold value for our Gaussian edge model occurs when the rate of change 
of gradient is maximum If the window is sufficiently close to the edge point such 
that (12) is satisfied, an analytical expression to select the threshold autonmtically 
can be written as 

thld = IcI exp(-d/(Yb) 2 

= 2 ~ / 1  + (Oh/O) 2 exp[--1/(2(oz/o 2 + 1))l el (15) 

The parameter e 1 in (15) is the energy of the first order hermite polynomials and 
is obtained by convoluting the Gaussian mask with the inmge. Physically, el can be 
interpreted as an illumination measure. In other words, a strong illmnination 
increases the value of e: while a weak illumination reduces e: correspondingly. The 
value of e~ therefore acts as a scaling agent of the threshold when illumination 
changes. For a constant illumination, the threshold of the active contour also 
increases with image blur. Setting the threshold under constant illunfination is 
known as scale thresholding. It is observed in (15) that when the ratio of the image 
blur and the window fimction (Oh/O) is greater than 1, the threshold ( t h l d )  increases 

almost linearly with blurring. 

3 Model Evaluation 

In this section, the automatic threshold framework proposed in the previous section 
will be evaluated using synthetically generated images. The performance between 
our model and current active contour models using fixed thresholds is also 
compared. 

3.1 Effects of Uncorrelated Errors  on Image Blur estimates 

The uncorrelated errors in tile measured energies of el ,  e 2 and e~ occur mainly due 
to image noise, quantisation of filter or polynomial coefficients . For small 
tmcorrelated errors in energies, it is possible to express the error in the estimate of 
image blur as 

A(Yb = (c)(Yb/r + (0(Yb/0e2)Ae2 + (0(Yb/0e3)Ae3 

= [o2/2obl[2(e~/e 2) + f6- e3/e~ ]-2[(4e~/e] + fff  e3/e])Ae~ - (4e2/e~)Ae2 - ( f 6  eJe,  )Ae3] 

(16) 

Figure 1 shows the error in the estimation of the edge's scale for an error of 5% 
in e 1, e 2 a n d  e 3 plotted by the analytical expression in (16). From Figure 1, the 
error is minimum when the window spread is approximately equal to the image blur 
(Ob/O = 1). After that, the error increases rapidly as the ratio of Ob/O becomes 
smaller. This is due to the large spread of the window function resulting in 
information redundancy. Estimation accuracy is poor because the edge's 
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information forms only a small portion of the overall data. However if the spread of 
the window function is smaller than the image blur (ob/o > 1) estimation accuracy is 
still more reliable as compared to (Ob/O < 1). For a small spread of the window 
function (Oh/a> 1), all the information obtained still belongs to the edge. This 
shows that incomplete information has greater reliability than redundant 
infornmtion. From Figure 1, we set the following bound to ensure an accuracy of 
86% 

0.5 _< (Ob/(Y) --< 2.0 (17) 
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Fig. 1. �9 Error in the estimation of the image blur for C = 5, d = 0.251 cy = 8 

3.2 Minimum Threshold 

It can be seen from Figure 1 that when Ob/O < 0.5, the estinlate of the image blur 
and the threshold of the active contour is unreliable. This happens when the object's 
boundary is not within the region of interest of the active contour. In this instance, 
a minimum threshold value ( thld, ,)  is set to allow the active contour to move 
towards the object's boundary. 

The contrast o f a  colour (r,g,b) from a reference colour (ro, g~,b o) for a maximum 
colour deviation of {Ar, Ag, Ab} and assuming that r,g,b :: : :  1, can be expressed as 

th ldmin  = hlZ(1 + Ar/ro) + ln2(1 + Ag/go) + ln2(1 + Ab/bo) (18) 

If max{ IAr/ro l, lAg/go 1, [Ab/bo l} < 1 , expanding the above equation gives 
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thldmm = (Ar/ro) 2 - (zSX/ro) 3 + 0.25(~/ro) 4 + (Ag/go) 2 - (Ag/go) 3 
+0.25(Ag/go) 4 + (Ab/bo) 2 - (Ab/bo) 3 + 0.25(Ab/bo) a (19) 

If  I Ar/ro I, lAg/go I, I ZXb/bo I is sufficiently small, the minimum threshold (thld,,,,) 
required for the proper working of the active contour can be obtained from (19) as 

th ldmin  = (~/ro) 2 + (Ag/go) 2 + (Ab/bo) 2 (20) 

The above equation serves as a guide to determine the minimum threshold value 
of the active contour in our model in terms of the maximum colour intensity 
fluctuations allowable within the object. When the ratio of Ob/O is less than 0.5, the 
minimmn threshold criterion in (20) is used. Scale thresholding in (15) is used for 
tile rest of the image edge's scale (0.5 _< ob/o -< 2.0). 

3.3 Performance Evaluation on Image Blur 

Simulations of synthetic images hM been performed to evahmte the performance of 
the automatic thresholding framework on image blur. Firstly, a reference threshold 
mnst be obtained. This reference threshold is the value the active contour has to be 
set to remain at the object's boundary as the object blurs. Using the reference 
threshold, the performance of three thresholding methods (i.e. fixed thresholding, 
scale thresholding and the proposed automatic thresholding) under blurring is 
evaluated. Tile performances of current active contour models are similar to fixed 
thresholding because their thresholds do not change according to image blur. 

The reference threshold is obtained using the following procedure. A step edge 
with a colour contrast of 4.84 is generated at a predetermined location. The image 
is subsequently blurred by a series of Gaussian kernels with a known scale Ob. Each 
time the step edge is blurred by a Gaussian kernel, the contrast at tile predetermined 
location is measured. For example, if the step edge at location 400 in the x-axis 
have an initial contrast of zero, a Gaussian blurring scale of 5 will give a contrast of 
approximately 0.5 at location 400 (see Figure 2). Setting the active contour 
threshold below 0.5 yields an edge location below 400 and a threshold higher than 
0.5 results in an edge location greater than 400. Therefore, the active contour will 
contract if the threshold is less than 0.5 and expands outward if the threshold is 
greater than 0.5. 

The performance of automatic thresholding, scale thresholding and fixed 
thresholding under image blurring is also shown on Figure 2. A window spread o 
of 12 is used for the experiment. Scale thresholding is less reliable for small image 
blur (0 < Ob < 6) but gives better results for image blur from 6 to 24 in comparison to 
the reference threshold. The lnost accurate estimate occurs at an image blur of 
approximately 12 (Ob/O = 1 ). This is consistent with the theoretical results in Figure 
1. However, the perfornmnce of a using a fixed threshold for an active contour is 
better at smaller image blur and becomes progressively unreliable at higher inmge 
scale. The propose automatic thresholding framework combines the advantages of 
scale thresholding and fixed thresholding. In the framework, fixed thresholding is 
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used when the ratio of Ob/O is between 0.0 and 0.5 while scale thresholding is used 

when the ratio is between 0.5 and 2.0. 
Figure 3 gives a comparison of the performance under blurring between the our 

model which uses automatic thresholding and current models with fixed thresholds 
under image blur. A window function with spread of 12 and fixed threshold of 0.5 
is again used. It can be seen from Figure 3 that fixed thresholding gives an error of 
6 pixels for an image scale of 24. This is compared to an error of only 2 pixels for 
our automatic thresholding scheme. Therefore our proposed model is more robust 

to the effects of bhirring than current active contour models. 
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Fig. 2. Threshold of Active Contour Model with o = 12 
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Fig. 3. Performance of automatic threshold against a fixed threshold 
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4. Experimental Results 

Our active contour model has been applied to natm'al scenes. Figure 4 shows a 
complex image of a reptile on a relatively uniform background. The active contour 
is iIfitialised at the body of the reptile as indicated by a cross. The high contrast 
between the reptile (brown hues) and the blue sky allowed tile reptile's profile to be 
extracted accurately. Figure 5 shows a monochromatic image of tlu'ee rocks with 
large intensity variations. The active contours are again initialised at the centre of 
the rocks and the intensity difference between the rocks and their background 
allowed reliable contours to be extracted. Figure 6 shows the contour of a vehicle 

extracted from a complex backgrotmd with illumination and colour fluctuations. 
For the contour extraction of a blurred vehicle in Figure 7, some rocks on the 

river baxLk have very similar colour and intensity as the vehicle. Our active contour 
cannot differentiate between the object and the background at these points without 
any a priori  knowledge of the car's shape. Therefore, two volcanoes [4] denoted by 
crosses have been manually placed to push back the contours. It is observed that a 
reliable contour is still extracted despite the effects of image blur. 

Figure 8 shows the performance of our model for a complex object (cottage) in a 
cluttered background. Noticed the different textures of the roof, windows, door and 
the background trees. Furthermore, shadows also reduce the colour contrast 
between some parts of the roof and the trees. The overall performance of our active 
contour model is still reliable despite some distortions at the roof and chimney. The 
active contour is initialised near the door of the cottage. It is noted that the point of 
initialisation is important for this image. For example, if the initialisation is at the 
roof of the cottage, the active contour will not be able to extract the lower half of the 
cottage. The reason is that the blue doors and windows have a greater colour 
contrast as compared to the background trees with respect to the colour of the roof. 
Therefore, under these circumstances, the active contour must be initialised at the 
point in the cottage where the colour contrast with the background is maximum 

5. Conclusion 

In this paper, we present an active contour model for the contour extraction of 
objects in a natural image scene. Only local region computations are involved and 
no pre-processing, feature detection or knowledge of the object's geometry is 
required. Our model is formulated in an analytical framework that allows 
thresholds to be selected automatically. This makes our model more robust than 
current models which have heuristic thresholds. In the contour extraction of a 
natural scene, our active contour model is initialised by a single point with 
maximum colour contrast between the object and the background. Locating the 
point of maximum contrast is computationally more efficient than initialising the 
active contour near the object boundary as done by current models. Experimental 
results on synthetic and re~fi images showed that the model is robust to blurred 
images as well as complex natural outdoor scenes. 
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Fig. 4. Contour extracted of reptile 

Fig. 5. Contour extracted of monochromatic rocks image 

Fig. 6. Contour extracted of a vehicle 
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Fig. 7. Contour extracted of a blurred vehicle 

Fig. 8. Contour extracted of a cottage 
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