
Application of Model Based 
Image Interpretation Methods 

to Diabetic Neuropathy 
M.J. Byrne and J. Graham 

Dept. of Medical Biophysics, 
University of Manchester, Oxford Road, 

Manchester, M13 9PT, UK. 
Email: mjb @ svl.smb.man.ac.uk 

Abstract 
We present two applications of model based computer vision methods to measurement of image 

features significant in the diagnosis of diabetic neuropathy. The first involves the location of the 
boundaries of nerve fascicles in light microscope images. The second involves the segmentation 
of capillary cell regions using electron microscope images. In each case the boundaries required 

are of arbitrary shape and characterised by local texture or changes in textured regions. 
The fascicular boundary is located using an Active Contour Model responding to a texture 

measure based on edge directionality. A start position for the model is automatically generated. 
The capillary segmentation is performed using a region-based snake responding to a weighted 
combination of texture measures followed by a local boundary refinement using dynamic pro- 
gramming. These methods show that application of various types of Active Contour Model, 

accompanied by appropriate starting cues, or followed by local refinements, can locate robustly 
positioned and intuitively correct boundaries in these images. The aim of the work is the au- 

tomation of diagnostic measurements currently performed manually. We discuss the implications 
of automated analysis for procedures in quantitative histology. 

1. INTRODUCTION 
There are various symptoms and side-effects of the disease diabetes. Important among 
these are the effects on the nervous system. The most frequent pattern of involvement 
of diabetes on the nervous system is a peripheral symmetric neuropathy (non-traumatic 
disorder of the peripheral nerves) of the lower extremities affecting both motor and sen- 
sory functions[14]. 
The major effect is degeneration of the insulating myelin sheath that surrounds each 
nerve fibre leading to deterioration in motor and sensory functions. Biopsies are taken 
from patients and images obtained using light and electron microscopy. Number den- 
sities and size distributions of myelineated nerve fibres are obtained from these images. 
Currently these fibre measurements are made manuaUy[2] which is a time consuming 
process. We have developed automated methods for nerve fibre detection in both light 
and electron microscope images. We do not present these methods here, although we 
make use of the results in section 3.3. 
Nerve fibres are grouped together to form fascicles (fig. 1). 

Fig. 1. Example of nerve fibre fascicle 
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It is also necessary to locate the fascicle boundary so that an accurate measure of the 
fascicular area, and hence accurate fibre number densities can be obtained. In section 
3 we describe a method for automatically locating the fascicular boundary using an Ac- 
tive Contour Model responding to an appropriate image measure with a starting cue 
generated as a result of the automated fibre detection. 
Another symptom of interest is microangiopathy (disease of small blood vessels) with 
effects manifested within the nerve fibres themselves and in capillaries in the endoneu- 
rium (the interstitial connective tissue in peripheral nerves separating individual nerve 
fibres). The two main effects are; 
i) A thickening of the basement membrane or an accumulation of basement membrane 
material in the capillaries (visible as an apparent contraction of the luminal area), and 
ii) A proliferation of endothelial cell material together with basement membrane 
thickening. This manifests itself in arteries, arterioles and occasionally venules. 
The structure of two endoenuerial capillaries as they appear in electron micrographs is 
shown in fig.2. Fig.2a is a healthy example whilst fig.2b displays a degree of diabetic 
neuropathy and shows these effects. 

Fig.2. Electron Microscope images of endoneurail 
capillaries (a) normal and (b) showing neuropathy 

Currently the various regions are delineated by hand[13,16]. In section 4 we will de- 
scribe methods of automated segmentation of the three capillary regions using Active 
Contour Models followed by local boundary refinement using dynamic programming. 

2. MODEL BASED METHODS 
Both the fascicle and capillary images are complex. The image evidence defining the 
required regions involves several parameters which vary from image to image. Often 
the evidence is poor or missing requiring local interpolation of the data. Location and 
segmentation of the desired regions in both sets of images therefore require the use of 
some form of model based method. Statistically based methods such as Point Distribu- 
tion Models (PDMs) have been sucessfully applied, as part of a constrained image 
search strategy[5] (Active Shape Models), to the location of poorly defined boundaries 
in noisy images[6]. PDMs rely on the ability to label a consistent set of landmark points 
representing the boundary shape in a set of training images in order to construct a stat- 
istical model of the expected boundary shape and its allowed degree of variation. In 
both problems described in this paper it is not possible to identify a set of landmark 
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points that are consistent from image to image. The lack of correspondence among 
training images introduces such a large degree of variability between different 
examples that statistics gathered on shape and appearance impose little constraint on 
the model. As a result, for the problems presented in this paper, Active Shape Models 
have not provided a useful approach to image segmentation. 

2.1. SNAKES 
Active Contour Models (snakes)[ 10] do not rely on a description of the expected region 
shape to constrain image search but instead impose internal constraints using a quasi- 
physical model to control the spacing and curvature of boundary elements. The snake 
combines these internal constraints with external "forces" derived from the image evi- 
dence and iteritively re-positions itself to achieve a minimum energy configuration. 
In the absence of any external image forces a snake reaches equilibrium by collapsing 
either to a single point or line, as dictated by the internal constraints. Furthermore if 
the snake search is initiated too far away from the desired contour the snake will fail 
to converge to the correct solution. Cohen[4] added an extra inflationary term causing 
the snake to behave as a balloon. The inflationary term takes the form of an isotropic 
pressure potential resulting in an outward pressure force acting along the normal to each 
snake element. The balloon is inflated, expanding until trapped by strong image evi- 
dence (e.g. strong edges) but expanding through weaker evidence. The pressurised 
snake therefore has the advantage of being able to start its search a large distance away 
from the desired contour but has the disadvantage that an image feature must produce 
a strong response in order to overcome the snake's internal pressure force. Hence it is 
not always possible to segment an image adequately using a pressurised snake. 
An adaptation proposed by Ivins and Porrill[9] is the statistical snake, an active region 
model linking the pressure term to image data within the region enclosed by the snake. 
An initial seed region is defined either through user interaction or through some form 
of cue generation. Within this region the means and variances for a suitable set of image 
measures are determined. These measures should be capable of distinguishing between 
the region of interest and those around it. The snake is allowed to expand from the 
boundary of the seed region until the boundary elements encounter pixels whose image 
measures differ significantly from those in the seed region. 
An energy term for the region measure is obtained by multiplying the local change in 
area for each element by a goodness functional G(I(x,y)) representing the goodness of 
fit of the region measure at an element of the snake positioned at (x,y) in an image I. 
There are various choices for the goodness functional G(). These are as follows for a 
region having a mean response ~t and a range of allowed values within k standard devi- 
ations of ~t. 
Unary Pressure: The goodness functional G0  is set to unity for pixels with image 
measures within the range specified by the seed region and zero for pixels outside this 
range. 
Binary Pressure: The goodness functional G0  is set to +1 for pixels with image 
measures within the range specified by the seed region and -1 for those with measures 
outside the range. When a snake element encounters pixels outside the seed region's 
range the direction of expansion at that element is reversed. 
Linear  Pressure. A normalised linear pressure term allows the model to reach equilib- 
rium when its boundary elements encounter pixels at the statistical limits where the 
goodness functional and hence the pressure force evaluate to zero. 
Several image features may be combined by use of a Mahalanobis pressure term. 

3. F A S C I C U L A R  B O U N D A R Y  L O C A T I O N  
To obtain images with sufficient resolution for fibre detection using light microscopy 
a magnification of 40 times is required. At this magnification several fields are required 
to represent an entire fascicle. As a result the fibre detection is carried out on a mosaic 
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of images connected using cross-correlation. The composite images produced typi- 
cally have dimensions of 1000-2000 x 1000-2000 pixels. 
Application of active contour models to boundary detection requires the choice of a 
suitable image force and a method of generating a suitable starting position for the 
model. 
3.1 CHOICE OF IMAGE FORCE 
The choice of image force is determined by the faseicular boundary structure which 
consists of a series of closely spaced, fairly parallel lines (fig,3a,b). 

Fig. 3. Examples of fascicle boundary structure(a,b) 
and result of direction algorithm (c) 

However the contrast between these lines and the background is often poor and 
simple measures based on edge magnitude or contrast fail. To achieve robust de- 
tection we have used a texture measure based on edge frequency and edge direc- 
tionality. 
Image Force Algorithm:The algorithm implemented makes uses of the response 
of a Canny edge detector[3]. 
The Canny response along the fascicular boundary to consists of a number of paral- 
lel edges. Generally the response over the remainder of the image is low, except 
around nerve fibres, where it shows very little local directionality. 
The image feature used to generate the snake's image force is the modal value of 
the direction of the Canny output within a local neighbourhood. The following al- 
gorithm generates an intrinsic image based on this feature. 

1. Apply Canny Operator 
2. Threshold Canny output to retain only salient edges 
3. Quantise edge directions to 16 values 
4. Calculate modal direction value within local neighbourhood 
5. Retain number of responses at modal direction as pixel output 

A local neighbourhood half-width of 10 pixels was empirically found to give the 
most robust boundary response. An example of the algorithm's output is given in 
fig.3c. 
3.2. GENERATION OF A START POSITION 
A starting cue for the snake can be obtained by making use of myelineated nerve 
fibres detected by our automated method. The fascicle boundary lies in a region 
surrounding that containing the nerve fibres. In most cases the boundary is not a 
great distance from the fibre region. The limit of the fibre region is calculated 
using the distance transform[8] of the image containing the detected nerve fibres. 
The outer boundary of the fibre region is determined by thresholding the distance 
transform at a range of increasing values until a single isolated contour is obtained. 
A single contour is typically obtained at a distance just greater than the maximum 
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distance between adjacent nerve fibres. This contour, after being smoothed using 
morphological closing, is used as the starting position of the snake. A degree of 
smoothing is required since the contour produced by the distance transform is ex- 
tremely jagged. 

3.3. RESULT OF FASCICLE SNAKE 
A snake comprised of 61 elements, based on a n  algorithm by Williams and 
Shah[17] using the image force described in section.3.1, was applied to a series of 
sample images. In most examples the starting contour generated by the distance 
transform was fairly close to the actual boundary position. This allowed the snake 
to stabilise within 10-15 iterations achieving a close fit to the true boundary. 
To assess the robustness of the boundary location with respect to the snake's starting 
point, an eroded version of the contour produced from the distance transform was ob- 
tained. This produced a starting point lying well within the fascicular boundary result- 
ing in the snake having to cross regions of potentially confusing image evidence. Fig.4 
shows an example of a snake using a cue eroded by 50 pixels. Fig.4a shows the detected 
fibres with the eroded position superimposed. Fig.4b shows the final position reached 
by the snake. 

Fig.4. Result of snake starting from eroded cue 
While fig.4 demonstrates the robustness of the texture measure generating the image 
force, the greater search space and number of iterations required from the use of a dis- 
tant starting point result in a substantial loss of efficiency. The advantage of having a 
starting point close to the true boundary position is in the generation of a rapid solution. 
In some cases exhibiting a high level of neuropathy the limit of the fibre region may 
be further away from the fascicle boundary requiring the use of an extended search 
space. The distance between the fascicle boundary and the limit of the fibre region may 
be a useful diagnostic measure in such cases. 

4. S E G M E N T A T I O N  O F  C A P I L L A R Y  C E L L  R E G I O N S  
The method used to segment the areas of interest is determined by the appearance of 
the three areas. The lumen is generally light in colour and is usually flat or shows only 
light texture. The endothelial cell material is dark in colour and shows a high degree 



277 

of structure. The basement membrane area is lighter in appearance and generally shows 
less structure with greater directionality than the endothelial cell area. At a coarse scale, 
across examples, the three regions can be characterised by specific textures. At a finer 
scale the region boundaries are characterised by a great deal of detailed structure. 

4.1. APPROACH 
A two stage strategy has been implemented. An initial approximation to the boundary 
is obtained by application of a region-based (statistical) snake starting from a user 
supplied seed region. The use of a region-based snake is appropriate since it makes use 
of the consistent texture within a region to locate the boundary. The only restriction 
on the snake's starting point is that it lies inside the region to be segmented. The ap- 
proximate boundary obtained in this way is refined using a higher resolution search 
method based on dynamic programming which takes advantage of the approximation 
produced by the region-based snake. The dynamic programming method searches 
pixel by pixel near the approximate boundary using a measure based on the texture con- 
trast between regions. This measure is capable of greater sensitivity to texture changes 
when applied close to the true boundary. 

4.2. CHOICE OF IMAGE FORCE FOR REGION BASED SNAKE 
An image measure is required that can distinguish between the various regions of in- 
terest in the capillary. A selection of texture measures was used with discriminant 
analysis applied to produce a weighted combination capable of producing good classifi- 
cation between either lumen and endothelial cell material or endothelial cell material 
and basement membrane area. The discriminant analysis is carried out separately for 
the two boundaries of interest producing a separate set of weights for each. The image 
measures used were: 

�9 Local average luminance: the average grey level within a local 
neighbourhood. 

�9 Gradient: [ 15] a measure of gradient as a function of distance 
between pixels using the distance dependent texture description 
function g(d) computed for a user specified distance d. 

�9 Smoothness: A measure of the number of pixels within a local 
neighbourhood that lie within a specified grey level range of 
the central pixel value. 

�9 Entropy: to distinguish between regions with little or no texture 
and regions with some degree of semi-random structure. 

�9 Laws Texture Filters: Six combinations of Laws [ 11 ] texture 
filters were used. These are a well known set of 1D filters 
which can be combined to represent 2D texture primitives. 

These measures were performed on the various regions of interest for a series of training 
images. A discriminant analysis was carried out on the measures obtained to produce 
a classification between the lumen and endothelial cell area and then the basement 
membrane and endothelial cell area. This produced a weighted combination of the re- 
gion measures. A binary goodness functional based on the results of the discriminant 
analysis was used as the image force for the region based snake. 

4.3. REFINEMENT USING DYNAMIC P R O G R A M M I N G  
Dynamic programming as a search technique has been applied to a variety of problems 
in machine vision[l]. An advantage of dynamic programming is that is always guaran- 
teed to find the optimal path for a given objective function. It also compares well to 
other techniques such as heuristic search algorithms which depend critically upon the 
quality of the forward cost estimate. Its advantage as a refinement method is that the 
cost function is based on local measures, in contrast to the global energy function of the 
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snake methods. Lutkin[12] has shown that dynamic programming can be an effective 
method of assessing local image evidence based on an existing model boundary. 
In order to refine the result of the region based snake, dynamic programming was 
applied to a "straightened" image constructed from single pixel spaced normals to the 
snake's boundary approximation. Each pixel on the straightened boundary corresponds 
to a node in the search graph[12]. The search then proceeds through the graph finding 
the best route as dictated by the cost function: 

COSt i = Ct b o u n d  i -I- fl  (1 - (Oi - 0/+l)) 
where boundi  is the normalised boundary response at node i and Oi and Oi+l are the 
angles at nodes i and i+l, and a and fl are weighting constants. The cost function is 
designed to respond to the image evidence whilst maintaining a degree of compatibility 
with the initial boundary approximation. The compatibility constraint at a transition 
between nodes is a measure of the angle between the path from one node to the next 
and the direction of the approximate boundary. Since the dynamic programming is ap- 
plied to a "straightened" version of the region based boundary approximation the sec- 
ond term in the cost function constrains the refined solution to remain close to this initial 
approximation. 
Choice of Image Measure for Dynamic Programming: The image measure used is 
the difference in texture between two circular regions centred along the normal to the 
estimated boundary position. As in section 4.2, the texture measure is a weighted com- 
bination of the region measures, the weights being determined by discriminant analy- 
sis. At a true boundary point this difference between region responses should be maxi- 
mised. 
4.4. RESULTS 
For the segmentation of the lumen from the endothelial cell area the starting point for 
the snake was within the lumen. For the boundary between the basement membrane and 
the endothelial cell area the region based snake was positioned in basement membrane 
and allowed to contract inwards towards the boundary. For these experiments the endo- 
thelial cell area was not used as a starting point since its structure is less consistent than 
that of the other two regions. 
Results for the location of both boundaries are shown below. Fig.5 shows the region 
based snake applied to segmentation of the lumen endothelial cell area boundary. This 
boundary is very distinct and the region-based snake has produced a good approxima- 
tion to the actual boundary position. Fig.6 shows an enlarged section of the capillary 
shown in fig.5 showing application of the boundary based refinement to the result of 
the region based snake. 
Fig.7 shows the region based snake applied to locating the boundary between the base- 
ment membrane and the endothelial cell area. This boundary is less consistent than than 
the lumen endothelial boundary. In most places the boundary is distinct but in other 
places the image evidence is poor with the boundary appearing non-existent in some 
places. Fig.8 shows an enlarged version of fig.7 showing the detailed improvement 
achieved by the dynamic programming refinement. 
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Fig.5. Segmentation of lumen/endothelial cell area boundary 
a)Starting position b)Result of region based snake 

Fig.6. Comparison of a)region-based snake result and 
b)refinement due to dynamic programming 

Fig.7. Application of region based snake to location of basement membrane/endo- 
boundary. (a) starting point (b) result of region based snake. 
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Fig.8. Comparison of  a)region-based snake and b)dynamic programming results. 

4.5. APPLICATION OF PAIRED SNAKES 

A problem encountered when segmenting the endothelial cell area from the basement membrane 
is the presence of small regions within the basement membrane showing similar texture to that 
of the endothelial cell area. Although they are small in comparison to the main body of the endo- 
thelial cell area, the region based snake can still be "trapped" by these regions (fig.9a). A snake 
placed within the endothelial cell area can encounter similar problems due to the inconsistent 
structure of this area (fig.9b). 

Fig.9. Region based snake trapped by confusing local evidence 
a)Starting from basement membrane b)Starting from endothelial cell area 

This is an example of a general problem with snakes and arises from the fact thatthe only internal 
constraints on the snake are associated with smoothness. There is no way of preventing a smooth 
yet incorrect solution arising from confusing local evidence. 

Problems with confusing evidence can be overcome by combining two or more independent 
assessments of the available evidence. We attempt to obtain two independent views of the evi- 
dence through the use of a pair of snakes running simultaneously from differing starting posi- 
tions. In the absence of conflicting evidence both snakes would be expected to arrive at the same 
answer. Points where there is disagreement suggest the need for further analysis. 
The snakes of section 4.4 were augmented by two further snakes initialised within the endothelial 
cell area, one contracting towards the lumen, the other expanding towards the basement mem- 
brane. Fig.10a shows the initial and final positions of a pair of snakes converging on the bound- 
ary between the basement membrane and the endothelial cell area. In many places the snakes 
arrive at an identical position. As in the example shown in fig.9a the outer snake has been trapped 
by the outlying regions around the endothelial area. However in these places the inner snake has 
generally arrived at a satisfactory solution 
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Fig. 10. a)Start(white) and end(black) positions of two region based snakes 
b) Average snake position(white) and result(black) of application of dynamic programming 

Our initial approach to resolving the conflicting evidence has been to use the average position 
of the two snakes as the model boundary for dynamic programming refinement. Fig.10b shows 
that the result of the refinement to be an acceptable representation of the region boundary. 

5. CONCLUSIONS AND DISCUSSION 

The overall aim of the work presented is the development on an automated system for measure- 
ment of diabetic neuropathy encompassing image capture and automated nerve fibre detection 
as well as the two applications discussed in this paper. The purpose of the fibre detection and 
fascicular boundary measurements is perform a study of the effects of diabetes on the number 
densities and size distributions of myelineated nerve fibres. This requires measurement to be 
made on samples from a large number of patients. Thus a suitably efficient and reliable auto- 
mated system to replace the need for manual measurements is extremely desirable. Details of 
the diagnostic utility of the methods will be published elsewhere. The purpose of this paper is 
to describe the computer vision methods applied. 
Fibre detection and fascicular boundary location is a fully automated process. Snake based 
methods have been shown to successfully locate the fascicular boundary using a starting cue gen- 
erated from the results of automated fibre detection. The accuracy of boundary location is not 
sensitive to the effectiveness of this cue, but the fact that the starting point generated is generally 
close to the final position has a beneficial effect on the method's efficiency. 
The capillary segmentation is intended to be as nearly automated as possible and is intended to 
replace manual delineation of region boundaries. The results shown in this paper have have been 
based on manually positioned starting points. It may be possible to generate image-based cues 
for this application as in the case of the fascicular boundary location. The generation of such 
cues has not been investigated as yet but a possible candidate might use the (usually) uniformly 
light luminal area. 
Technically the achievement of this work has been the segmentation of structurally complex 
images. A principled approach to characterising texture boundaries has been taken based on 
trainable image features. These have been shown to be robust when used in conjunction with 
appropriate forms of Active Contour Model. Two problems which arise from from the use of 
snakes have proved particularly relevant to this work. Firstly the use of a global energy function 
means that they do not respond readily to detailed local boundary structure. Secondly the re- 
liance on smoothness as the constraint on snake shape leads to a lack of shape specificity. In our 
case this means that confusing image evidence can lead to an incorrect solution. The first prob- 
lem has been addressed through the use of an additional boundary refinement phase which takes 
locally detailed structure into account by using dynamic programming. The second problem has 
been addressed through the use of paired snakes to obtain two different views of the image evi- 
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dence. The use of this strategy in combination with the local refinement method produces ad- 
equate results. Further experiments will determine whether greater robustness is required. This 
could be achieved by more rigourous combination of the evidence. Gunn and Nixon[7], for 
example, have adopted an approach using paired snakes coupled together to encourage them to 
converge. Alternatively the dynamic programming refinement could weight the contribution 
made to its cost function by the approximate boundary according to the level of agreement be- 
tween the paired snakes. At positions where the paired snakes disagree the local refinement 
could be allowed more freedom than at positions where the snakes are in agreement. 
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