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Abs t rac t .  MRI is unique in its ability to non-invasively and selectively 
alter tissue magnetization, and create tagged patterns within a deform- 
ing body such as the heart muscle. The resulting patterns (radial or 
SPAMM patterns) define a time-varying curvilinear coordinate system 
on the tissue, which we track with B-snakes and coupled B-snake grids. 
The B-snakes are optimized by a dynamic programming algorithm oper- 
ating on B-spline control points in discrete pixel space. Coupled B-snake 
optimization based on an extension of dynamic programming to two di- 
mensions, and gradient descent are proposed. Novel spline warps are also 
proposed which can warp an area in the plane such that two embedded 
snake grids obtained from two SPAMM frames are brought into registra- 
tion, interpolating a dense displacement vector field. The reconstructed 
vector field adheres to the known displacement information at the in- 
tersections, forces corresponding snakes to be warped into one another, 
and for all other points in the plane, where no information is available, 
a second order continuous vector field is interpolated. 

1 I n t r o d u c t i o n  

In the past, much of the work in image sequence processing has dealt with motion 
analysis of rigidly moving objects. Non-rigidity however occurs abundantly in 
motion of both solids and fluids: motion of trees, muscular motion of faces, and 
non-rigid movement and pumping motion of the left-ventricle (LV) of the heart, 
as well as fluid motion are all non-rigid [10, 14, 1]. 

MRI is an excellent imaging technique for measuring non-rigid tissue mo- 
tion and deformation. MR imaging provides depiction of cardiac anatomy and 
provides dynamic images with reasonable time resolution that in principle can 
be used to track the movement of individual segments of myocardium 1 or other 
structures. In common with other imaging modalities, however, MR images are 
recorded as selected "snap-shots" at discrete intervals through-out the cardiac 
cycle that are registered relative to a coordinate system external to the body. 
Conventional MR or CT imaging therefore can not be used to infer the actual tra- 
jectories of individual tissue elements, as such images can only provide geometric 
information about anatomical object boundaries. Furthermore, since motion of 
the LV is non-rigid, it is not possible to determine the trajectory of individual 

1 heart muscle 
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tissue points from boundary information alone, limiting any motion or deforma- 
tion measurement scheme. To overcome such limitations, tagging methods [19] 
and phase-contrast [16] measurements of motion have been developed. Phase- 
contrast techniques provide velocity information about the deforming structure 
and must be integrated to yield approximate displacements. 2 Tagging techniques 
allow for direct measurement of displacements at specifically labeled tissue lo- 
cations. 

Leon Axel developed the SPAMM technique in which a striped pattern of 
altered magnetization is placed within the myocardial tissue [3]. An alternate 
method described by Zerhouni and co-workers applies a radial array of thin 
striped tags over a short axis view of the heart [19]. For analysis of tagged 
images, Prince and his collaborators used optical flow techniques [8], McVeigh 
et al. used least squares to best localize individual points along a radial tag line 
assuming known LV boundaries [9], Young and Axel applied FEM models to 
fit known displacements at tag intersections [18], and Park, Metaxas, and Axel 
applied volumetric ellipsoids to SPAMM analysis and extracted aspect ratios of 
their model [15]. 

Deformable models are powerful tools which can be used for localization as 
well as tracking of image features [4, 5, 7, 11, 12]. For tagged MR images, several 
groups have applied snakes for tracking tag lines [2, 18, 17]. In this paper, our 
efforts are summarized and B-spline snakes in 1D (curves) as Well as 2D (grids) 
are applied to MR tag localization and tracking. A new dynamic programming 
(DP) algorithm for optimization of B-snakes is proposed. In order to construct an 
energy field for localization of radial tag lines, we use normalized correlations of 
simulated image profiles with the data. For SPAMM tags, coupled B-snake grids 
are used which interact via shared control points. The energy function for coupled 
B-snake optimization uses the image intensity information along grid lines, as 
has been used by [2, 18], but sum-of-squared-differences (SSD) of pixel windows 
at snake intersections are also used in the grid optimization. Optimizing snake 
grids with standard DP is not possible. For this reason, an extension of DP to 
two dimensions is discussed where interaction of horizontal and vertical grid lines 
is allowed. Since this technique is not practical, we have developed a gradient 
descent algorithm for optimizing spline grids. For SPAMM images, techniques 
are also discussed for measuring strain as an index of non-rigid deformation from 
the coupled snake analysis. 

Finally, we develop a new class of image warps for bringing two successive 
snake grids into registration, interpolating a dense displacement vector field. 
The vector field adheres to the known displacement information at snake in- 
tersections, forces corresponding snakes to be warped into one another, and for 
all other points in the plane, where no information is available, a second order 
continuous vector field is interpolated. 

2 In essence, in the Taylor expansion, x(t) = x0 + vt + �89 2 + . . . ,  phase-contrast MRI 
provides v. See [13] for methods for analysis of PC MRI data. 
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2 Optimization of B-Snakes with Dynamic Programming 

B-spline curves are suitable for representing a variety of industrial and anatomi-  
cal shapes [7, 12, 4, 5]: The advantages of B-spline representations are: (1) They 
are smooth,  continuous parametric  curves which can represent open or closed 
curves. For our application, due to parametr ic  continuity, B-splines will allow for 
sub-pixel localization of tags, (2) B-splines are completely specified by few con- 
trol points, and (3) Individual movement  of control points will only affect their 
shape locally. In medical imaging, local tissue deformations can easily be cap- 
tured by movement  of individual control points without affecting static portions 
of the curve. 

2.1 Snake Optimizat ion 

To localize each radial tag line, our approach is to minimize the following ex- 
pression along a quadric B-spline, a(u):  

-{ /p '~(a(u))du + p~ (a(O)) + p~ (a(u.~a~))} (1) Etotal 

In equation (1), the first term maximizes pn along the length of the snake, 
and second and third terms at tract  the snake to the endpoint of tag lines by 
maximizing p~. The limits of summat ion  above include all points on the spline 
except the two endpoints, a(O) and ~(Uma~). Due to the few control points 
needed to represent tag deformations, we have been able to obtain good results 
without any additional smoothness constraints on B-splines. In the more general 
case, the derivative smoothness constraints can also be included. 

The discrete form of Etotat, for a quadric spline may be written as: 

Etotal = Eo(PO,Pl,P2) +""-4- EN-a(PN-3,PN-2,PN-1) (2) 

where Pi is a B-spline control point, and Ei is the sum energy of one B-spline 
span. DP may be used to optimize the curve in the space of spline control points 
using the following recurrence 

Si(pi,pi+l) = min{Ei-l(Pi-l,Pi,Pi+l) -4- Si-l(Pi-l,Pi)} (3) 
p i - 1  

for i > 2, and SI(pl,p2) = mine0 Eo(Po,pl,p:). The constructed table, Si, is 
called the opt imal  value function. The window of possible choices for Pi-1 is 
typically a 3 x 3 or a 5 x 5 pixel area. But, non-square rectangular search areas 
may  be used as well. In general, for an order k B-spline, Si is a function of k 
control points, and Ei is a function of k + 1 control points, a Figure 1 shows 
results from localization and tracking of a cardiac sequence. 

3 Note that the minimization yields the optimal open spline. For other applications, 
given an external energy field, it may be necessary to optimize a closed snake. In 
such a case, one performs M appfications of the recurrence, where M is the number 
of possible pixel choices for the endpoint pl, and for each optimization fixes the 
end point to be one of the M choices, repeating for all M possibilities, and finally 
choosing the minimum. 
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Fig. 1. Results from tracking with B-snakes. Two frames from a sequence are shown. 
The initial, unoptimized placement of B-snakes is shown on the left. The first image is 
repeated in the middle, displaying localized tags. 

2.2 S n a k e  E n e r g y  F ie ld  

In a normal MR image, the image intensity is obtained by measuring the NMR 
signal corresponding to each tissue location. The detected signal is a function of 
tissue relaxation parameters, as well as the local proton density, and depends on 
the choice of applied radio-frequency (RF) pulse sequence. In a radial tagged MR 
image, a series of spatially selective RF pulses is applied prior to a conventional 
imaging sequence voiding the NMR signal at selective locations, and creating 
tag patterns within the deforming tissue. 

In order to create an external energy field for snake optimization, we simu- 
late time-dependent tag profiles using physics of image formation (see [9]) and 
concatenate a series of profiles along the vertical axis to create a template (gl), 
which subsequently is correlated with the data. Let the image be represented 
by g2. The normalized correlation, p(6x, 5u), between the template gi and the 
image g2 satisfies 0 < p < 1, with p = 1 when gi is a constant multiple of g2. 
In order to increase the discrimination power of the technique, the energy field 
is set to -p=(5 , ,  5y), where n is a positive integer less than 10. The higher the 
value of n, the more discriminating against inexact template matches the energy 
function becomes, in the limit only accepting exact matches. Endpoint energy 
fields are termed pe, and are obtained from correlating endpoint templates with 
the tag data. 

There is a trade-off between the spatial resolution of this energy field and 
noise from approximate matches; the degree of trade-off controlled by the tem- 
plate size. The larger the template size, the lower the resolution will be, but the 
energy field will be more robust to noise and inexact profile matches. The sim- 
ulated correlation template is successively rotated to create kernels along other 
orientations. 4 

4 (0,45,90,135) degrees for 4 radial tag orientations 
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Fig. 2. Comparison of simulated profiles and actual profiles taken from different images. 

3 C o u p l e d  B - S n a k e  G r i d s  

Coupled snake grids are a sequence of spatially ordered snakes, represented by 
B-spline curves, which respond to image forces, and track non-rigid tissue de- 
formations from SPAMM data. The spline grids are constructed by having the 
horizontal and vertical grid lines share control points. By moving a spline control 
point, the corresponding vertical and horizontal snakes deform. This represen- 
tation is reasonable since the point of intersection of two tag lines is physically 
the same material point, and furthermore tissues are connected. 

We define a M N  spline grid by (M • N ) - 4  control points which we represent 
by the set 

{ { P 1 2 ,  P 1 3 ,  " " " , P l , N - 1 } ,  { P 2 1 , P 2 2 ,  " " " , P 2 , N }  , ' ' ' ,  { P M , 2 , P M , 3 ,  " " " , P M , N - 1 }  ] (4) 

where Pij is the spline control point at row i and column j .  

3.1 G r i d  O p t i m i z a t i o n  w i t h  G r a d i e n t  D e s c e n t  

To detect and localize SPAMM tag lines, we optimize grid locations by finding 
the minimum intensity points in the image, as tag lines are darker than sur- 
rounding tissues. However, there is an additional energy term present in our 
formulation which takes account of the local 2D structure of image intensity val- 
ues at tag intersections. Although we can not specify an exact correspondence 
for points along a tag line, we do know the exact correspondence for points at 
tag intersections. This is the familiar statement of aperture problem in image 
sequence analysis. The way to incorporate this familiar knowledge into our al- 
gorithm is by use of the SSD function in (5). The energy function which we 
m i n i m i z e  is 

k i j  

(5) 

where vii denotes the intersection point of horizontal and vertical snake curves, 
and )h and A2 are pre-set constants. The SSD function determines the sum-of- 
squared-differences of pixels in a window around point vii in the current frame 
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Fig. 3. Locating tag lines in SPAMM images. An intermediate frame in a sequence of 
tagged images is shown. The LV contours in the figure are hand-drawn B-spline curves. 
Note that the portions of the snake grids lying within the ventricular blood and in the 
liver do not contribute to the energy of the snake grid. 

with a window around the corresponding B-snake grid intersection in the next 
frame. In order to minimize the discretized version of S, in each iterative step, 
we compute the gradient of E with respect to Pij, perform a line search in the 
VE direction, move the control points to the min imum location, and continue 
the procedure until the change in energy is less than a small number,  defining 
convergence. In practice, we have an additional constraint in computing the 
energy function: we only use the intersections, and points on the snake grid 
which lie on the heart tissue. Results from grid optimization for localization and 
tracking of a spline grid with gradient descent is shown in figure 3. 

3.2 Grid Optimization with Dynamic Programming 

In this section, we describe a DP formulation for grid optimization.  We note 
that  optimizing an interacting grid with standard DP is not possible due to the 
dependence of horizontal and vertical snakes on one another. 

As stated in section 2, the DP opt imal  value function for 1D splines is a 
function of spline control points. To apply 2D DP to this problem, we define the 
opt imal  value function, S : 7r x ~" ---+ ~ with 7r denoting the real line and 2" 
being a space of one dimensional splines 

S(x, Vk(x, .)) = m.in{S(x + Ax, Vj(x + Ax, .)) + 
3 

6 (vk(x, .), v (x + .)) + (x + .))} (6) 
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where x is a real number indexing location along the horizontal axis of the 
image where tag lines are located. Ax represents vertical tag separation, and V 
represents a realization of a spline. The class of all admissible vertical splines is 
~'. Note that  

Sl(~/~(X § Z~X, .), Vk(x, .)) : z ~  ' f-~(Hi(u))du (7) 

where i indexes horizontal snakes between x and x + Ax, Hi is snake number i, 
and 1 < i < m with m being the number of horizontal snakes, ge(Y)(x § Ax, .)) 
is the energy of spline number j at location x § Ax 

+ nx,  .)) = - f I(Vj(x + nx,  u))du (8) s 

We have defined a recursive form for obtaining optimal grids with the new DP 
algorithm. Finally, we note that this algorithm is not practical, since we need to 
know all the possible deformations of a vertical or horizontal snake before hand. 
Moreover, the stated formulation will only apply to linear splines (to further 
generalize to non-linear splines, E1 will depend not only on splines at x and 
x + Ax, but also on other neighboring splines). On the positive side, if all the 
possible deformations were known, the 2D DP algorithm would guarantee the 
global optimality of the grid. 

3.3 T i s s u e  S t r a i n  f r o m  Snake  I n t e r a c t i o n s  

Strain is a measure of local deformation of a line element due to tissue motion 
and is independent of the rigid motion. To compute the local 2D strain for a 
given triangle, correspondence of 3 vertices with a later time is sufficient. With 
this information known, an affine map F is completely determined. Under the 
local affine motion assumption for the LV, strain in the direction of vector x can 
be expressed as 

] IFxl2 1) (9) = ~( xTx 

Two directions within each such triangle are of particular interest, namely, 
the directions of principal strain, representing the maximum and minimum 
stretch within a triangle. The results of strain analysis performed on a typi- 
cal tagged image is shown in figure 4 with the corresponding maximum and 
minimum principal strain directions and values. 

4 S m o o t h  W a r p s  

Tracking tissue deformations with SPAMM using snake grids provides 2D dis- 
placement information at tag intersections and 1D displacement information 
along other 1D snake points. In this section, we describe smooth warps which 
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Fig. 4. Strain measurement made from two SPAMM frames. 

reconstruct a dense displacement vector field using the optimized snakes and 
the available displacement information, assuming only 2D motion (as is roughly 
the case towards the apical end of the heart). We note that this analysis can be 
extended to 3D. 

To proceed more formally, the continuity constraint is the bending energy of 
a thin-plate which is applied to the x and y component of the displacement field 
(u(x, y), v(x, y)): 

f 2 + 2u~u + u~udxdy Ux x (10) 

/ (11) v~= + 2v~y + v2ydxdy 

These constraints serve as the smoothness constraints on the reconstructed vec- 
tor field, characterizing approximating thin-plate splines [6]. 

With the intersection springs in place, 

E ( u -  a~) 2 + (v - dr) 2 (12 )  

is also to be minimized. In (12), d u and d v are the x and y components of 
displacement at tag intersections. The form of the intersection spring constraints 
is similar to depth constraints in surface reconstruction from stereo, and has also 
been used in a similar spirit by Young et al. [18]. 

Assuming 2D tissue motion, a further physical constraint is necessary: any 
point on a snake in one frame must be displaced to lie on its corresponding 
snake in all subsequent frames. This constraint is enforced by introducing a 
sliding spring. One endpoint of the spring is fixed on a grid line in the first 
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frame, and its other endpoint is allowed to slide along the corresponding snake 
in the second frame, as a function of iterations. We minimize 

{(x + u -  2) 2 + ( y +  v -  9) 2 } (13) 

along 1D snake points. In the above equation, (x, y) are the coordinates of a point 
on the snake in the current frame, and (2, Y) is the closest point to (x + u, y + v) 
on the corresponding snake in the second frame. Adding (10), (11), (12), and 
(13), and deriving the Euler-Lagrange equations will yield a pair of equations 
involving partial derivatives of (2, 9): 5 

A1 V 4 u + A 2 ( u -  d ~) + A3{(u + x -  2 ) ( 1 -  2~) + (v + y -  9)(-Yu)} = 0 

),~ V 4 v + ),2(v - d ") + ),3 {(v + y - 9)(1 - ~9,) + (u + z - 2 ) ( -~v)}  = 0 (14) 

where ),1 ~ 0 everywhere, A2 _> 0 at tag intersections, and ~3 _> 0 at all 1D snake 
points. We now make two approximations. For vertical grids, the x-coordinates 
of curves only vary slightly, and as the grid lines are spatially continuous, 2~ is 
expected to be small. Furthermore, for vertical grids 9 changes minutely as a 
function of u, so that  9~ ~ 0. For horizontal grids, the y coordinates of curves 
also vary slightly along the length of grid lines, and since these are spatially 
continuous curves, 9~ is expected to be small. Note that these approximations 
will hold under smooth local deformations, as is expected in the myocardial 
tissue. Only 2~ for horizontal grids, and 9~ for vertical grids is expected to 
vary more significantly. Though the effect of these terms is to modulate A3, for 
completeness, we include these derivatives in our equations: 

A1 V 4 u + A2(u - d ~) + A3(u + x - 2)(1 - Thor2,,) = 0 

),1 V 4 v + A2(v - d ~) + A3(v + y -  9 ) ( 1 -  T~rg~) = 0 (15) 

The variables Thor and T ~  are predicates equal to one if the snake point of 
interest lies on a horizontal, or a vertical grid line. An iterative solution to (15) 
from finite differences has been adopted which converges in 400-500 iterations 
for two SPAMM frames. 

The results of applying (15) to two snake grids in figure 7 is shown in fig- 
ure 5 with A1 = 8.0, A2 = 1.0, and A3 = 10.0. At iteration 1, N Z P  = 1008, 
T P S  = 12429.06, I E  = 432.06, and P E  = 2742.26. At convergence, N Z P  = 

298, T P S  = 68.52, I E  = 1.39, and P E  = 56.22. Where I E  is given by equa- 
tion (12) ,  and P E  is given by equation (13). NZP is the number of non-zero 
points in a 2D scratch array where all snake coordinates on both snake grids are 
exelusive-ored together. The thin-plate spline measure (TPS) is the sum of the 
two integral measures in equations (10), and (11). These measures were com- 
puted for (intersection and grid) points within the myocardium. Note that  PE 
does not include the intersection points. 

Utilizing the dense displacement vector field recovered with the method out- 
lined in this section, in addition to strain, differential measures describing local 

Note that in practice, (2, ~7) is smoothed by local averaging 
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Fig. 5. Reconstruction of dense u and v components of displacement from 2 snake grids 
in figure 3. The vector field is superimposed on the u, and v reconstructions for the 
final results (iteration 500). 

rotations and expansions may be obtained. Tissue expansion or contraction in 
an arbi trary area may be computed by applying Gauss 's  theorem, and local tis- 
sue rotations may  be computed by applying Stoke's theorem. As a final note, 
the dense displacement field suggested here can only be an approximation to 
the true displacement vector field. However, as the tag lines become closer, the 
approximation becomes very accurate. 

5 C o n c l u s i o n s  

In conclusion, we have described new computat ional  algorithms suitable for anal- 
ysis of both radial and SPAMM tagged data. We described a new DP algorithm 
which given an external energy field, can optimize B-snakes. We have argued that  
in comparison to other forms of parametrization,  use of B-splines for representing 
curves has several advantages, including subpixel accuracy for tag localization 
and parametr ic  continuity, as well as the need to only optimize the location of 
few control points in order to determine the location of a complete tag line. 

A different aspect of our work involves reconstruction and interpolation of 
dense displacement vector fields directly from tracked snake grids. To this end, 
we presented smooth warps which warp an area in the plane such that  two 
embedded grids of curves are brought into registration. 
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