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Abs t r ac t .  We address the problem of building 3D object models from 
image sequences obtained with known camera motion. An approach 
based on a local reconstruction method is presented. Recovered sur- 
faces are described as polygonal meshes. To this purpose, reconstructed 
points are triangulated and surface areas which are not covered by rims 
are detected since they may lead to false reconstructed points. Result- 
ing meshes are then regularised in order to correct noise perturbations 
which affect the reconstruction. Experimental results on real data are 
presented. 

1 I n t r o d u c t i o n  

Recovering and representing three-dimensional object shape is an impor tan t  task 
in computer vision. The derived models can be used for recognition, localisation 
and design automation.  In the case of curved objects, rich and robust information 
on the shape are provided by image contours which are called occluding contours. 
The corresponding contours on the surface, the rims, are viewpoint dependent 
and defined by the fact that  viewing directions at their points are tangential  to 
the surface. In addition, it has been shown that  local shape recovery from three 
or more occluding contours is possible given a known camera motion. Several 
algorithms [Cip 90, Vai 92, Sze 93] allow such a local reconstruction under the 
assumption of a linear camera motion. In previous works [Boy 95], we proposed 
an explicit solution for rim point reconstruction which is correct for any camera 
motion. 

The approaches mentioned above are concerned with local shape estimation.  
However, a complete surface description is needed to build an object model. 
Scales and Faugeras [Sea 95] generate a polygonal surface mesh using a spline- 
based slicing technique. The input is a set of surface points which are recov- 
ered using the local approach of Vaillant and Faugeras [Vai 92]. Zhao and Mohr 
[Zha 94] a t tempt  to recover the global surface description in a single stage by 
use of B-spline patches. This approach introduces a direct regularisation of the 
reconstructed surface, but it requires a complete a priori parametr isat ion of the 
surface which is usually not available. Zheng [Zhe 94] presents a global method 
in the case of plane camera rotations. In this work, it is shown that  regions of 
the surface unexposed to contours are related to non-smoothness of contour dis- 
tribution in the image. A detection algorithm based on this fact is proposed for 
plane camera rotations. 
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In this paper, we present a global approach for shape estimation which ex- 
tends previous results on surface reconstruction from occluding contours [Boy 95] 
and yields robust surface model. First, we study the case of surface regions where 
local approximations of the reconstruction method are not valid. This the case, 
for example, at planar, concave parts of the surface or at surface discontinuities. 
This corresponds to surface areas which are unexposed to rims and where recon- 
struction yields 3D points which are not on the surface. We present an algorithm 
to detect them, the interest is to remove such false points from the final surface 
mesh. Our approach extends the result of Zheng [Zhe 94] for planar camera ro- 
tations to any camera motion. 

Secondly, we propose a surface description based on a triangulation of the 
recovered rim points. Such a description preserves the coherence with data  since 
no approximation functions which introduce a bias are needed to describe the 
surface, and it does not require any a priori knowledge on the surface parametr i -  
sation. 

We then present an original method to regularise the reconstructed surface. 
The idea is to optimise point positions by minimising an energy function which 
takes into account the surface area. - 

Finally, significant results on a real object are shown which prove the relia- 
bility of the method.  

2 P r e l i m i n a r i e s  

In this section, we summarise some elementary notions to be used along this 
paper. 

We assume that  the imaging system is based on-the pinhole model (i.e. per- 
spective projection). Therefore, the vector position of a point P on the object 
surface can be written 

r = C + AT, (1) 

where C is the camera centre position, T the unit viewing direction and A the 
depth of the point P along the viewing direction. For a given camera position 
there is a locus of points on the surface $ where the normal N is perpendicular 
to the viewing direction. This set of points is called the rim and its projection 
onto the image plane is called the occluding contour. 

An essential property of an occluding contour is that  the normal to the surface 
on the corresponding rim can be computed from image information T and r:  

T A T  
N - --v-------- ~ , I T  A (2) 
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where ~- is the tangent to the occluding contour. This  property leads to the 
following expression for the depth at a r im point [Cip 90]: 

C t .N  
= T, (3 )  

where t denotes t ime (suffix denoting derivative). This formula is defined for 
continuous observations of the object surface. In the case of discrete information,  
depth can be computed only by approximation using successive contours. This 
can be done by using at least three occluding contours and locally approximat ing 
the surface up to order two. Such an approximation leads to a linear est imation of 
rim point depth. For further information about  the local reconstruction method,  
the reader is referred to [Boy 95 I. 

3 D e t e c t i o n  o f  r e g i o n s  u n e x p o s e d  t o  c o n t o u r s  

In the process of reconstruction from contours, parts of the observed surface 1 
may not be covered by rims, depending on the local form of the object surface 
and the camera motion. When the camera turns around such a region, r ims jump 
from one extremity to the other and a non-smoothness appears in the spatio- 
temporal  surface. These unexposed regions correspond to part  of the observed 
surface which are concave, parabolic, planar [Zhe 94] or self-occluded and they 
can not be recovered using only contour information. Moreover, the local model 
used to compute surface point positions is not valid in these areas. Therefore, 
they should be detected in order to build a surface model. In this section, we 
propose a method to detect them. 

3.1 C o n t i n u o u s  o b s e r v a t i o n s  

In the case of continuous observations, we will say that  a surface point P is 
exposed to contours if there exists a camera centre position C(t) in the sequence 
for which the viewing line at P does not pierce the observed surface but  is 
tangent to it. 

A particular case corresponds to points which belong to exposed parts  of the 
surface and where the viewing line is tangent to the surface at more than one 
point (including itself). Such critical points constitute the limit of surface areas 
exposed to contours. 

From a quantitat ive point of view, we can see that  at critical points P ,  the 
viewing direction T and the normal to the surface N are continuous functions 2 
of t but not the depth ~; indeed the observed surface point j ump  from the first 

1 From now on, we will suppose that the term observed surface means the union of all 
object surfaces which are present in the scene. 

2 t usually refers to the time, however, a more rigourous definition is that t parametrises 
the camera motion 
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point of tangency P -  to the second P+.  If we denote by A- and A+ depths at 
P -  and P+,  and by using the depth formula 3 we have: 

)_  _ C t - . N  ~ + _ Ct+.N 

Tt-  .N ' Tt + .N ' 

where Ct - ,  T t -  denote the left derivatives according to t and Ct +, Tt + denote 
the right derivatives. If we suppose that t parametrises the camera motion C(t), 
then Ct is defined at Pc and: 

Tt+. N = Ct .N T t - . N -  Ct .N 
A+ ' A- " 

This shows that  the viewing direction T is not differentiable according to the 
camera motion parameter t at criticM points. Therefore, regions unexposed to 
contours correspond to non-smoothness of the spatio-temporal surface [Gib 94, 
Fau 93] defined by T(s, t), where s parametrises the occluding contours. Thus, 
they may be detected by considering the continuity of Tt along epipolar curves. 
This result generalises the one obtained in [Zhe 94] for planar camera motions 
to the case of perspective projections and any camera motions. 

3.2 D i s c r e t e  o b s e r v a t i o n s  

In the case of discrete observations, the depth at a rim point is computed by 
a second order approximation [Boy 95]. Such a reconstruction can lead to false 
surface points if the viewing lines which are used jump over a surface area un- 
exposed to contours. To detect these false points, we can estimate A- and A +. 
However, this requires more information than the three occluding contours used 
in the second order approximation. Another approach consists in estimating Tt-  
and Tt + at the reconstructed point. Such values should be equal for a point 
exposed to contours. Thus, we can detect false points by computing: 

Tt + .N 
= (4 )  

This can be done by first order approximation and, consequently, three successive 
occluding contours. 

We denote by C(tl),  C(t2) and C(t3) three successive camera positions at 
time tl ,  t2 and t3 and by T(t l) ,  T(t2) and T(t3) three viewing directions which 
are epipolar correspondents (T( t l )  with T(t2), and T(t2) with T(t3)). At the rim 
point P(t2) on the viewing line define by C(t2) and T(t2), we have at order 1: 

Tt_ = (T(t2) - T(t l ))  T+ = (T(t3) - T(t2)) 
(t2 -- t l )  ' (t3 -- t2) ' 

and if we suppose that  [ICtll is constant between the three camera positions, 
which is not a constraint in the discrete case, we can write: 

(t2 - t l )  = II(C(t~) - C(t~))ll (t3 - t~) = II(C(t3) - C(t~))ll 
IIC, II ' l I c ,  ll ' 
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where ]} I] denotes the euclidian norm. Finally: 

( T(t3).N(t2) -T(tl).N(t2) 
= t, / , (5)  - c(t ))ll) 

where N(t2) is the normal to the surface at P(t2).  Due to the approximat ion 
will not necessarily be equal to one at a point exposed to contour but close 

to this value. Therefore, surface areas which correspond to false reconstructed 
points will be detected by use of a threshold. Hence, reconstructed points which 
verify: 

I1  - < thr  h, (6) 
where I [ denotes the absolute value, will be considered as surface points exposed 
to contours and points which do not satisfy this condition will be considered as 
false points occluding an area unexposed to contour. Note that  in the case of 
discrete observations (i.e., occluding contours at discrete times) the fact that  the 
reconstructed points are false or not depend on a priori information on the sur- 
face. Indeed, tresh corresponds to the limit below which a planar surface region 
will be considered as a concavity. This value should therefore be set according 
to the application. 

4 T r i a n g u l a t i o n  

The result of the reconstruction is a set of 3D contour points. A parametr ic  de- 
scription of this set of points is required for a global surface representation. Such 
a description is used to build functions which approximate  or model the object 
surface. This can be either a parametr isat ion of the surface or first, a triangula- 
tion of the rim points. In this section, we briefly discuss such a description and 
we present our approach. 

If a parametr isat ion of the surface is available then an approximat ion can be 
computed using, for example, spline functions [dB 78]. However, without any a 
priori information on the object surface, it might be difficult to compute such 
a parametrisation.  Another approach consists in triangulating the reconstructed 
points. The object surface can then be represented as a set of connected polygo- 
nal facets. The advantage is that  only topological information are required: the 
neighbours of each vertex of the triangulation. 

An optimal triangulation in the 2D case is the Delaunay tr iangulation which 
maximises the min imum angle of the resulting mesh. The generalisation to the 
3D case leads to the tetrahedrisation of the set of points which is a volume. 
This method is therefore not well adapted to the case of rim points; indeed rims 
describe the object surface or only part  of it and thus, they do not necessarily 
define a volume. In addition, the 3D points are organised in contours and hence, 
the resulting triangulation should conserve this information. 

Consequently, our approach consists in constructing a tr iangular mesh which 
respect the adjacency of successive rims: 
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- two 3D points which are not on the same rim can be connected if and only 
if they are on two consecutive rims. 

Thus, the problem of triangulating the set of rim points is reduced to one 
of triangulating each pair of consecutive rims in the sequence. This leads to the 
following condition for a triangular facet: 

- A facet is defined by two points on one rim and one point on the next or the 
previous rim. 

This condition is not sufficient to define a unique triangulation of a rim pair 
and an additional criterion must be used to isolate one set of facets. The triangu- 
lation of a r im pair corresponds therefore to the problem of finding a min imum 
cost path  in a directed graph, in which the vertices correspond to the set of all 
possible connections between the points of the r im pair [Fuc 77]. An solution can 
be found in n 2 operations where n is the number  of points on a rim. 

The additional criteria that  can be used are: the sum of facet areas, the sum 
of edge lengths or the sum of angles. We choose the sum of facet areas, thus the 
resulting surface minimises the total  surface area. 

The triangulation algorithm is applied to the whole set of reconstructed 
points including false points. Then, all the triangular facets which contains one 
false point (according to 6) are removed from the surface mesh. 

5 R e g u l a r i s a t i o n  

The resulting triangular mesh approximates  the part  of the surface which was 
covered by the observed rims. However, since the 3D reconstruction process is 
very sensitive, the reconstructed surface may present perturbations such as folds. 
This is due to different reasons including: 

- the noise which is present in the acquisition system, 
- camera calibration errors, 
- contour tracking errors, 

In order to correct these defaults, positions of mesh vertices are optimised 
by minimising a functional E: 

E = Edist + a Ereg, 

where Edist controls the fitness to the data  and Er~g the smoothness of the re- 
constructed surface. In this section, we precise the original energy functions that  
are used. 
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5.1 D i s t a n c e  e n e r g y  

In the context of a reconstruction from occluding contours, data consist of image 
positions {Pi,j} of mesh vertices, where i is the image number and j is the 
point number on the occluding contour. Thus the fidelity to the data  can be 
eharacterised by the distance between the image point and the projection of the 
corresponding mesh vertex Pij onto the image plane. Hence: 

E . . , ( P , , i )  = IU P ,i - p ,j I 
i , j  

where {Mi} are the calibration matrices (i.e., perspective projection matrices) 
of the different image planes. This expression is consistent with the fact that  
original data are viewing lines and not 3D reconstructed points. In the optimisa- 
tion procedure, surface point displacements are therefore not limited to a closed 
neighbourhood of the reconstructed point, but to a closed neighbourhood of the 
corresponding viewing line. 

5.2 R e g u l a r i s i n g  e n e r g y  

In order to optimise surface point positions and thus, smooth the reconstructed 
surface we introduce a regul&rising energy. Classically, such energies are based on 
curvatures or, equivalently, second derivatives of surface point position function 
[Pog 85, Ter 86]. To this aim, derivatives can be approximated by finite differ- 
ences [Wel 94] or discrete curvatures can be computed [Hen 92]. However, in the 
ease of a triangular mesh, resulting functionals may be strongly non-linear and 
thus, difficult to minimise. Furthermore, errors such as surface folds may not be 
corrected by considering discrete curvatures. 

We therefore introduce a term which is based on the triangle areas. Hence, 
the regularising energy is giyen by: 

Nt 

: s(r ) 
k----i 

where Nt is the number of triangles and S(Fk) the area of a triangle. This en- 
ergy, and its derivatives, are easy to compute. Consequently, it can be minirnised 
using a classical optimisation method. 

Finally, the total energy can be written: 

Nt 

z =  lM, + (7) 
i , j  k=-I 

Only positions of points which do not belong to the surface boundaries are 
optimised. The parameter a controls the trade-off between fidelity to the data 
and variation of the sum of squared triangle areas and should therefore be set 
by the user. 
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6 E x p e r i m e n t a l  r e s u l t s  

We present here results for a real image sequence of a jug (see figure l(a)(b)). 
This sequence was taken using a rotating turntable and the occluding contours 
were tracked using snakes [Ber 94, Kas 88]. The result of the reconstruction is 
shown in figures l(c)(d). In these figures, the triangular mesh corresponds to 
the hull of the object surface defined by the observed contours. Note that due 
to the contour tracking, the flower which appears on the jug yields a fold in the 
triangular mesh (see figure l(c)). In figure 2(a) the triangular facets which con- 
tains one or more false point (according to the detection algorithm) are shown. 
These facets were removed from the final surface as shown in figures 2(b). Note 
that the fold corresponding to the flower has been corrected (see figure 2(b)). In 
figures 2(c)(d) the final surface was rendered using a ray tracer and projected 
in two images of the sequence. This is done by use of the perspective projec- 
tion matrices computed during a preliminary calibration step. It shows that the 
resulting surface is coherent with the original one. 

Figure 1: (a)(b) two sequence images, (c)(d) t r iangula ted  r im points. 
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Figure  2: (a) facets which are de tec ted  as unexposed  to contours ,  
(b) final mesh  surface,  (c)(d) p ro jec t ions  of  the final surface in the  
original  image.  

7 Conc lus ion  

We have described a reconstruction procedure that  produces a smooth surface 
from image sequences. Resulting polygonal meshes are obtained by triangulat-  
ing reconstructed rim points. Such approach is well adapted to the shape from 
contour problem since it does not require any a priori  informations on the ob- 
served surface. Thus, it allows partial  as well as complete surface descriptions. In 
addition, mesh point positions may be optimised by considering the regularity 
of the surface. We have proposed a regularising term which is based on triangle 
areas. This term as well as its derivatives are easy to compute and allows recon- 
struction perturbations such as folds to be corrected. This make it possible to 
build object models. 
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In this work, we have also studied surface areas unexposed to contours. In the 
case of discrete observations, such regions may  leads to false points estimation. 
We extended previous results and we proposed a criterion to detect these false 
points. 
The interest of detecting these areas is also related to improvements  of the global 
recovering procedure. Indeed, another reconstruction method may be applied to 
these regions once they are clearly determined in 3D as well as in the images. 
Our current work is concern with such integration of different reconstruction 
methods. 
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