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A b s t r a c t .  The frontier of a curved surface is the envelope of contour 
generators showing the boundary, at least locally, of the visible region 
swept out under viewer motion. In general, the outlines of curved surfaces 
(apparent contours) from different viewpoints are generated by different 
contour generators on the surface and hence do not provide a constraint 
on viewer motion. Frontier points, however, have projections which cor- 
respond to a real point on the surface and can be used to constrain viewer 
motion by the epipolax constraint. 
We show how to recover viewer motion from frontier points and gene- 
ralise the ordinary epipolax constraint to deal with points, curves and 
apparent contours of surfaces. This is done for both continuous and di- 
screte motion, known or unknown orientation, calibrated and uncalibra- 
ted, perspective, weak perspective and orthographic cameras. Results of 
an iterative scheme to recover the epipolar line structure from real image 
sequences using only the outlines of curved surfaces, is presented. A sta- 
tistical evaluation is performed to estimate the stability of the solution. 
It is also shown how the full motion of the camera from a sequence of 
images can be obtained from the relative motion between image pairs. 

1 I n t r o d u c t i o n  

Structure and motion from the images of point features has attracted conside- 
rable attention and a large number of algorithms exist to recover both the spatial 
configuration of the points and the motion compatible with the views. Structure 
and motion from the outlines of curved surfaces, on the other hand, has been 
thought to be more difficult because of the aperture problem, i.e. it is not possible 
to get the correspondence of points between two images of the same curve. 

For a smooth arbitrary curved surface an important image feature is the 
outline or apparent contour. This is the projection of the locus of points on the 
surface which separates the visible from the occluded parts (Fig. 1.A). Under 
perspective projection this locus - the critical set or contour generator, Z - 
can be constructed as the set of points on the surface where rays through the 
projection centre c are tangent to the surface. Each viewpoint will generate a 
different contour generator with the contour generators 'slipping' over the visible 
surface under viewer motion (Fig. 1.B). 

Under known viewer motion, the deformation of apparent contours can be 
used to recover the surface geometry (structure) [8, 5, 14]. This requires a spat io-  
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Fig. 1. Perspective projection (A): the contour generator ,U with a typical point r ,  the 
image sphere with centre c and the corresponding apparent contour point c + p. Thus 
p is the unit vector joining the centre r to the apparent contour point. Degenerate 
case of epipolar parameterisation (B): The epipolar plane is a tangent plane of the 
surface at a frontier point. At a frontier point the contour generators from consecutive 
viewpoints intersect. 

temporal parametrisation of the image-curve motion. The epipolar parametrisa- 
tion is most naturally matched to the recovery of surface curvature, cf. [5]. 

In this paper we address the problem of recovering the viewer motion from 
the deformation of apparent contours. We show how frontier points can be de- 
tected in image sequences and used to recover viewer egomotion. The special 
case of frontier points under orthographic projection and object rotation about  
a single axis was considered by Rieger [13] and Giblin et al [7]. Porrill and Pol- 
lard [12], although primarily concerned with stereo calibration from 3D space 
curves, noted that the intersection of the two contour generators from two di- 
screte viewpoints generated a real point visible in both images which could also 
be used to generate an epipolar constraint. This constraint was exploited by 
Carlsson [3] in the analysis of the visual motion of space-curves. 

We analyse both the continuous (infinitesimal) and discrete viewer motion 
cases as well as considering calibrated and uncalibrated cameras, orthographic 
and perspective projection. We present preliminary experimental results obtai- 
ned from real image sequences of curved surfaces from unknown viewpoints. An 
iterative technique is implemented which recovers the maximum likelihood esti- 
mate of the epipolar line structure (fundamental and essential matrices) from 
the  image motion of frontier points. A statistical evaluation is also performed to 
estimate the stability of the solution. The work is a continuation of [4]. 

2 Generalised Epipolar Constraints 

Consider a smooth surface M (closed, for example the boundary of a 3-dimen- 
sional object) which is viewed from a curve c(t) of camera centres. Each camera 
centre c(t) gives rise to a contour generator F( t )  consisting of points r in M 



99 

such tha t  the viewline is perpendicular to the surface normal: (r - c) .n  = 0. As 
t changes the contour generator slides over the surface. 

Now consider the camera center at two time instants cl = c( t l )  and c2 = 
c(t2), and consider all planes that  go through these two camera centers which 
are tangent to the surface M. This pencil of planes will be called the pencil of 
epipolar tangency planes with respect to the camera motion. The image of the 
epipolar tangency planes is a star of lines through a point, the so called epipole, 
each line being tangent to an apparent  contour. Since both pencils are the image 
of the same pencil of planes they must be related. Denote by Pl  (s) the apparent  
contour in image 1 with curve parameter  s and by p2 (s) corresponding apparent  
contour in image 2. The point r where the epipolar tangency point is tangent to 
the surface M must be on both contour generators as is illustrated in Fig. 1.B. 
The normal n to the surface at this point is orthogonal not only to Pl  and P2 
but also to their image tangents (pl)~, and (p2)~s and to the direction of motion 
Ac = c2 -- Cl. This can be written in a compact way as the generalised epipolar 
constraints, 

i S rank [Ac p l ( s l )  (pl) 's(sl)  p2(s2) (P2)s( 2)] = 2 , (1) 

i.e. the five column vectors in the above matr ix  must lie in a plane perpendicular  
to the normal. Notice that  the rank constraints involve both curve parameters  
Sl and s2 and motion parameters  Ac. This can be used in several ways. Firstly, 
once the direction of motion Ac is known or guessed the first image of the 
epipolar tangency point can be found by searching for the curve parameter  Sl so 
that  det [Ac Pl (sl)  (Pl)~s (sl)] = O, and similarly for the second image. Secondly, 
when the image of the epipolar tangency points has been found it can be checked 
whether or not det [Ac P l  P2] ---- O. 

The above formulation of the generalised epipolar constraints depends on the 
specific choice of both object and image coordinate system. The motion para- 
meters  can therefore only be determined up to an unknown choice of coordinate 
system. The above formulation is convenient since it makes the generalisation 
to other camera models easy. As an example the infinitesimal version can be 
obtained as the limit when the time difference approaches zero. 

rank [Ac Pl (Pl)s P2 (Pa)s] = rank [Ac/At (Pl)s (P2 - Pl)/A~t (P2)s] -~ 

- ~ r a n k [ c t p ( p ) ~ p t  (P)s] = 2 ,  as t - - ~ 0  . 

Note that  p is the orientation of the ray in the fixed reference/world frame 
for ]R 3. For a calibrated camera it is determined by a spherical image position 
vector q (the orientation of the ray in a coordinate system attached to the viewer 
or camera) and the orientation of the camera co-ordinate system relative to the 
reference frame. For a moving observer the viewer coordinate system is continu- 
ously moving with respect to the reference frame. The relationship between p 
and q can be conveniently expressed in terms of a rotation operator ,  R( t ) ,  such 
tha t  p = R( t )q .  The measurements in an uncalibrated camera, w, are related to 
the spherical image position, q, by an intrinsic calibration matr ix  (affine trans- 
formation),  A, such that  q = A( t )w.  For simplicity the relationship between w 
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and p will be expressed by a single matrix S representing both intrinsic calib- 
ration and orientation of the camera, i.e. p = R( t )A ( t )w  = S(t)w. A thorough 
treatment of the other cases can be found in [1]. The results are summarised 
in the following two tables. The direction of motion is represented with a three 
vector, Ac, in the central projection cases and Ak = (cos(P), sin(P), 0) T in the 
parallel projection case. In the tables A R  is a three by three rotation matrix, AS 
is a general non-singular matrix, AB is a matrix representing planar euclidean 
transformations and AC is a matrix representing planar similarity transforma- 
tions. The matrix Rs is the derivative of a rotation matrix and similarly for the 
other types. 

Camera Motion Obs. 
Model Params d o f 
Pure transl. 4c  2 
Calibrated Ac, AR 5 
Uncalibrated Ac, AS 7 
Orthographic Ak, AB 3 
Weak Persp. Ak, AC 4 

Generalised Epipolar Constraints 

rank Ac Pl (Pl)s P2 (P2)s ---- 2 
rank Ac qt (ql)s ARq2 AR(q2)8 = 2 
rank Ac Wl (wt)s ASw2 AS(w2),  = 2 
rank A k m  (wt)s (ABw2 - wl)  AB(w2) ,  = 2 
rank Ak m (wl)s (ACw2 - wl )  AC(w2), .  = 2 

Summary of relevant motion parameters, number of observable degrees of free- 
dom and generalised epipolar constraints in the discrete case. 

Camera Motion Obs. Generalised Epipolar Constraints 
model Params d o f 
Pure transl, cs 2 rank cs p Ps Ps = 2 
Calibrated cs, Rs 5 rank ct q qs Rsq  + qt = 2 
Uncalibrated cs,St  7 rank c s w w ,  S s w + w  = 2  
Orthographic ks, Bs 3 r a n k  ks m w,  Bsw + w~ 1 = 2 
Weak Persp. ks, C~ 4 rank k~ m w,  C t w  + wsJ = 2 

Summary of relevant motion parameters, number of observable degrees of free- 
dom and generalised epipolar constraints in the infinitesimal case. 

3 I m p l e m e n t a t i o n  

3.1 Extraction and Tracking of  Apparent Contours 

An important  aspect in calculating motion from the deformation of apparent 
contours is the actual extraction and tra~cking of the contours. This can be achi- 
eved with B-spline snakes. In our implementation, the snake at time tl  is used 
as a template to find corresponding contour in the image at the next t ime in- 
stant t2. At first the snake is only allowed to move rigidly. This ensures a fast, 
robust, but rough positioning of the snake in the new image. The snake is then 
allowed to deform to match the new image. This procedure is explained in more 
detail in I6]. In the last steps of snake deformation we have used subpixel edge 
detectors that  not only gives us the location of the contour but also a confidence 
interval in the normal direction of the curve. This is done with a new technique 
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described in [2]. For clear well defined edges, the individual edge positions can 
be found with a standard deviation of roughly 1/5:th of a pixel in the normal 
direction. This uncertainty measure is important in estimating motion parame- 
ters later. Different frontier points are weighted according to the uncertainty in 
their positioning. 

As a by-product of the snake type tracking, a rough guess of point corre- 
spondences are obtained. These approximate point correspondences can be used 
to calculate an initial estimate of motion parameters as described in the next 
section. 

3.2 Initial Hypothesis of Motion 
There are a number of different ways to obtain the initial hypothesis of the 
motion parameters, which are needed in order to use the generalised epipolar 
constraints. 
Point m a t c h e s  can be used to estimate motion parameters using the linear 
eight point method [10] or non-linear methods [11]. 
Motion sensors :  In some situations, partial knowledge of the motion can be 
obtained by other means, e.g. from motion sensors. 
Prediction: If viewer motion is smooth it might be possible to predict motion 
parameters from estimates of motion history. 
S i m p l e r  c a m e r a  m o d e l s :  Approximate motion parameters can also be obtai- 
ned using approximate camera models, e.g. the weak perspective model. 

3.3 M a x i m u m  L i k e l i h o o d  E s t i m a t i o n  

The maximum likelihood method is a natural way to estimate the motion para- 
meters given noisy input data. It has several advantages and is relatively easy 
to apply. The main idea is the following. A residual, ai  = a i (m),  as a func- 
tion of motion parameters, m, is chosen. The joint distribution, fn(alm), of the 
residuals given motion parameters, m, is calculated. The maximum likelihood 
estimate, rh, is the motion parameter which maximises the likelihood function 
L(m) = fn(alm). To make this optimisation simple it is often assumed that  the 
residuals, ai ,  are independent and of Gaussian distribution with zero mean and 
standard deviation a~. This is a reasonable assumption if the images of the fron- 
tier points are not too close to each other in the image. The likelihood function 
is then 

L = H ~ e-~/2~ 

By taking the negative logarithm maximising the likelihood is approximately the 
same as m l n l m l s l n g  

2 

2 
o" i 

The estimate is the motion parameters that minimise this weighted sum of squa- 
red residuals. In our implementations minimisation is performed using either a 
modified Newton-Raphson method or Gauss-Newton method. For more details 
see [1]. 
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Fig. 2. Rectification of uncalibrated images. Two images (A-B) are projected onto the 
viewing sphere and rectified using the motion parameters (C-D). After rectification The 
epipolar tangency planes all intersect at the x-axis. The two sets of epipolar tangency 
planes should be equal. The angular difference is used as the residual. 

Residuals  in the  discrete t ime,  perspect ive  projec t ion  case: After a 
standard rectification to parallel geometry the set of epipolar tangency planes in 
both images should be identical. The epipolar tangency points and the epipolar 
tangency planes are found using the epipolar tangency constraints 

wl I = 0 ,  (2) 

 Sw2  S(w2)81 = 0 .  (3) 

The angular difference, ai ,  cf. Fig. 3, between the two representations of the 
same epipolar tangency planes, after rectification, is calculated as well as the 
standard deviation ai of this residual. 

Residuals  in the  discrete t ime,  parallel projec t ion  case: The orthograp- 
hic and weak perspective cases are similar. After rectification the two sets of 
parallel epipolar tangency planes should be identical. The distance ~i, between 
the parallel epipolar tangency planes, is used as the residual. The residual is 
scaled with respect to its standard deviation ai. The  residual variance, due to 
edge localisation error, is changed in these transformations. These effects are 
taken into account. 

Residuals  in the  inf inites imal  case: In the infinitesimal case, the direction 
of viewer motion ct is used as an infinitesimal epipole or the focus of expansion. 
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Fig. 3. Two sets of epipolar tangency planes are cMculated from two images. These 
two sets should ideally be identical. The residual is defined as the angular difference 
c~i between corresponding epipolar tangency planes after rectification. 

The tangency constraint is then used to find the epipolar tangency planes and 
corresponding frontier points. For example, in the calibrated case we have 

[ c t q q s  I = 0  . 

Each plane defines a normal n = q x ct. The motion constraint is then simply 
n .  (R tq  + qt) = 0. It is reasonable to use 

a = n .  ( R t q +  qt) 

as the residual. Errors in a are mostly due to the errors in qt, therefore the 
standard deviation, a[(~], can be approximated by a[n~ �9 qt], i.e. the standard 
deviation in estimated normal velocity. These standard deviations are obtained 
from the sub-pixel edge detector routines. The standard deviation is approxima- 
tely constant around each frontier point, so g is in fact quadratic in Rt  so that  
the minimum with respect to Rt  can be found with linear methods. The same 
argument applies to the uncalibrated and parallel projection cases. 

3.4 S t a t i s t i c a l  E v a l u a t i o n  

The maximum likelihood estimate has several good properties. One is that  it is 
guaranteed to be asymptotically unbiased. 

The residuals at the minimum can be used to estimate empirically the magni- 
tude of edge localisation error. This can then be compared to the ones obtained 
from the edge detectors. The residuals can thus be used to automatically verify 
whether a reasonably low minimum has been found. Thus it may be possible to 
get out of local minima and also to remove outliers. 

The second derivative matrix of g together with the variance of the scaled 
residuals gives us an estimate of the covariance of the estimated motion para- 
meters, cf. I1]. 



4 Examples 

4.1 I n f i n i t e s i m a l  M o t i o n  
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Fig. 4. Infinitesimal motion with a weak perspective camera. One image with apparent 
contours aud the estimated normal velocity is used as input (A). The minimal error 
function g as a function of the tessalated line at infinity using the weak perspective 
camera model (B) and as a function of the sphere of directions using the uncalibrated 
camera model (C). Low values are dark in the figure. 

One image, taken from a longer sequence, of the same scene is shown in 
Fig. 4.A. The deformation between this and the next image is used to est imate 
normal velocity. This is illustrated with small line segments. 

For each of forty choices of focus of expansion kt -- [cos(8), sin(8), 0] T with 
0 = 0, ~r/40, . . .  , 39~/40, the epipolar tangency points w were calculated using 
the epipolar tangency constraint Ik~ m w81 -- 0. The normal velocity and its 
s tandard deviation was calculated at these points. For each kt  the weighted 
squared residual g _= ~ c~ i2/a i2 with c~ -- n .  (B tw + wt)  was minimised with 
respect to Bt.  The minimal residual as a function of 8 is shown in Fig. 4.B. 
Thus a rough est imate of the motion is obtained by finding the minimal g of 
these forty directions. 

The same input was also used to illustrate the uncalibrated camera  case. The  
same idea of tessellating the focus of expansion can be used. In the perspective 
projection case this means tessellating the sphere of directions. As in the previous 
example, for each choice of focus of expansion or direction of motion, ct, it is 
straightforward to find the epipolar tangency points. Minimising the weighted 
sum of squared residuals g with respect to St is a linear problem. The minimal 
residual as a function of ct E S 2 is shown in Fig. 4.C. Notice tha t  the low 
values of, g, form a long dark valley on the sphere. We expect the direction of 
motion to be poorly located along that  valley. This is confirmed by the statistical 
evaluation. Notice also that  choosing the weak perspective model corresponds 
to searching this sphere along the equator only. 

The minimum obtained from tessellating the sphere or the minimum obtained 
from the weak perspective case above can both be used as initial estimates in a 
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Gauss-Newton search of the minimum. This was done and about  ten i terations 
were needed to find the minimum. 

4.2 Discrete  Motion,  Known Rotat ion  

Known rotat ion can easily be illustrated by incorporating and using a planar  
curve in the image. The image of a planar curve is deformed with a planar  pro- 
jective transformation.  By detecting and aligning a planar feature in a sequence 
of images, the sequence can be regarded as one of a purely translating camera. 
The planar curve is then regarded as a curve on the plane at infinity and thus it 
has no apparent  image motion. This idea has been used in [9] and is known as 
projective reduction, a generalisation of the plane plus parallax method. 

This is illustrated in Fig. 6. Only the direction of motion Ac needs to be 
estimated. The sphere of possible directions can then be tessellated and the 
error function g can be calculated for each direction. The minimum obtained 
after tessellation is improved by local Newton-Raphson search (6 iterations were 
needed). 

4.3 Discrete  Motion,  Uncalibrated Camera 

The discrete motion case with uncalibrated camera is illustrated with a pair of 
images from the same sequence that  was used to illustrate the infinitesimal case. 
The result from the infinitesimal case can be used as an initial est imates of the 
discrete motion parameters.  A standard extrapolation is used: 

AS = e s 'At ,  Ac = c tA t  

This initial estimate is used as input in a gauss-newton search. At each itera- 
tion we use the current motion parameters  to calculate the epipoles and the 
epipolar tangencies. Fig. 5.A and B illustrate the epipolar tangencies obtained 
at i teration 1. The two sets of epipolar tangency planes are then rectified using 
the current motion parameters,  cf. Fig. 2. After rectification corresponding epi- 
polar tangency planes should coincide. The difference, measured as the angle a 
is calculated. The estimated standard deviation a of this angle due to edge loca- 
lisation errors is also calculated and the weighted residual Y = a/c~ is formed. 
The derivative of Y with respect to infinitesimal changes in motion parameters  
is then cMculated. The weighted residual Y and its derivatives are then used 
to adjust the motion parameters  according to the Gauss-Newton method,  cf. 
[1]. Fig. 5 illustrates the epipolar tangencies and the rectified epipolar tangency 
planes of iteration 1, 4 and 10 of such a minimisation. Typically one needs a 
couple of iterations (6 in this example) to get close to the minima. During these 
iteration the error function g = ~ y2  decreases rapidly. Then a few more itera- 
tions are needed to localise the minima within machine accuracy. During these 
last i teration the norm of the gradient decreases rapidly, while the error function 
stays almost constant. This is illustrated in the table below, in which the error 
function g and the logarithm of the norm of the gradient of g is shown for the 
10 iterations. 
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Iteration 1 2 3 4 5 6 7 8 9 10 
g 110.5 66.54 34.24 16.45 7.695 6.482:6.476 6.476 6.476 6.476 

logl0(IVgl) -0.99 -1.11 i-1.281-1.48'-2.01 -3.63 -5.53 -7.62 -9.70 -9.70 

Fig. 5. Finding the uncalibrated motion parameters using the generalised epipolar 
constraints. Optimisation of the likelihood function. Iteration number 1 (first row), 
4 (second row) and 10 (Third row). First and second columns illustrate the epipolar 
tangencies in the first and second image. The third column illustrate the rectified 
epipolar tangency planes, projected on the view-sphere and viewed along the direction 
of motion.. 

5 E x t e n s i o n  t o  I m a g e  S e q u e n c e s  

The implementation briefly described above allows us to calculate motion 
parameters between pairs of images. A natural extension is to use the estima- 
tes of motion parameters for pairs of images in a sequence of images at times 
( to , . . .  , tn), to obtain the full motion of the camera. In the calibrated case the 
full motion of the camera as represented by camera positions ci = c(ti) and 
camera orientation Ri --- R(t i )  must fulfill the following equations: 

/zijAc~ = R~ -1(c~ - ci) 

A R i j  = R~-IRj . 

where (Acij,  ARi j )  are the motion parameters from image i to image j .  The 
overall coordinate system must be chosen, e.g. by choosing co = 0, R0 = I and 
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Fig. 6. The case of discrete motion with uncalibrated camera. Four images out of a 
longer sequence is shown in (A-D). By detecting and aligning the image of a planar 
feature the images can be thought of as coming from a purely translating camera. The 
apparent contours after alignement are shown in (E). This makes it relatively easy to 
extract motion parameter between each pair of images. These parameters can then be 
used to calculate the full motion of the camera (F). 

Ic,~[ -- 1. The unknown scale factor #ij has to be found since it is only possible 
to determine glcij up to an unknown scale factor. Similar equations apply to 
the other camera models. The idea is illustrated in Fig. 6. Four images of a 
short sequence is shown (A-D) and the camera motion are represented as the 
corresponding four camera positions (F). 

6 C o n c l u s i o n s  a n d  F u t u r e  W o r k  

The apparent contour and its deformation under viewer motion is known to be 
a rich source of surface geometric information which can be used in visual na- 
vigation and object manipulation. Here we have shown how so called frontier 
points of apparent contours can be used to recover the viewer motion from the 
deformation of apparent contours. The epipolar constraint for points is generali- 
sed to points, curves and apparent contours, to both the continuous and discrete 
motion cases, to uncMibrated and calibrated cameras and to perspective and 
parallel camera models. An iterative method to obtain the maximum likelihood 
estimate of the motion parameters is presented and the problem of obtaining 
initial estimates is discussed. Statistical evaluation of the results are presented. 
These can be used to evaluate the validity of the solution but also to obtain 
estimates of the covariance of the estimated motion parameters. The theory is 
applied to real image sequences. It is also shown how motion between image 
pairs can be used to obtain full camera motion. 
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