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Abstract.  We present an algorithm which uses information from both 
surface reflectance and illumination variation to solve for colour 
constancy. Most colour constancy algorithms assume that the 
illumination across a scene is constant, but this is very often not valid for 
real images. The method presented in this work identifies and removes the 
illumination variation, and in addition uses the variation to constrain the 
solution. The constraint is applied conjunctively to constraints found from 
surface reflectances. Thus the algorithm can provide good colour constancy 
when there is sufficient variation in surface reflectances, or sufficient 
illumination variation, or a combination of both. We present the results of 
running the algorithm on several real scenes, and the results are very 
encouraging. 

1 Introduct ion 

Many colour constancy algorithms have been developed, but all are subject to quite 
restrictive assumptions and few have been tested on real images. Of the existing 
algorithms we believe that the one by Finlayson [8] is currently the most general and 
most thoroughly tested. Nonetheless, it is restricted to scenes in which the 
illumination is constant or at least locally constant. This assumption is more often 
violated than one might at first suspect given that the incident illumination from any 
fixed direction does generally vary slowly as function of position. The problem is 
that the surface orientation even of  smooth surfaces can vary quite rapidly with 
position so that light at nearby surface locations may be received from very different 
regions of  the illumination field. Since these different regions of  the illumination 
field often posses substantially different spectral power distributions--such as is the 
case in a room in which where there is light from a light bulb mixed with daylight 
from a window--nearby  points on the surface in fact can receive very different 
incident illumination. 

This paper addresses the problem of colour constancy in scenes where the 
spectral power distribution of  the incident illumination is allowed to vary with scene 
location. Finlayson et. al. [7], D 'Zmura  et. al. [18], and Tsukada et. al. [16] have 
shown that a difference in illumination, once  it has  been  ident i f ied ,  provides 
additional constraints that can be exploited to obtain colour constancy, but they do 
not provide an automatic method of  determining when such a difference exists. We 



present a new algorithm that first uncovers the illumination variation in an image 
and then uses the additional constraint it provides to obtain better colour constancy. 
The algorithm presupposes a diagonal model for illumination changes, and that the 
illumination varies spatially slowly. However it is quite robust to moderate 
violations of these assumptions. 

The colour constancy problem is the retrieval of an illumination-independent 
description of a scene's surface colours. This is essentially equivalent to modeling the 
illumination incident on the scene, since if the illumination is known the surface 
colours can be calculated. Following Forsyth [9] we interpret colour constancy as 
taking images of scenes under unknown illumination and determining the camera 
response to the same scene under a known, canonical light. In a general context this 
problem has proven difficult to solve, so to make progress, restrictive assumptions 
are made. In particular, it is common to assume that the scene is flat [9, 13, 14], 
that the illumination is constant throughout [2, 3, 9, 10, 15], and that all reflectances 
are matte. Finlayson [8] has shown that if we focus on solving only for surface 
chromaticity and forego estimating surface lightness then the restriction to flat matte 
surfaces can be relaxed. However, the assumption that the chromaticity of the 
illumination does not change is more troublesome. 

The Retinex algorithm [1, 11, 13, 14] partially addresses the issue of varying 
illumination. At least in principle--it does not in fact work in practice--Retinex 
eliminates the variation in illumination and computes surface lightnesses for each of 
the three colour channels independently. Since eliminating the illumination and 
recovering the illumination are equivalent problems [4], if Retinex worked it could be 
used to recover the incident illumination. Retinex operates on the principle that 
within a single colour channel small changes in image intensity arise from changes 
in illumination while large changes indicate changes in surface colour. The small 
changes are thresholded away and the big changes are preserved so that the surface 
lightness can be reconstructed, essentially by integration. Unfortunately any error in 
classifying the intensity changes can lead to serious errors in the recovered result. In 
essence the Retinex algorithm uses a primitive, gradient-based-edge-detection strategy 
to identify the reflectance edges, so given the long history of edge-detection research, 
it should not be surprising that it does not perform well. 

To overcome the weaknesses of Retinex's edge detection method, we 
incorporate knowledge about the set of plausible illuminants and from this set derive 
information about the kinds of chromaticity change that a change in illumination can 
induce within a region of uniform reflectance. This constraint is more global than 
local edge detection and using both types of constraint together yields good results. 
Once the illumination variation is uncovered it is combined with the other 
constraints arising from the set of colours found in the image as will be discussed 
below. 

2 T h e  C o l o u r  Constancy Algorithm 

Our colour constancy algorithm has two main components: one to extract the 
illumination field and another to combine the constraints provided by the a priori 
knowledge of the surface and illumination gamuts with those obtained from the 
observed surfaces and the extracted illumination field. The constraint part of the 
algorithm will be described first. 



2 . 1  Surface  and I l luminat ion  Constra ints  

In order to represent the constraints efficiently, we make the approximation that the 
effect of the illumination can be modeled by a diagonal matrix [5, 6]. Specifically, if 
[r, g, b] is the camera response of a surface under one illumination, then 

[r, g, b ] D = [ r D n ,  gD22, bD33], where D is a diagonal matrix, is the camera 
response to the same surface under a second illumination. In other words, each camera 
channel is scaled independently. The accuracy of the diagonal approximation depends 
on the camera sensors, which for the camera used in the experiments is within 10% 
(magnitude of [r, g, b] difference) of the general linear model. For sensors for which 
the diagonal model is too inaccurate, it is usually possible to improve it by 
spectrally sharpening the sensors [5]. 

Following Finlayson [8], we work in the chromaticity space [r/b, g/b]. This 
space preserves the diagonal model in the sense that if illumination was exactly 
modeled by a diagonal transform applied to [r, g, b], then it will also be exactly 
modeled by a diagonal transform (now 2D) applied to [r/b, g/b]. I f  either the 
illumination is spatially constant or pre-processing has removed all illumination 
variation, then transforming the input image to what it would have looked like under 
the canonical illuminant requires simply transforming it by a single diagonal matrix. 
The goal of the colour constancy algorithm is to calculate this matrix. 

The algorithm's basic approach is to constrain the set of possible diagonal 
maps by adding more and more information so that only a small set of possible maps 
remains. The first constraints are the those due to Forsyth [9]. He observed that the 
set of camera responses that could be obtained from all combinations of a large set of 
surfaces viewed under a fixed illuminant is a convex set which does not fill all of the 
[r, g, b] colour space. This set is referred to as that illuminant's gamut, and in the 
case of the canonical illuminant is called the canonical gamut. For a typical scene 
under unknown illumination, the camera responses will lie in a subset of the 
unknown illuminant's full gamut. Since all possible surfaces are assumed to be 
represented within the canonical gamut, whatever the unknown illuminant is, it is 
constrained by the fact that it is a diagonal map projecting the scene's observed 
response set into the canonical gamut. There will be many possible diagonal maps 
satisfying this constraint because the scene's set is a subset of the full gamut and so 
it can 'fi t '  inside the larger gamut many different ways. Forsyth shows that the 
resulting constraint set of diagonal maps is convex. As shown in [8], all the required 
relationships hold in the [r/b, g/b] chromaticity space. 

The second source of constraint arises from considering the set of common 
illuminants as has been formulated by Finlayson [8]. After applying Forsyth 's  
surface constraints, the resulting set of diagonal maps typically includes many that 
correspond to quite atypical illuminants. The illumination constraint excludes all the 
illuminants that are not contained in the set of typical illuminants. Finlayson 
restricted the illumination to the convex hull of the chromaticities of the 6 daylight 
phases provided by Judd et al [12], the CIE standard illuminants A, B, C [17], a 
2000K Planckian radiator, and uniform white. We have improved upon this sampling 
of illuminants by using 100 measurements of  illumination around the university 
campus, including both indoor and outdoor illumination. Some inter-reflected light 
was included such as that from concrete buildings and light filtering through trees, 
but illumination that was obviously unusual was excluded. The set of chromaticities 
of the measured illuminants is larger in area than the original set, but it does not 



contain it entirely, as the 2000K Planckian radiator is more red than what is 
common. 

It should be noted that the set of typical illuminants provides a constraint on 
mappings from the canonical to the unknown, which is the reverse of  that for 
surfaces discussed above in which the restriction was on mappings from the unknown 
illuminant to the canonical illuminant. To make use of the constraint it must be 
inverted which means that the restriction on the set of illuminants becomes a non- 
convex set in the mapping space used for surface constraints. This potentially 
presents a problem since the sets must be intersected in order to combine constraints 
and in three-dimensions it is much faster to compute intersections of  convex sets 
than non-convex ones. While in the two-dimensional case the set intersections can be 
directly computed, in practice the inverse of the measured illumination non-convex 
gamut was found to be close enough to its convex hull that for convenience the hull 
could be used anyway. 

Varying illumination provides the third source of constraint. Our use of it here 
generalizes the algorithm presented in [7]. In that work the map taking the 
chromaticity of  a single surface colour under an unknown illuminant to its 
chromaticity under the canonical illuminant is constrained to lie on a line. 
Effectively this amounts to assuming all the candidate illuminants are approximately 
Plankian radiators and their chromaticities lie roughly on the Plankian locus. The 
chromaticity of the same surface viewed under a second illuminant defines a second 
line. If the difference in the illuminations' chromaticities is non-trivial, the two lines 
will intersect, thereby constraining the surface's chromaticity to a unique value. 

We extend the idea of using the variation in illumination in two ways. First 
we use the entire illumination gamut instead of simply the Plankian radiators. 
Second we exploit the illumination variation across the entire image, as opposed to 
just that between two points on one surface patch. Thus the illumination over the 
entire image is both used, and solved for. The details follow. 

For the moment assume that we already have the relative illumination field for 
the image. The relative illumination field for each pixel P is defined by the diagonal 
transform required to map the illumination at some chosen base pixel B to the 
illumination at P. The relative illumination field describes all the pixels only with 
respect to one another, so given it, the remaining problem is to solve for the 
illumination at B and hence establish the illumination everywhere in absolute terms. 

The approach is motivated by the following argument. Suppose that the left 
side of the image is illuminated by a blue light. This means that the relative 
illumination field at a pixel on the left side transforms illuminants so that they are 
more blue. However, the illumination at the center of the image cannot be so blue 
that making it even more blue produces an illumination that falls outside the set of 
possible illuminants. Thus the illumination at the center is constrained by the jump 
towards blue. All entries in the field contribute this sort of constraint. This will now 
be made more formal. 

First we verify the intuitive claim that the constraint provided by one of the 
values D in the relative illumination field is the set of possible illuminants scaled by 

D -1 . Consider the illumination gamut, I which is a convex set: 

I = {X ] X = ~ ' i X i  where i~/~i = 1} f~ hull p~ {Xi } i . (1) 



We have the constraint that we can map the illumination by the diagonal map D and 
still be in this set: 

XD ~ I (2) 
This means that: 

XD = E,Tl, iXi for some gi with ~ g i  = 1, &i > 0 (3) 
i i 

And 

X = E , ~ i ( X  i I )  -1) forsome~l, i with X~l,i =1, /I,i ~--0 
i i 

(4) 

So we define a new constraint set V as: 

V = { X I x = ~ Z i ( X i D - 1 )  where ~ A ' i = l ' A i > 0 } i  i (5) 

It is clear that for all X ~ V, XD ~ I .  Furthermore, the argument is reversible. That 
is, if Y = XD E I ,  X ~ V . It should be noted that the above also shows that we can 

identify the convex constraint set with the mapped hull points X i D -1. 

Next we note that the convex hull of these constraints is just as powerful as 
the entire set. The motivation for using the hull is that it saves a significant amount 
of processing time. We are free to use the hull regardless, but it is comforting to 
know that doing so does not weaken the algorithm. 

Despite the details, the additional constraint is very simple in that it says that 
we have to be able to scale the illuminant by a certain amount and st i l l  satisfy the 
illumination constraint. This constraint is realized by simply scaling the set of 
illuminants by the inverse. As a simple example, consider the one-dimensional line 
segment [0,1]. If we have a condition on these points that when they are scaled by a 
factor of two the result must still be in that segment, then the set of points in our 

1 constrained set must be [0, ~- ]. In other words, the set was scaled by the inverse of 

the scale factor. 

2 . 2  Combin ing  the Constraints  

Given the above formulation of the various constraints they can be easily combined 
into a forceful colour constancy algorithm. First the relative illumination field is 
used to remove the illumination variation from the image leaving an image which is 
of the scene with chromaticities as they would have appear if it had been illuminated 
throughout by the illumination at the base point. Starting from this intermediate 
result a constraint on the possible illumination maps is derived for each of the surface 
chromaticities. The illumination constraint provided by the set of plausible 
illuminants is fixed by the initial measurement of the various illuminants around the 
campus. Each hull point of the set of the relative illumination field furnishes yet 
another constraint; namely, the illumination constraint multiplied by the appropriate 
diagonal transform. The illumination constraint and the transforms due to the relative 
illumination field are intersected, and the result is inverted. As mentioned above, this 
inverted set was approximated well by its convex hull. The inverted set is then 
intersected with the intersection of all the surface constraints. 



The final step of the algorithm is to chose a solution from the set of possible 
solutions. In [8, 9] the solution chosen maximizes the volume of the mapped set, 
which is equivalent to maximizing the product of the components of the mapping. In 
this work, however, we use the centroid of the solution set, which is more natural. 
This choice can be shown to minimize the expected error if all solutions are equally 
likely and error is measured by the distance from the choice to the actual solution. 
Furthermore, in both synthesized and real images, the centroid was found to give 
better results. 

The colour constancy algorithm that incorporates all the different constraints 
was tested first on generated data. One thousand sets containing l, 2, 4, 8, and 16 
surfaces were randomly generated and used in conjunction with 1 of 5 illuminants, 
with 0 through 4 of the remaining lights playing the role of additional illuminants 
arising as a result of varying illumination. Table 1 gives the results which are 
exactly as wished. As either the number of surfaces or the number of extra lights 
increases, the answer consistently improves. Thus it was verified that varying 
illumination is a powerful constraint, and furthermore, it can be effectively integrated 
with the other constraints. 

3 Finding the Relative Illumination Field 

We now detail an algorithm for finding the relative illumination field 
describing the variation in the incident illumination. This algorithm can be divided 
into two parts. The first is a new technique for image segmentation appropriate for 
scenes with varying illumination. The second part uses the segmentation to 
determine the illumination map robustly. 

Unless the illumination is known to be constant, it is essential that a 
segmentation method be able to accommodate varying illumination. In general, the 
segmentation problem is quite difficult, especially with varying illumination, as in 
this case an area of all one reflectance can exhibit a wide range of colour. Fortunately 
for our purposes, it is not critical if an occasional region is mistakenly divided into 
two pieces, nor if two regions which have almost the same colour are incorrectly 
merged. This is because the goal at this point is simply to identify the illumination, 
not the surfaces. Nonetheless, the better the segmentation, the more reliable and 
accurate the possible colour constancy. 

One approach to segmentation is that used by Retinex theory [13, 14]. In 
Retinex small changes in pixel values at neighboring locations are assumed to be due 
to changes in the illumination and large changes to changes in surface reflectance. 
This idea can be used to segment an image into regions of constant surface reflectance 
properties by growing regions by including pixels only if they are less than some 
small threshold different from their neighbours. The threshold must be large enough 
to allow for both noise and the illumination changes and yet not admit small changes 
in surface reflectance--a balance which is of course impossible to establish. 

We use this method as part of our algorithm, but alone, it is not sufficient. 
The problem is that two dissimilar regions will eventually mistakenly merge if there 
exists a sequence of small jumps connecting them. This can occur if the edge is 
gradual or because of noise. In essence, a threshold large enough to allow for noise 
(and varying illumination) allows for enough drift in the pixel values to include an 
entirely dissimilar region. Local information alone is insufficient, so we resolve the 
problem by adding a more global condition involving illumination constraints. 



Number of Surfaces 

o 

o 

o t/3 

BF 
BDT 
GW 
RET 
S 
SI 
SIV1 
SIV2 
SIV3 
SIV4 

1 2 4 8 16 
0.073 0.073 0.073 0.073 0.073 
0.116 0,116 0.116 0.116 0.116 
1.62 1.01 0.69 0.513 0.428 
1.62 1.10 0.72 0.478 0.354 

12.4 4.4 1.65 0.585 0.285 
2.275 1.68 0.99 0.480 0.271 
1.65 1.26 0.79 0.420 0.256 
1.154 0.896 0.620 0.351 0.242 
0.800 0.656 0.488 0.311 0.231 
0.384 0.36 0.317 0.274 0.228 

Solution Method Key 

BF 
BDT 
GW 
RET 
S 
SI 
SIV 
SIV2 
SIV3 
SIV4 

Error of best possible solution using full linear map 
Error of best possible solution using a diagonal map 
Naive Grey World Algorithm (scale each channel by average) 
Naive Retinex Algorithm (scale each channel by maximum) 
Surface constraints alone 
Surface and illumination constraints 
Surface and illumination constraints with view under one extra illuminant 
Surface and illumination constraints with view under 2 extra illuminants 
Surface and illumination constraints with view under 3 extra illuminants 
Surface and illumination constraints with view under 4 extra illuminants 

Table 1. Results of color constancy experiments for 1000 sets of  1, 2, 4, 8, and 
16 surfaces under all combinations of  test lights and extra lights for varying 
illumination. The canonical illuminant was a Philips CW fluorescent light. The 
values shown are the average magnitude of the chromaticity vector difference between 
the estimate and the desired answer, averaged over all results. 

The new global segmentation condition is based on the idea that in order for 
two pixels--no matter how far apart they are spatially--to be considered part of the 
same region, a plausible illumination change between them must exist. The set of 
plausible illuminant changes can be derived in advance from the initial set plausible 
illuminants. This condition binding pixels within a single region based on plausible 
illumination changes is called patch coherence. The patch coherence condition differs 
from the Retinex condition in two important ways. First, the cumulative drift in 
pixel values along a path is limited, as opposed to growing linearly with the pixel 
distance. Second, the allowable drift is constrained more in certain directions due to 
the nature of the set of common illuminants. For example, green illuminants are 
rare, which means that the set of  common illuminants is narrow in the green 
direction, and thus overall, the drift towards or away from green is more restricted 
than that towards or away from blue. 

It was found to be useful to retain the Retinex condition as well as the patch 
coherence method described above for two reasons. First, the Retinex condition is 
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faster to compute, and thus can be use to reject pixels that do not need to be tested 
further for inclusion. Second, if a comprehensive set of possible illuminants is used, 
then an occasional surface boundary change will also be a possible illumination 
change. Since the Retinex method by itself works much of the time, these 
exceptional cases in which a surface change mimics an illumination change generally 
will be covered by the Retinex condition. 

In detail our segmentation algorithm begins with an arbitrary initial starting 
point in a region and assumes that the illumination at that point is constrained to be 
in the set of plausible illuminants. It is important to update the constraints on the 
illumination at the starting point each time a new point is added to the region. Each 
newly included point further constrains the possible illuminations at the starting 
point. Updating the constraints is similar to using the relative illumination field to 
solve for colour constancy as described above. The element-wise ratio of the 
chromaticities of the new point to that of the initial point induces a constraint set V 
defined by (5). Specifically, the illumination gamut is transformed by the inverse of 
the ratio interpreted as a diagonal transform. This convex set is intersected with the 
current constraint set. If the intersection is null, then the new point is excluded and 
the constraint set is left unchanged. If it is not null, then the intersection becomes 
the updated constraint set and the new point is added to the region. 

Similar to the situation when solving for colour constancy, it is sufficient to 
perform the intersection only when the new transform to be applied to the 
illumination gamut is outside the convex hull of the preceding transforms. Although 
calculations are relative to the initial point, this procedure ensures that all points in 
the region can be assigned illuminants from the set of plausible illuminants which 
are consistent with the illumination jumps between them. Furthermore, the inclusion 
of any of the rejected points would violate this condition. 

Given our segmentation we reduce the problem of  finding the relative 
illumination field to that of finding the illumination at the center of each region 
relative to that at the center of the base region. Since the center of a region, as defined 
by the center of mass, need not be inside the region, the implementation uses a point 
in the region close to the center of mass, preferably a few pixels from the boundary. 
The illumination at a point relative to that of the region center is simply the ratio of 
its response to the response of the center point. This follows directly from the 
assumption that the pixels are from the same surface, given that we accept a diagonal 
model for illumination change. Thus the map at an arbitrary point is simply the map 
at the center, adjusted by this relative jump. 

To determine the maps at the center points we make the assumption that 
illumination does not change significantly at the region boundaries. Thus every jump 
across a boundary gives a condition on the relative maps of the centers of the two 
adjacent regions. More specifically, consider two regions A and B, with centers CA 
and CB, and boundary points B A and BB close to each other. Denote responses by R 
subscripted by the point label and denote the diagonal map relative to the grand 
central point as D, also subscripted by the point label. Each channel or chromaticity 
component is dealt with independently, so the quantities in the equations are scalars. 
The assumption that the illumination does not change significantly at the boundary 
is simply: 

DBA = DBB (6) 
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Since we are assuming a diagonal model of illumination change, and CA is on the 
same surface as BA, and similarly for the center and boundary of surface B, we have: 

DBA =DcA(RBA/~RcA] and DBB =DcB(RB~/~RcB] (7) 

Combining (10) and (11) yields: 

Taking logarithms of both sides of (12), and rearranging terms gives: 
ln(DcA ) - ln(DcB ) = In(RBB ) -  ln(RBA ) + ln(RcA ) - In(RcB ) (9) 

This final equation is at the heart of the method. Here we have a condition on the 
component of the map for two of the regions. Other boundary point pairs produce 
additional equations. In order to have a robust method, one would like long 
boundaries to have more weight in the process than short ones, since the latter may 
due to a small region consisting entirely of noise. But this is exactly what we will 
get if we enter one equation for each boundary pair and solve the resulting system of 
equations in the least squares sense. Furthermore, some boundary pairs can be 
identified as being more reliable and these are weighted even more by scaling the 
equation by a number greater than one (typically five). In addition, some boundary 
pairs should contribute less, and their equations are scaled by a number less than 
unity. 

In order to have a solution to the set of equations, it must be insured that all 
segments connect to each other through the boundary pairs. This might be 
accomplished simply by assigning a region to every point, and using each break in 
either the horizontal or vertical directions to produce a boundary pair. This is usually 
not an option because often some parts of the image should not be used; for example, 
when an area is too dark. Therefore the likelihood of connectedness between regions 
was increased in the following manner. Boundary pairs were assigned at each 
horizontal and vertical change of region. If one of the regions was to be ignored, a 
good region was sought in the same direction, taking as many pixels as required. The 
resulting equation was weighted inversely to the distance taken to find a good region. 
Thus such a boundary would contribute little to the solution, but connectivity was 
not a problem for reasonable images (it is still possible to construct an image which 
will lack connectivity). 

Several additional steps were taken to improve robustness. First very small 
regions were excluded from the computations. Second, it was found to be better to 
use pixels one unit towards the insides of the respective regions, if these were 
available. This way the pixels would tend to have contributions that were solely due 
to a single surface, as opposed to the possibility that they straddled more than one 
surface. These boundary pairs were weighted by a factor of five compared to ones 
where it was necessary to use pixels exactly on the boundary. 

The final step in determining the relative illumination field is to interpolate 
over any excluded areas. 

4 Resu l t s  

The algorithm has been tested on a set of images of real scenes. In all cases the 
'unknown' illumination consists of light from an incandescent bulb coming from 
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one direction mixed with light from a Philip's CW fluorescent tube covered by a pale 
blue filter coming from another. The latter is similar in colour temperature to sky 
light. Thus the scenes mimic a common real world situation--an office with a 
window. 

Unfortunately, qualitative evaluation of the results requires access to colour 
reproductions which are not available here. However, the grey scale counterparts 
reproduced in Figure 1 should give the reader some idea of the nature of the input 
used. The first image shown is a three-dimensional "Mondrian" made by affixing 
coloured construction paper to a conical waste paper bin. The bin is lying on its side 
with the incandescent light shining from above and the blue light from below. The 
top has blue and green papers on it, in the middle is a grey patch, and near the 
bottom are red and yellow papers. This illumination causes a distinct reddish tinge at 
the top and a clear bluish tinge at the bottom. 

The second image is a simple two-dimensional "Mondrian" made by attaching 
eight sheets of coloured construction paper to the lab wall such that substantial parts 
of the wall remained visible. The third is a multi-coloured cloth ball. The cloth ball 
is interesting because the cloth has more texture than the construction paper. The 
fourth image shown in Figure 1 is of a person in front of a grey background with the 
sky-like light on the left and the incandescent light on the right. Under this 
illumination the left side of  the grey background appears quite blue, and the flesh 
tones on the left are noticeably incorrect. It is not possible to obtain a canonical 
image for comparison because people move too much in the time it takes to set up 
the new illumination conditions. However,  the qualitative results are quite 
promising. An additional image used for quantitative results is of a single piece of 
green poster board (not shown). 

The numerical results in Table 2 reflect the RMS difference (over the entire 
image) between the [r/b, g/b] chromaticities at corresponding pixels in the recovered 
and canonical images. There are few colour constancy algorithms designed to deal 
with scenes of the generality addressed here so it is difficult to make comparisons 
with existing algorithms without violating their assumptions. As a first measure, we 
compare the solution obtained by a straight least squares fit of the input image to the 
canonical using a full linear model and then with a diagonal model. Without 
accounting for the illumination variation no algorithm working on the 3D Mondrian 
image can do better than the 0.78 error of  the full linear case. In contrast, by 
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Object 

o 
bt) 

< 

BT 
BDT 
N 
GW 
RET 

SI 

VIR-BT 
VIR-BDT 
VIR-N 
VIR-GW 
VIR-RET 
VIR-S 
VIR-SI 
VIR-SIV 

3D Mondrian 

0.78 
0.80 
0.96 
0.88 
0.87 
0.86 
0.87 

0.148 
0.176 
0.44 
0.68 
0.61 
0.33 
0.39 
0.26 

Ball 

0.536 
0.603 
0.93 
1.37 
0.75 
0.92 
0.73 

0.224 
0.227 
0.595 
1.36 
0.95 
1.11 
0.38 
0.45 

Green Card 

0.195 
0.240 
0.279 
0.312 
0.246 
1.030 
0.540 

0.042 
0.044 
0.262 
0.275 
0.275 
1.929 
0.269 
0.073 

Paper on 
Wall 

0.265 
0.273 
0.405 
0.349 
0.290 
0.476 
0.472 

0.093 
0.133 
0.530 
0.306 
0.228 
0.211 
0.163 
0.151 

Error between the result and the canonical using the various solution methods 

BT 
BDT 
N 
GW 
RET 
S 
SI 
VIR-BT 
VIR-BDT 
VIR-N 
VIR-GW 
VIR-RET 
VIR-S 
VIR-SI 

VIR-SIV 

Best possible linear map solution 
Best possible diagonal map 
No processing. Simply use the input image as the result. 
Naive Grey World Algorithm (scale each channel by average) 
Naive Retinex Algorithm (scale each channel by maximum) 
Using Surface Constraints 
Using Surface and illumination constraints 
Best linear map applied after varying illumination is removed 
Best diagonal map applied after varying illumination is removed 
No processing applied after varying illumination is removed 
Naive Grey World Algorithm with varying illumination removed. 
Naive Retinex Algorithm with varying illumination removed. 
Using surface constraints with varying illumination removed. 
Using surface and illumination constraints with varying illumination 
removed. 
Complete new algorithm using surface, illumination, and varying 
illumination constraints with varying illumination removed. 

Table 2. Results of color constancy algorithms applied to four images. The 
canonical illuminant was a Philips CW fluorescent light. The values shown are the 
RMS (over all pixels) magnitude of the chromaticity vector difference between the 
estimate and the desired answer, which is a view of the scene under the canonical 
light. 
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accounting for and utilizing the illumination variation our new algorithm reduces the 
error to 0.26. 

Table 2 also shows the chromaticity error for the case of doing nothing at all. 
The grey world algorithm, which uses the average image chromaticity as an 
illumination estimate, and the Retinex normalization strategy of taking the 
maximum response from each colour band as an illumination estimate are tried even 
though the comparison is somewhat unfair because they both assume the 
illumination to be constant. Similar tests are run using surface constraints alone and 
surface constraints with the additional constraints on the set of plausible illuminants. 

To make the comparison fairer, we also include similar tests with these 
algorithms but applied after the illumination variation has been discounted. In other 
words, we combined the first part of  our algorithm (removal of the illumination 
variation) with each of the other algorithms. In this case, the other algorithms are 
applied to data which does not violate the constant illumination assumption, but they 
still do not exploit the information contained in the illumination variation. The 
Retinex normalization applied in this way gives an algorithm which is close, in 
theory, to the original Retinex idea. 

The results show first that if the varying illumination is not accounted for, 
then all the colour constancy algorithms perform poorly. In all cases, the complete 
new VIR-SIV algorithm did better than any algorithm which assumed the 
chromaticity of the illumination to be constant. In fact, the performance is better 
than that of the best  diagonal and best linear fits. The complete algorithm also 
performed better than the others applied to the data with the varying illumination 
removed, except when compared to applying the combination of surface and 
illumination constraints to the ball image. Most importantly, the algorithm performs 
better than the Retinex scaling applied to the data with the variation removed. As 
mentioned above, this procedure is close to the spirit of the original Retinex 
algorithm, which is unique as an alternative to our algorithm, even though its testing 
has been limited to scenes with more controlled illumination. 

The results for the green card are included to illustrate that the varying 
illumination constraint can be very useful in the case when there is a paucity of other 
information. Most colour constancy algorithms require a good selection of surfaces 
for reliable performance. The ability of this algorithm to go beyond that in the case 
of varying illumination is encouraging. 

5 C o n c l u s i o n  

We have presented a new algorithm for colour constancy which builds upon the 
recent gamut-based algorithms of Forsyth [9] and Finlayson [7, 8]. The new 
algorithm models the illumination via a diagonal transform or equivalently a 
coefficient rule model. Within the diagonal model framework, the algorithm 
combines the constraints provided by the observed gamut of image colours, by a 
priori knowledge of the set of likely illuminants, and by the variation in illumination 
across a scene. Existing algorithms that use the information inherent in illumination 
variation assume that some unspecified pre-processing stage has already identified the 
variation, and thus are not fully automated. 

Identifying illumination variation is in itself a difficult problem. The Retinex 
algorithm is the only alternative colour constancy algorithm designed for scene 
conditions similar to those investigated in this paper. Nonetheless, it was restricted 
to flat Mondrian scenes and is known not to work very well for a variety of reasons. 
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The new algorithm is more powerful than Retinex both because it incorporates a new 
technique for identifying the relative illumination field and because the it actually 
uses the illumination variation when solving for colour constancy. While many 
improvements are still possible, tests using both synthetic and real image data for 
three-dimensional scenes verify that the algorithm works well. 
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