
Mode and Termination Checking for
Higher-Order Logic Programs

Ekkehard Rohwedder and Frank Pfenning*

Department of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213-3890, U.S.A.
er+@cs, cmu. edu, fp+@cs, cmu. edu

Abstract. We consider how mode (such as input and output) and ter-
mination properties of typed higher-order constraint logic programming
languages may be declared and checked effectively. The systems that we
present have been validated through an implementation and numerous
case studies.

1 I n t r o d u c t i o n

Just like other paradigms logic programming benefits tremendously from types.
Perhaps most importantly, types Mlow the early detection of errors when a pro-
gram is checked against a type specification. With some notable exceptions most
type systems proposed for logic programming languages to date (see [18]) are
concerned with the declarative semantics of programs, for example, in terms of
many-sorted, order-sorted, or higher-order logic. Operational properties of logic
programs which are vital for their correctness can thus neither be expressed nor
checked and errors will remain undetected.

In this paper we consider how the declaration and checking of mode (such as
input and output) and t e rmina t ion properties of logic programs may be extended
to the typed higher-order logic case. While we do not cast our proposal as a
type system in the traditional sense, our design choices were motivated by the
desirable characteristics of type systems. In particular, it should be uniform,
intuitive, concise and efficiently decidable. Furthermore, relatively few natural
and correct programs should be rejected as ill-moded or non-terminating.

We present a system for mode and termination properties of Elf programs.
Elf [17] is a higher-order constraint logic programming language based on the LF
logical framework. Although Elf encompasses pure Prolog, it has been designed
as a recta-language for the specification, implementation, and meta-theory of
programming languages and logics. We have validated our system through an
implementation and post-hoc analysis of numerous existing case studies from
this domain.

Elf includes dependently typed higher-order functions and proof objects to
represent the abstract syntax and semantic judgments of many object languages

* This work was supported by NSF Grant CCR-930383

297

in a concise and natural manner. The presence of these features presents a chal-
lenge, but also provides an opportunity. The challenge is to extend previous work
on modes (see, e.g., [10, 4, 7, 25, 27]) and termination (see, e.g., [24, 1]) to deal
with types and higher-order constraint simplification. On the other hand it turns
out that we can take advantage of the already very expressive underlying type
structure in our analysis. In order to concentrate our effort on higher-order terms
and dependent types, we employ very basic but practical notions for modes and
termination criteria.

The principal contributions of this paper are practical systems for mode and
termination analysis of higher-order logic programs in Elf. Their correctness
proofs are only sketched in this paper. In addition we outline a success continu-
ation passing semantics for Elf and present a subterm ordering for higher-order
terms which may be of independent interest. We expect a minor variation of
these systems to be applicable to AProlog [15].

The remainder of the paper is organized as follows. We introduce the Logical
Framework, Elf, and a sketch of its operational semantics based on success con-
tinuations in Section 2. Mode analysis, including a mode-checking system for Elf
programs is presented in Section 3. Next we consider a subterm order for higher-
order terms and outline a termination checker for Elf programs in Section 4. We
discuss pragmatic aspects of our implementation and provide an assessment in
Section 5. In the conclusion we discuss some related and future work.

2 T h e L o g i c a l F r a m e w o r k a n d E l f

We give a brief introduction to the Logical Framework, the theory on which Elf
is based. After an overview of Elf we present some sample programs and a formal
execution model for the Elf interpreter.
Log ica l F r a m e w o r k . The Logical Framework (LF) [6] is a calculus of dependent
types consisting of three staged syntactic levels.

Kinds : K ::= type I I Ix :A .K
Types : A ::= a M1 . . . M , I IIx:A1.A2
Objects : M ::= c I x I ~x:A.M I M1 M2
Signatures : E ::= �9 I 2Y, a : K I ~U, c : A
Contexts : F : : = - I F , x : A

Here IIx:A1.A2 denotes the dependent function type or dependent product: the
type A2 may depend upon an object x of type A1. Whenever x does not occur
free in A~ we may abbreviate IIx:A1.A2 as A1 --* A2. In the grammar above,
a and c stand for type families and object constants, respectively. They are
introduced through a signature. Below we assume that we have fixed a signature
2Y. The types of free variables in a term M are provided by a context.

The following principal judgments characterize the LF type theory [6]:

F ~-~: M = M ~ : A and F ~-~ A - A ~ : type - - type and object equivalences;
~" E , b-~ F, and F ~-~ K - - the validity of signatures, contexts and kinds;
F b~ A : K and/~ ~-~ M : A - - assigning kinds to types and types to objects.

298

The equivalence = is equality modulo f~r/-conversion. We will rely on the fact
tha t canonical (i.e., long/~r/-normal) forms of LF objects are computable and
that equivalent LF objects have the same canonical form up to c~-conversion.
We assume that a constant may be declared at most once in a signature and
a variable at most once in a context, employing implicit renaming of bound
variables in cases where this assumption would be violated. We also generally
assume that all signatures and contexts are valid. Similarly, we write [N/x]M
and [N/x]A for capture-avoiding substitution in an object or type. We define the
head of a type hd(Ilxl:A1 llxm:A,n.a M1. . . 114,) as a. Since types of valid
objects are unique up to/37/-conversion we sometimes write AM for the canonical
type of M.
Elf . Using the propositions-as-types and derivations-as-objects correspondences,
the LF type theory can also be viewed as a logic calculus, for which - - i n form
of the language Elf [20, 17]-- we have an implementation in the spirit of con-
straint logic programming. The Elf interpreter type-checks programs (i.e., LF
signatures) presented to it and searches for derivations of goals in the manner
of Prolog, replacing unification by simplification of constraints involving higher-
order functions.

Elf employs the following concrete syntax for LF terms: 2 A -> B for A --~
B, {x:A} B for IIx:A.B, and [x :h] M for)~x:A.M. Instead of A -> B we may
write B <- A. Note that the former arrow is right-associative and the latter left-
associative. A declaration is terminated with "." and capitalized identifiers that
occur free in it are interpreted as logic variables and implici t ly/ /-quantif ied.
When a constant is used, its implici t / / -abstract ions do not need to be supplied
with arguments-- they are determined by type reconstruction. These features are
responsible in large part for the conciseness and practicality of the Elf language.
E x a m p l e . We introduce a signature with several simple relations to be used in
examples throughout. These examples also highlight similarities and differences
between Prolog and Elf. Elf kinds are employed for type declarations, such as
na t : t y p e or ack : na t -> na t -> na t -> type , whereas Elf object constants
are used as syntax constructors and as clause labels. Lambda expressions exp
are a prototypical example of higher-order abstract syntax [13], where binding
at the object level is represented as a higher-order term at the meta-level.

nat : type.

0 : nat.

s: nat -> nat.

% Natural numbers

ack : nat -> nat -> nat -> type. ~ Ackermannfunction

ackl: ack 0 u Y.

ack2: ack (s X) 0 (s 0).

ack3: ack (s X) (s Y) R <- ack (s X) Y q <- ack X Q R.

exp : type.

app: exp -> exp -> exp.

% Untyped lambda expressions

2 We will mix Elf and LF syntax below.

299

lam: (exp -> exp) -> exp.

cp: exp -> exp -> type. ~ Copyin 8 lambda expressions
cpapp: cp (app El E2) (app F1F2)

<- r E1 F1 <- r E2 F2.
cpla=: cp (lamE) (lam F)

<- ({x:exp} cp x x -> cp (E x) (F x)).

eval : exp -> exp -> type.
evapp: eva1 (app El E2) V

<- eva1 E1 (lam El')

<- eva1 E2 V2
<- eval (El' V2) V.

evla=: eva1 (1am E) (1am E).

Evaluatingla~bda expressions

The full LF type for cplam is / / E : e x p - . e x p . IIF:exp-*exp.IIG: (/ /x :exp.
//D:cp x x. cp (E x) (F x)). cp (lain E) (1am F).
D y n a m i c a n d s t a t i c . In order to control Elf's search, the programmer specifies
for every type family a whether a variable of type A = Ilxl :A1 Ilxm :Am.
a M1.. . M, represents a goal or a logic variable. In the first case we call the
type A dynamic, and in the second case A is static. In our example above we
could define that na t , exp are static and ack, r and eva1 are dynamic. Since
a dynamic type a M1 . . . Mn plays the rSle of an atomic goal a(M1,. . . , Mn) in
Prolog, we will use the terms type family and predicate interchangeably. Similarly,
we refer to the declaration of a constant with dynamic type as a clause.
E l f e x e c u t i o n m o d e l . In [17] a nondeterministic state transition system is
given for Elf execution. This was sufficent to obtain the necessary soundness
and non-deterministic completeness properties. For our modes and termination
system the subgoal ordering is critical, so we make it explicit in the form of an
operational semantics based on success continuations. Backtracking and failure,
on the other hand, are not modeled explicitly. Specifically, we do not reflect
clause ordering within the signature E or the context A, since our mode and
termination system is independent of the clause selection mechanism. The tran-
sition system for Elf execution uses states of the following form, the components
of which are explained below.

(A']~-0;a;~F) &K

G o a l f o r m u l a s . We need goal formulas F to represent success (T), conjunction
(F1 A F2), subgoals (M E A, provided the type A is dynamic) and unification
between objects (M - N : A) or types (A - B : type). Constraints ~ are charac-
terized through a subclass of formulas. They arise during Elf "unification" which
is implemented as constraint simplification [17]. Every solution to the constraints

returned after simplification will unify the indicated equation. The only equa-
tions permit ted in constraints are so-called flex-flex and flex-rigid pairs where
at least one of the flexible terms is not a generalized variable (see section 3).

300

As long as the terms Mi and M2 are first-order or higher-order pat terns after
application of O (see [12]), this guarantees most general unifiers. It should be
noted that constraint simplification either fails or succeeds with a unique answer
constraint.

Goal formulas F ::= T [M - N : A [A - B : type [M E A [Ft A F2
I Vx:A.F [3x:A.F

Constraints ir ::= T I M - N : A I ~z A a2 I Vx:A.~ I 3x:A.a

M i x e d - p r e f i x c o n t e x t s . Variables A and A I denote mixed-prefix contexts in
the sense of Miller [14]. They allow us to model existentially and universally
quantified variables (i.e., logic variables and parameters, respectively) as well
as dependencies between them. The substitution 0 relates these contexts: W t-
9 : A. I t maps the goal formula F defined in the context A to a formula over
W. We obtain the LF context A corresponding to a mixed-prefix context A by
dropping all quantifiers.

Mixed prefix A ::= �9 I A,Vx:A I A ,3x:A
Substitutions 0 : := . I 9 ,Vx /x I O,3M/x

Substi tutions A ' F 0 : Zi on mixed-prefix contexts are built with the axiom
A' t- �9 : �9 and the two following rules.

A ' I - O : A A ' ~ - , v M : g A A ' ~ - O : A
A' t- (0, 3 M / x) : (A, 3x:A) A 1, Vx:OA F (0, Vx /x) : (.4, Vx:A)

S u c c e s s c o n t i n u a t i o n . A success continuation K is used to enforce an execu-
tion order among the subgoals of a clause. For a given state (A' l~-0;a ;nF) &K,

% J

the continuation K is a (meta-level) function that takes as arguments a new
mixed-prefix A ' , a new substitution A" F- 01 : A, and new constraints ~1 and
yields a new state. The initial continuation initiala,,;o,;~, takes the same argu-
ments and returns them as the final answer.

State Sa';O;, ::---- /AIII"-O;a;,F) & K where W I- O: A

Continuations K ::= initiala;0;~ [AA.AO.A~.Sa;o;~

T r a n s i t i o n s y s t e m . The possible Elf execution sequences are given by a tran-
sition system S) S I on states. Although we do not have space for the full
transit ion system here, we summarize the effects on different goal formulas and
examine in detail the rule responsible for backchaining. Formulas T and M E A
with A static succeed immediately and invoke the success continuation K. For
Vx:A.F and 3x:A.F the respective quantifier is added to the mixed-prefix con-
text A and later removed before the remainder of the search is started with
K . The success continuation is also used to enforce that conjunctions Fz A F2
are solved from left to right. Unification M - N : A is performed through Elf
constraint simplification. A higher-order goal M E I Ix:A.B can be reduced to
Vx:A. (M x E B), while a tomic goals are solved by backchaining.
B a c k c h a i n i n g . For a goal M E a M0 . . . Mn, where a is dynamic, we nondeter-
ministically pick a residuation clause h : IIxl:Ax l lxm:A,~.a Nz . . . Nn from
Z' or (V-quantified) from A. The corresponding transition is

301

(A'I~-0;a;~M E a M r . . . M n) ~ K ~ (A'l~-0;a;~F) &K

where F stands for the following residuation formula

Bzl:AI.(3x2:A2 (gzm:A,~.
(a N1 . . .Nn - a M1 . . . M n : typeA h x l . . . X m - M : a M1. . .M,~)

Axm E A m) . . . A z 2 E A~) Axl E A1

which is responsible for unifying goal and clause heads, for building a derivation
object, and for solving the newly introduced subgoals Zm E A m , . . . , zl E A1
from the inside out.
Example. The execution of (3Pl~-3p/e;3p;-rP E r (lain)tx.x)(lain)~y.y)) &

initiala,;0;~ results in A' -- ~, 0 -- q (r (Ax.z) (Ay.y) (Az.AD.D)) /P, and
~----T.

3 M o d e A n a l y s i s

M o d e s . Modes have been proposed for expressing aspects of the operational
semantics of logic programs (see, e.g., [7, 25, 27]). The simplest and most useful
modes declare the input and output arguments of a predicate. The input argu-
ments to a predicate should be ground when it is called. Upon successful return,
the output arguments should be ground. This is often strengthened by requiring
the output arguments to a predicate to be free logic variables when the predicate
is called. In this paper we employ the first, most basic notion of modes - - it offers
sufficient characterization of the meta-theoretic relations that we are interested
in and can be obtained in a direct manner even in the presence of higher-order
terms, dependent types, and constraints. Also, since Elf does not offer the cut
control operator, an identification of free variables is not as essential to us.

Thus we assign polarities p ::= + [- [, for input, output, and don't care
arguments, respectively, and a mode ma = (Po,... ,pn) for every dynamic type
family a : IIxl:A1 / /xn:An.type E 22. 3 We also use the following abbreviation

for the input positions of the predicate a: m + ae /{ i [ma - (Po,... ,pn)Api = +}.
Similarly defined are m~- and m~. For our example signature we might declare
modes such as:

mac k '~i s (--, +, +, -), rncp dis (--, +, --), etc.

The corresponding ~,mode-pragmas that declare these modes in an Elf program
are more perspicuous:

~tdaode -ack +X +Y -Z
~mode -cp +E -F

3 The polarity p~ refers to the i-th argument of a and p0 refers to the polarity of the
derivation object.

302

In order to characterize the consistent goal invocations that respect such mode
declarations, we first need to define ground terms�9 The judgment A F M :
A g r o u n d is straightforward--it holds if all variables in the canonical form of
M are parameters, i.e., universally quantified in A.
Cons i s t ency . The consistency conditions before and after subgoal invocation
are as follows. ,4 i- M 6 a M1 . . . Mn is input consistent (output consistent) wrt.
mode ma if ,4 t- Mi : AMi g r o u n d for i 6 m + (respectively 6 ma) and ,4 F
M : a M1 . . . Mn g r o u n d for 0 6 m + (respectively 6 m~-).
A p p r o x i m a t i o n s . In order to check a given signature against a set of mode spe-
cifications for its predicates we perform an abstract interpretation using abstract
substitutions which note - - in addition to the substitution domain-- whether an
existential variable 3x:A is known to have been instantiated to a ground term
(gnd x:A) or whether its status is still indeterminate (ttk x:A).

Abstract substitution 0 ::= " I T/,Vx:A I 0, ak x:A I rl, gnd x:A

The domain of T/, written ~/: ,4, can be read off immediately�9 The approximation
judgment ,4' b (7/~ 8) : ,5 between an abstract substitution 7/: `4 and a concrete
substitution 8 with `4' b 8 : ,5 is defined below. This judgment is intentionally
nondeterministic (i.e. a t? may be approximated by different T/, 7/') and relies
heavily on canonical forms.

wF(.~ .) : .

(o~o) :`4
,4' I- (O, Vz:A " O, V z / x) : ,4,Vx:A

A' l- (t 1 ~ O) : A A ' l- M : SA g r o u n d
A' I- (~/, gnd z:A ~ 8, 3 M / x) : `4, 3x:A

,4' F (o "" O) : ,4
,4' t- (Tl, uk z:A ~ 0, 3 M / x) : ,4 ,3x:A

An initial approximation r/(A) with A t- (q(A) .~ ida) : A is given by 7(') de_=.y ",

y(A, Vx:A) de___/~](A), Vx:A, and rI(A, 3x:A) ~ ~](A), uk x:A.

M o d e checking . To ensure that all Elf execution sequences (starting from an
input consistent goal) obey modes, it is sufficient to show that the abstract
execution of all clauses in the signature ,U and the goal context F respects
modes, i.e. all subgoal invocations are input consistent and - -upon re turn--
output consistent.

Due to space constraints we omit the formal system for mode checking and
just exhibit an example of the abstract interpretation. Consider the body of
the clause cplam with respect to the mode cp +E -Y under an empty abstract
substitution.

We can view cplara as a clause whose head cp (lata E) (lara F) characterizes
its call parameters. Assuming that it is invoked in a mode-consistent manner,
we know that the input lata ~. and therefore the term ~. is ground, although at

303

this point we have no information about F. Once cplam returns, however, we
need to establish that F has become ground.

grid g:exp--*exp, uk F:exp--*exp
({x:exp} cp x x --* cp (E x) (V x)) -~ cp (].am ~.) (].am F)

The term {x:exp} cp x x ---+ cp (v. x) (F x) represents the only subgoM of our
clause. The goal head cp (E x) (F x) is executed once the local parameter x
and the local program clause cp x x have been introduced. Obviously, we need
to check the local clause cp x x for well-modedness before we can assume it:
since x is a parameter and thus ground, the output argument of cp x x is always
ground. Now consider the goal

gna E:exp--*exp,~ F:exp---+exp,Vx:exp, VD:cp x x }- cp (E x) (F x).

Since this may resolve with any clause for cp we now have to show that the call's
input argument E x is ground (which is the case), while we may safely assume
that its output F x has become ground once it returns.

Fortunately, we can obtain more information about F from this fact. The
term F x is a gvar (generalized variable) under a mixed prefix A (see [14]) since
F is an existential variable that is applied to distinct universal variables declared
to the right of F. Unification of a gvar with a ground term always returns a most
general unifier (if it succeeds), instantiating the gvar to a ground term. Without
the restriction to generalized variables this property may be violated - - consider
for example F G --].am (Ax.x) which has a solution where F = Ay. Xam (Ax.x) and
G is arbitrary and not necessarily ground. On the other hand, the application of
two ground terms (as in the first subgoal of the clause evapp) can be recognized
as ground. This is an example where a program outside the L~ fragment [12] is
verified as mode correct, which means that / /0 unification and no constraints are
generated for well-moded queries.

Returning to the example, since the gvar F x is known to be ground we may
now also conclude that F is ground, thus finally demonstrating groundedness of
the output argument 1am F in the original program head cp (lain E) (].am F)
of cplam.
M o d e - c o n s i s t e n c y fo r Elf. A computation sequence ,$1 , . . . Sn , . . . is
mode-consisienf whenever for every state Si of the form (i.e. for a subgoal call)

(A']~0;a;~M E a M 1 . . . Mn) & K

we have A' F- OM E O(a M1. . . Mn) is input consistent, and furthermore for
every subsequence (i.e. for a subgoal return)

s , - - , , K 0 ' , '

- -wi th F a residuation formula for 81-- we have A" b O'M E O'(a M1 . . . Mn) is
output consistent.

304

T h e o r e m . If S and Zl are mode-checked and A t-" M E a M1 . . . Mn is input
consistent then all possible Elf execution sequences from

(Al~-idA ;a;'r M E a MI . . . 11//,) &initiala,;0;~

are mode-consistent.
P r o o f sketch: For every state SA,;O;s (where A I t- O : A) in an Elf execution
sequence there is a corresponding abstract state in the mode checking system
which is characterized by an abstract substitution ~ with A I ~- (r/,~ 8) : A. We
then show via induction over the computation sequences that the groundedness
properties established during mode checking will also hold at the Elf level.
R e l a t e d work . Many properties of logic programs can be derived by abstract
interpretation [3], including the inference of mode declarations [10]. Contrary to
Debray and Mellish [4] we view mode declarations as part of a logic program's
specification rather than as a property to be inferred. Our system distinguishes
between ground and possibly non-ground terms, which makes mode information
in a higher-order setting manageable while still being very useful. As a result our
mode analysis requires neither fixed-point constructions nor a sharing analysis - -
a single pass over a program suffices, possibly with backtracking if several modes
are permitted for a given predicate. Mode systems for logic programs often rely
on type information and also consider more precise modes, such as partially
instantiated terms [26]. In our case we directly exploit Elf's type system.

4 T e r m i n a t i o n A n a l y s i s

For termination we need to demonstrate that arguments to (possibly mutu-
ally) recursive subgoals decrease in some well-founded ordering with respect to
the original program call. For example, in the ack function we can show a de-
crease in ack3 if we consider both input arguments lexicographically: (s X, Y) <
(4 X , s Y) and (X,Q) < (s X , s Y).

In order to obtain termination we assume that the termination conditions
are defined only on input arguments to a well-moded predicate [2]. This avoids a
much more complicated analysis--consider, for example, a program containing
the clauses p (s X) <- p X and p z in this order. Elf(and Prolog) search for the
goal ?- p Y will not terminate. In this case our mode anMysis would reject the
goal since Y is not closed. Due to this and other current restrictions, the system
for termination is less accurate than the mode system, yet still exceedingly useful,
especially for establishing meta-theoretical properties of the object languages we
encode in Elf (see Section 5 for further discussion).

In a first-order setting it is straightforward to determine whether a term
is a subterm of another. Consider now higher-order terms in Elf, e.g., in the
clause cplam for the copying function cp on A-expressions. We want to show
that in a suitable sense (E x) is a subterm of (lain E) when x is a newly in-
troduced parameter. Another important aspect of higher-order subterms can
be demonstrated, e.g., from a formalization of predicate logic as it is used

305

in the cut-elimination proof for the sequent calculus [22]. We have type fam-
ilies i for individuals and o for formulas, and--among others--a constructor
f o r a l l : (i ---* o) ---* o. The proof requires A T (which represents [t /x]A) to be
strictly smaller than f o r a l l A (which represents Vx.A). In the informal proof
we count the number of quantifiers and connectives, noting that a term t in
first-order logic cannot contain any logical symbols. Thus we may consider A T
a subterm of forall A as long as there is no way to construct an object of type
s from objects of type o.
M u t u a l l y r ecu r s ive t y p e famil ies . We define a type family a to be subordinate
to a type family a' (a <~ * a') whenever a term M : A with hd(A) = a may be used
in constructing a term N : B with hal(B) = a' (see [29]). If additionally a' ~* a
we say that a, a' are mutually recursive. We write a <)* a' if a is subordinate to
a', but not mutually recursive with a.

Subordination of type families is the transitive closure of the immediate sub-
ordination relation (a _<1 a') which can be directly read off the signature ,U. E.g.
our sample signature contains nal;~ na t (from s), n a t ~ aek (from aek), ack<J aek
(from ack3), ,xp~ cp (from cp), c p 9 cp (from cpapp, cplam), exp<] eval (from
eval) , and eva1 <1 eva1 (from evapp, evlam).
S u b t e r m s . We now define a judgment for the subterm relationship between
higher-order terms. In the system below the use of abstract substitutions 7/ap-
pears superfluous. However, mixed-prefix contexts A alone cannot supply the
groundedness information obtained from mode-checking and necessary for defin-
ing a well-founded term measure in the termination proof. In the rules we use long
fiT/normal forms throughout and we assume re-normalization after every substi-
tution. Variables C, C' denote atomic types, i.e., types of the form a M1 . . . Mn
and we have h : Ah 6 ,~ or Vh:Ah 6 rl.

7 1 ~ - M : A - < N : B 71:A A ~ - z A - B : t y p e A ~ - , v M = _ N : A
y ~ - M : A - < N : B o F M : A - < N : B

~1, Vx:A ~- M : B -< N : B ' rl ~- M : C -< Ni : ANi for some 1 < i < m
~I P A x : A . M : I I x : A . B "< N : B ' 71k M : C "< h N1. . . Nm : C '

~1 : A Vy:A 6 (A,Vx:A)
rl, Vx:A I- U : C -< [y / z]N : [y /x]B where lad(C), hd(A) mut. rec. 4
I 1 I- M : C -~ A x : A . N : I I x : A . B

~ I : A A , z : A P z M ' : A
~, Vx:A ~" M : C -< [M ' / x] N : [M ' / x] B where lad(A) <)* lad(C)4
71 }- M : C -< A x : A . N : I I x : A . B

The side conditions in the last two rules enforce that A-bound variables must
be instantiated with a parameter y unless a term of type A can never contain
a subterm of type C, in which case it may be instantiated with an arbitrary
term M'. It should be noted that in the implementation the choice of M' or y
is delayed and determined later via unification.

4 We have analogous rules for ~1 b M : C -4 Az:A.N : I Iz :A.B.

306

E x a m p l e . With the subterm judgment in place we can now revisit our examples.
The following valid judgments arise in the checking of termination.

End E:exp--+exp, Vx:exp f- (E z) : exp -< (lain (Ay.E y)) : exp
The derivation uses the crucial fact that z is a parameter (i.e. V-quantified).
Now consider the predicate logic example where we want to show

gnd A:i--*o, uk T : i t- (A T) : o -~ (f o r a l l (A x . A x)) : o .

Here we do not even know whether the logic variable T has been instantiated to
a ground term. However, since i is n o t mutually recursive with o we apply the
second to last rule above to obtain the desired result.
T e r m i n a t i o n C heck ing . Given a mode-checked signature E we can perform
termination checking by showing that calls to auxiliary predicates terminate and
that input arguments decrease wrt. -< in recursive subgoals. We merely need to
declare which input arguments we consider, and in which lexicographic order
they diminish, e .g .

Y, mode -ack +X +Y -Z

7.1ex X Y

The additional Y.lex pragma simply gives the lezicographic termination order
for the preceding mode declaration: the X argument decreases, or - - i f X remains
unchanged-- the Y-argument will decrease. In addition, we also use the 7,1ex
pragma to relate arguments between mutually recursive predicates.
T h e o r e m . Given a mode-checked and termination-checked signature Z and
an input-consistent, well-moded Elf goal So that does not introduce any new
type dependencies not found in S . Then all possible Elf execution sequences
S o , ,91 ~ . . . , , 9 , , . . . are finite. Since there are only finitely many
choices at each step, Elf search will always terminate.
P r o o f ske tch : First we define a term measure which is finite for ground terms
and consistent with the subterm relationship. Since input (i. e., +) arguments to
subgoals are ground, they have a finite measure.

We can linearize the LF type hierarchy by combining mutually recursive
type families into a single node. Based on this linear vector, we define a multiset
measure whose elements contain the lexicographic argument measures of all these
nodes. We add a bookkeeping measure to ensure that the decomposition of non-
atomic goal formulas also decreases their measure. Then we assign a well-founded
measure to an Elf state S which counts the current goal formula as well as all
goals postponed in the success continuation and show that this measure decreases
in each transition step.
R e l a t e d work . Similarly to our mode analysis approach, we have extended a
rather naive first-order termination analysis based on a subterm property [16] to
a higher-order setting. Although it would have been straightforward to imple-
ment, we do not automatically infer an actual lexicographic order - - we would
rather consider the termination orderings part of the specification of a logic
program. For proofs of meta-theorems formalized in Elf that employ structural
induction, these orderings correspond directly to the nesting of the inductive
argument.

307

5 P r a g m a t i c s

The mode and termination analyses described in this paper were implemented
for the current Elf interpreter [20] and have proven to be valuable tools in the
development of Elf programs.
M u l t i p l e m o d e s . Sometimes a predicate may be executed in multiple directions
and we would like to assign it multiple modes, rather than copy its definition.
Our mode-checker allows multiple mode declarations for the same type family
by considering different modes of the same predicate as mutually recursive but
distinct type families. The mode system remains decidable, although the mode
assigned to an occurrence of a type family may not necessarily be unique. We
choose the one which gives us the most information if it exists; otherwise we
issue a warning and try each mode assignment in turn.
A p p l i c a t i o n s . In case of a mode or termination error, the checker pinpoints the
offending clause and subterm and reports all information needed by the user to
remedy the problem. The checking of 6 previously defined Elf theories with some
50 theorems uncovered one mode error. In another instance, however, where an
Elf novice had 1500 lines of code under active development, the checker revealed
35 locations with mode problems, of which 20 could be at tr ibuted to mistyped
variable names. The other most common mistake is incorrect subgoal ordering.

It is not surprising that mode errors outnumber termination errors. Termina-
tion checks are only performed on well-moded predicates, whereas mode errors
such as wrong subgoal ordering or variable name misspellings can lead to unin-
stantiated input arguments and nontermination.

The combination of mode and termination checking is particularly useful
when we want to establish that an Elf program constitutes a decision procedure.
This allows us to make a meta-mathematical s tatement about an object language
formalized in Elf simply by exhibiting a checked program in the same framework.
Some examples of this approach are:

- a formalization of linear logic [21], where the linearity of derivations is a
decidable property,

- an implementation of the sequent calculus [22] with a terminating cut-elimi-
nation procedure,

- a formulation of refinement types [19] for which the subtype property is
decidable, and

- a representation of Mini-ML [11] for which type inference is guaranteed to
terminate.

L i m i t a t i o n s . To date we have encountered a sole instance where the mode
checker rejected an intuitively correct formalization, which, we believe, may be
rewritten. We thus do not consider this a major limitation of the mode systems.

Our lexicographically extended higher-order subterm ordering works well for
structural inductions (on which most meta-proofs in Elf are based on), b u t
they fail in other cases such as course-of-value induction or recursion over sub-
lists [5]. In some of these situations one can make the termination proofs apparent

308

through the introduction of additional "measure" arguments (such as the length
of a list). We also encountered an instance where unfolding of mutually recursive
predicates was necessary to automatically show termination.

A more fundamental limitation is that we do not relate measures of input
arguments to output arguments of predicates, which is sometimes necessary if
intermediate results are used in recursive calls. The restriction to lexicographic
orderings is suprisingly flexible, but there are instances where others (such as
multi-set orderings) would be helpful. It seems feasible to also allow multi-set
orderings in the termination specification of predicates in future versions.

6 C o n c l u s i o n

We have described a practical system for the specification of mode and termi-
nation properties of programs written in the higher-order language Elf. These
properties are decidable within our mode system and the implementation checks
them efficiently and provides useful feedback in case a property is violated.

While the basic notions of modes and termination have been known for some
time [30, 1] they have not yet been applied to a higher-order setting that in-
cludes dependent types, higher-order terms and proof objects. As a pragmatic
decision, especially since the underlying LF type theory does not prescribe one
particular operational interpretation, we implemented modes separately from
types, whereas Reddy [25] proposes to combine mode and type specifications. At
present, the simplicity of our approach outweighs the benefits of a more flexible
system such as Reddy's.

We do not know of any framework logics that perform an analysis similar
to ours. In the ALF framework [9] only total functions over disjoint patterns
are definable and --since ALF does not employ higher-order abstract syntax--
a first-order subterm ordering is sufficient for showing termination of recursive
calls.

Termination proofs in a higher-order setting have been investigated, among
others, in [28] and [8]. Although our system employs similar ideas, we need to
additionally make use of type subordination to obtain the desired termination
ordering.

We expect mode and termination properties of higher-order logic programs
to play an important r51e in the compilation of such programs. We need to
investigate how our ideas can be applied to A-Prolog [15] which presents two
additional complications: extra-logical primitives (such as cut, or primitives for
input and output) and higher-order subgoals permitting predicates as arguments
to other predicates. This means that we may not be able to statically determine
the call graph of a program. However, this is not as important since predicates
and types are syntactically separated and, in our approach, mutual recursion
appears to be more important for types.

Perhaps the most important extension is to show the totality of predicates:
not only will every execution sequence terminate, but every execution sequence
starting from a well-moded goal will succeed. This allows us to verify that certain

309

higher-level judgments implement proofs [23], formally establishing many impor-
tant meta-theoretic properties of the object languages under investigation.

Finally, work on negation has often relied on mode information [27]. We
plan to take advantage of mode and termination information when considering
negation in the context of higher-order logic programming.

A c k n o w l e d g m e n t s . We would like to thank the anonymous referees for
their helpful comments and Brian Milnes for supplying us with a user's perspec-
tive on the checker implementation.

References

1. K. R. Apt and D. Pedreschi. Reasoning about termination of pure Prolog pro-
grams. Inlormation and Computation, 106(1):109-157, 1993.

2. K. R. Apt and Alessandro Pelhgrini. On the occur-check-free PROLOG programs.
A CM Transactions on Programming Languages and Systems, 16(3):687-726~ May
1994.

3. P. Cousot and R. Cousot. Abstract interpretation and application to logic pro-
grams. Journal of Logic Programming, 13:103-179, 1992.

4. S. K. Debray and D. S. Warren. Automatic mode inference for logic programs.
Journal of Logic Programming, 5(3):207-229, 1988.

5. John I-Iannan and Frank Pfenning. Compiler verification in LF. In Andre Scedrov,
editor, Seventh Annual IEEE Symposium on Logic in Computer Science, pages
407-418, Santa Cruz, California, June 1992.

6. Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining log-
ics. Journal of the Association for Computing Machinery, 40(1):143-184, January
1993.

7. Dean Jacobs. A pragmatic view of types for logic programs. In Frank Pfenning,
editor, Types in Logic Programming, chapter 7, pages 217-227. MIT Press, 1992.

8. Stefan Kahrs. Towards a domain theory for termination proofs. In Jieh ttsiang,
editor, Sixth International Conference on Rewriting Techniques and Applications,
RTA-95, pages 241-255, Kaiserslantern, Germany, April 1995. Springer-Verlag.

9. Lena Magnusson. The Implementation of ALF--A Proof Editor Based on Martin-
LJf's Monomorphic Type Theory with Explicit Substitution. PhD thesis, Chalmers
University of Technology and G6teborg University, January 1995.

10. C.S. Mellish. The automatic generation of mode declarations for Prolog pro-
grams. DAI Research Report 163, Department of Artificial Intelligence, University
of Edinburgh, 1981.

11. Spiro Michaylov and Frank Pfenning. Natural semantics and some of its meta-
theory in Elf. In L.-H. Eriksson, L. Hallngs, and P. Schroeder-Heister, editors,
Proceedings of the Second International Workshop on Extensions of Logic Program-
ming, pages 299-344, Stockholm, Sweden, January 1991. Springer-Verlag LNAI
596.

12. Dale Miller. A logic programming language with lambda-abstraction, function
variables, and simple unification. Journal of Logic and Computation, 1(4):497-
536, 1991.

13. Dale Miller. Abstract syntax and logic programming. In Proceedings of the First
and Second Russian Conferences on Logic Programming, pages 322-337, Irkutsk
and St. Petersburg, Russia, 1992. Springer-Verlag LNAI 592.

310

14. Dale Miller. Unification under a mixed prefix. Journal of Symbolic Computation,
14:321-358, 1992.

15. Gopalan Nadathur and Dale Miller. An overview of ,~Prolog. In Kenneth A.
Bowen and Robert A. Kowalski, editors, Fifth International Logic Programming
Conference, pages 810-827, Seattle, Washington, August 1988. MIT Press.

16. L. Naish. Automatic generation of control for logic programs. Technical Report
83/6, Department of Computer Science, The University of Melbourne, 1983.

17. Frank Pfenning. Logic programming in the LF logical framework. In G~rard
Huet and Gordon Plotkin, editors, Logical Frameworks, pages 149-181. Cambridge
University Press, 1991.

18. Frank Pfenning, editor. Types in Logic Programming. MIT Press, Cambridge,
Massachusetts, 1992.

19. Frank Pfenning. Refinement types for logical frameworks. In Herman Geuvers,
editor, Informal Proceedings of the Workshop on Types for Proofs and Programs,
pages 285-299, Nijmegen, The Netherlands, May 1993,

20. Frank Pfenning. Elf: A meta-language for deductive systems. In A. Bundy, editor,
Proceedings of the 12th International Conference on Automated Deduction, pages
811-815, Nancy, France, June 1994. Springer-Verlag LNAI 814. System abstract.

21. Frank Pfenning. Structural cut elimination in linear logic. Technical Report CMU-
CS-94-222, Department of Computer Science, Carnegie Mellon University, Decem-
ber 1994.

22. Frank Pfenning. Structural cut elimination. In D. Kozen, editor, Proceedings of
the Tenth Annual Symposium on Logic in Computer Science, pages 156-166, San
Diego, California, June 1995. IEEE Computer Society Press.

23. Frank Pfenning and Ekkehard Rohwedder. Implementing the meta-theory of de-
ductive systems. In D. Kaput, editor, Proceedings of the 11th International Confer-
ence on Automated Deduction, pages 537-551, Saratoga Springs, New York, June
1992. Springer-Verlag LNAI 607.

24. Lutz Plfimer. Termination Proofs for Logic Programs. Springer-Verlag LNAI 446,
1991.

25. Uday S. Reddy. A typed foundation for directional logic programming. In
E. Lamma and P. Mello, editors, Proceedings of the Third International Work-
shop on Extensions of Logic Programming, pages 282-318, Bologna, Italy, February
1992. Springer-Verlag LNAI 660.

26. Z. Somogyi. A system of precise modes for logic programs. In J. L. Lassez, editor,
Proceedings of the Fourth International Conference on Logic Programming, Volume
2, pages 769-787, Cambridge, Massachusetts, 1987. MIT Press.

27. Robert F. St~rk. The declarative semantics of the Prolog selection rule. In
S. Abramsky, editor, Proceedings of the Ninth Annual Symposium on Logic in Com-
puter Science, pages 252-261, Paris, France, July 1994. IEEE Computer Society
Press.

28. J. van de Pol and H. Schwichtenberg. Strict functionals for termination proofs.
In M. Dezani-Ciancaglini and G. Plotkin, editors, Proceedings of the Second Inter-
national Conference on Typed Lambda Calculi and Applications, pages 350-364,
Edinburgh, United Kingdom, April 1995. Springer-Verlag LNCS.

29. Roberto Virga. Higher-order superposition for dependent types. Technical Report
CMU-CS-95-150, Carnegie Mellon University, 1995.

30. D. H. D. Warren. Implementing Prolog--compiling predicate logic programs, Vol-
ume 1. DAI Research Report 39, University of Edinburgh, 1977.

