
Efficient Min imizat ion up to
Location Equivalence

Ugo Montanari 1., Marco Pistore 1. and Daniel Yankelevich 2.*

1 Dipartimento di Informatica, Universitk di Pisa
Departamento de Inform~.tica, Universidad de Buenos Aires

Abs t r ac t . Location equivalence is a bisimulation based equivalence for
process calculi which is able to take into account the distributed nature
of processes; the underlying idea is that each action occurs at a particular
location.
The definition of bisimulation for location equivalence is not the stan-
dard one, since it must deal with the creation of new locations, and this
leads to the necessity of using specific algorithms. In particular these
algorithms work only on pairs of agents and do not allow to find the
minimal representative for a class of equivalent agents.
In this paper we associate to every agent a labeled transition system (in
which the informations on the locations appear in the labels) so that
location-equivalent agents are mapped into transition systems which are
bisimilar according to the ordinary definition of bisimulation. The main
consequence of this result is that the standard algorithms for ordinary
bisimulation can be re-used, and in particular the partitioning algorithm
which allows to obtain the minimal realization of a single agent.

1 I n t r o d u c t i o n

Communicat ion protocols and distributed systems tend to be difficult to under-
s tand and they usually present complex behaviors. For this reason, there has
been a considerable interest in finding automat ic methods to validate and verify
this kind of systems, both in academy and industry. Even entire conferences are
dedicated to this problem [15, 16].

The effort invested in this research gave rise to many different tools and
methods to verify distributed systems. A number of such tools and methods are
based on the idea of comparing the actual behavior of a protocol or distributed
system with its expected behavior, described by a specification [7]. Hence, the
languages used are equipped with an equivalence relation between programs
(and specifications). In general, one is not forced to use the same specification
and programming language, it suffices that both languages can be compiled to a

* Research supported in part by Esprit Basic Research project CONFER and by Pro-
getto Coordinato CNR "Strumenti per la Verifica di ProprietOr Critiche di Sistemi
Concorrenti e Distribuits ~.

** Research supported in part by Universidad de Buenos Aires, under UBACyT project
EX186, and by Universith di Pisa.

266

common model. For reactive, distributed systems, operational models are very
adequate. Among these models, the most widely acknowledged as useful models
of concurrent systems are the transition systems. Hence, the equivalence be-
tween specifications and programs is actually defined as an equivalence between
transition systems.

In most cases, a variant of the so-called bisimulation equivalence is used [9].
This equivalence has an objective advantage from the point of view of verifica-
tion, and it is that a well known algorithm exists to verify it, namely the partition
refinement algorithm [13]. Besides checking for bisimilarity, this algorithm finds
the transition system that is minimal in the class of equivalent (bisimilar) tran-
sition systems. This is particularly interesting since this minimal realization can
replace the original agent for all successive checks of properties. Moreover, mini-
mization is also important if one is validating a large system, consisting of many
programs composed in parallel, like in p~ }...]Pn. It can be of substantial im-
portance in this case to get the small representations of pi, namely p~, and then
construct the transition system for p~ I . . . I P~. Since the size of the transition
system can be as big as the product of the sizes of the parallel components, the
reduction in size in each Pi may have a great impact on the overall construction.

Clearly, the equivalence relation is a semantic relation, in the sense that
it takes into account semantic information. Hence, when choosing a particular
equivalence one is fixing the meaning of programs and specifications. The oper-
ational model describes the behavior of a system, but does not fix the semantics
of the language. The equivalence, that abstracts away details of the operational
model that are not relevant for the semantics, is needed to define the meaning
of programs and specifications.

The equivalence described so far, used in most tools and methodologies, is
based on the so called interleaving semantics. Hence, when using any of these
tools, the meaning of the protocols and distributed systems is forced to be the
one given in the interleaving semantics.

One drawback of this model is that parallelism is not considered a primitive
concept, and it can be reduced to nondeterminism. This means that, for example,
the programs a I b and a.b + b.a are identified, where I is the parallel composition,

the sequential composition, + the nondeterministic choice, and a, b any actions.
A consequence of this fact is that a system distributed in more sites is equivalent
to a system executing the same actions in only one site. This is clearly not the
intuition of protocol and distributed systems programmers and designers.

Moreover, some properties of interest cannot be expressed using this seman-
tics. For instance, the notion of local deadlock, i.e., a deadlock in one site that is
not a global deadlock, cannot be expressed. The reason is very simple: suppose
two processes provide the same service, concurrently, in two different sites. If
one of them stops because a deadlock occurs, the global behavior is not affected:
the system will still be able to provide the same service.

In interleaving semantics, notions such as degree of parallelism, causality,
local clocks, etc. are not taken into account. Many proposals have been done to
give semantics to concurrent systems considering these aspects. Among these al-

267

ternative semantic models, one approach gives particular interest to the location
where an event takes place [3, 4]. In this model, called locality semantics, each
action occurs in a particular place. Hence, the programs a lb and a.b q-b.a are
distinguished: the first one may perform an a and a b in different places, while
the second executes the actions in only one place. Intuitively, the first program
is distributed in two sites, while the second runs on a single processor. More-
over, as it is possible to detect where an action occurs, it is possible to express
conditions such as local deadlocks, as shown in [3].

As it was first proposed, this semantics gives rise to infinite transition sys-
tems, even for very simple programs. From a technical point of view, each action
that a program executes creates a new location name associated with that event.
Hence, the transition system describing the behavior of a program does not con-
tain cycles: each cycle is unfolded and the compact representation of behaviors
given by transition systems is lost.

Different techniques were proposed to deal with this problem, and alternative
characterizations of the same equivalence, that were not infinite in the sense
described above, were developed [8, 14, 6, 11, 12].

From the point of view of verification, this is not the only problem that this
new semantics poses. Even with non infinite transition systems, each program
may choose different names for locations. The equivalence must be checked up to
bijections of names. For instance, the programs a I b and b I a must be identified.
This means that the correspondence between the left side of one program and
the right side of the other must be established. This correspondence cannot be
established statically once and for all, since locations may be created (by a fork
action) or destroyed (by a join). Hence, one has to dynamically construct a
mapping between location names.

A consequence of this fact is that partit ion refinement techniques cannot be
used in order to check location bisimulation equivalence. Only the so-called on
the fly methods can be used. These methods actually construct the equivalence
dynamically, on the fly, and in consequence may construct the bijection as they
go.

While on the fly techniques have been shown to be very useful in some situ-
ations, parti t ion algorithms are better in other contexts. Having both techniques
available adds flexibility that may help in the automatization of the verification
process. Moreover, on the fly techniques cannot be used to construct a minimal
transition system for a given program.

In this work, we show how partit ion refinement techniques can be used to
check location equivalence. Hence, our algorithm can be used, in particular, to
get a minimal representative with respect to location equivalence.

The main idea underlying this technique can be described as follows. First, we
define transition systems with states labeled by sets of location names, showing
which locations are in use in each state. Second, in order to make identical
the names corresponding in the bijection, we choose the new names following
a standard order. A similar idea was used in [14] in the so-called numbered
transition system: locations are chosen following a strict ordering. However, this

268

is not enough to guarantee identity of names, if the new location is chosen
as the first locations not presently used, since some locations may appear as
presently used while in fact being not relevant. Actually, what is needed is a
notion of relevance in the future computations of the program. We introduce a
semantic concept of active location, and automata using only active locations are
called irredundant. Finally, we show that ordinary bisimulation of irredundant
au tomata coincides with location equivalence. From this result on semantics, it
follows that the usual parti t ion algorithm can be used.

The paper is organized as follows. In Section 2 some background is presented,
mainly about the example language used (CCS) and about location equivalence.
Section 3 introduces structural axioms. These are simplification axioms that are
used to enlarge the class of programs to which the algorithm may be applied.
Many of these axioms have been used as rules of thumb in the implementation of
some systems. For instance, they express the notion that useless �9 I nil constructs
can be eliminated.

In Section 4 we introduce location automata, that are simple transition sys-
tems whose states are enriched with location names; and we define the notion
of bisimulation of location automata. Section 5 introduces the notion of active
location and of irredundant au tomata and presents the main result of the paper,
namely the theorem that shows that our algorithm is sound.

In Section 6, we analyze the complexity of our algorithm. Even with this finer
semantics, the worst-case complexity of bisimulation checking does not change.
Section 7 is devoted to concluding remarks.

2 Background

In this section we briefly recall the approach to locMity semantics introduced
in [3, 4, 8]. Differently from the static approach of [1] - - where the distributed
nature of agents is made explicit by assigning different locations to their parallel
components, like in a.(l ::Pl m :: q) - - in [3, 4, 8] a more observational point of
view is preferred. Location names are assigned dynamically, during the process
of observation: the meaning of transition ! :: a.p --% 1 :: m :: p is that the observer

Im

sees an action a emanating from a particular sublocation of I and associates
name m to this sublocation 3.

Let A be a set of atomic actions (ranged over by c~, f l , . . .) and A = {& I a E
A} a set of action complements disjoint from A. Act = A U A (ranged over by
a, b , . . .) is the set of visible actions (the operator : is extended to Act in such a
way that ~ = a), r r Act is the invisible action and Actr = Act U {r} (ranged
over by/~).

Let Var be a set of process variables (ranged over by x, y) and Loc a
totally ordered denumerable set of locations (ranged over by l, m , . . . ; u, v , . . .
denote sequences of locations).

3 We refer to [5] for further comparisons of static and dynamic approach.

269

CCS location terms are defined by the following abstract syntax (the order
of the operators gives their precedence):

P : : = n i l I #.P I i:: P I P \ a I PIP I P +p I x I recx.p

CCS location agents (ranged over by p ,q , . . .) are guarded (in a rec subterm
the process variable appears only within prefix contexts), closed (without free
process variables) location terms. We call PLoc the set of all location agents. The
set of location names that occur in p is denoted by loc(p); an agent p is pure if
loc(p) = 0.

Following definitions are derived from those of [4].

D e f i n i t i o n I (s t a n d a r d t r a n s i t i o n s) . The standard transitions are defined by
the following axioms and inference rules:

t t
It.p -"~ p
P u p, implies l :: p ~-s l :: p'
p ~--* p' implies p \ a u.~ p ' \ a if

p ~ p' implies p [q u_~ p, I q and

p --% p' and q -~ q' implies
p' and p ---* implies p + q ~ p'

p[rec z.p/z] u_~ p, implies rec z.p ~ p'

q [p ~ q [p '

p[q -~ p'lq'
q+p U_.,p,

D e f i n i t i o n 2 (l oca t i on t r a n s i t i o n s) . The location transitions are defined by
the following axioms and inference rules:

a . p - ~ i : : p for all IELoc
I

p a.~p~ implies l : :p-~l : :p '
t t Itt

p_L,p, implies p [q - ~ , p ' [q and q [p ~ q [p '
11 l l t l

The rules for +, \ and rec are analogous to the corresponding rules of Defini-
tion 1.

Notice that there is no synchronization rule for the location transitions: since the
invisible transitions do not occur in a particular location, the rules of Definition 1
are used for them.

We will use the following notation for weak transitions: =:~ = (.5.,)* and
==~..-.. =~.

u u

D e f i n i t i o n 3 (l o c a t i o n equ iva l ence) . A relation 7~ C PLoc x PLoc is a location
simulation if p 7~ q implies:

- for each p ~ p', with l ~ loc(p, q), there exists some q ~ q' with p'T~ q';

- for each p ==~ p' there exists some q ==~ q' with p' 7~ q'.

A relation 7~ is a location bisimulation if both ~ and 7~ -a are location simula-
tions. Two processes p and q are location equivalent (written p ~1 q) i fp T~ q for
some location bisimulation 7~.

270

Condition I ~ loc(p, q) does not appear in [4]. In [8], however, it has been
pointed out that no discriminating power is added if we are allowed to choose a
location twice in a computation and that our definition is equivalent to the one
in [4].

3 I n c r e m e n t a l L o c a t i o n E q u i v a l e n c e

To check the equivalence of two CCS agents we have first to build finite transition
systems corresponding to them. The aim of this section is to introduce the ideas
that allow to accomplish this finite construction for a wide class of agents.

Each CCS agent can be seen as a system in which a set of sequential processes
act in parallel, sharing a set of channels, some of which are global (unrestricted)
whereas some other are local (restricted). Each sequential process is represented
by a term of the form

s : : = p . p [p + p [recx.p

that can be considered as a "program" describing the possible behaviors of the
sequential process.

These sequential processes are then connected by means of the operators of
parallel composition, restriction and location prefixing, that allow to describe
the structure of the system in which the processes act.

From this point of view the two parallel composition bars in

P = a.Pl [(ft.(P2 [P3) + 7.P4)

have different meanings, since the outermost indicates two processes that can act
in parallel, whereas the innermost represents a possible fork, a future activation
of two processes. Another consequence of this point of view is that the agents

(sx I s2) \ c~ \3 and (s~ I s x) \ 3 \ a

should not be distinguished, since they represent the same processes acting with
the same interconnection structure.

We thus introduce a set of structural axioms, in the style of the Chemical
Abstract Machine [2] and of the r-calculus [10], which identify all such agents 4.

P a r plni l = p P l q = q l P p l (q l r) = (p l q) [r
Res p \ a I q = (Pl q)\~ if c~ does not appear free in q

n i l \ a ---- nil p \ a \ ~ -- p\t3\o~
p \ a = p[t3/a]\~ if/8 does not appear in p

Loe / : : n i l - n i l l : : (p[q)-(l : :p) l (l : :q) l : : (p \ a) - - (l : : p) \ a

Consider for instance:

p = rec x.(. .nill

• (nillp)\ =p '

4 We do not care about applying the structural axioms inside a sequential process.

271

The transition system corresponding to agent p in ordinary CCS is infinite (since
p ~ p'), but using the structural axioms a finite one is generated (since p ___ p').
The axioms we have introduced are sufficient to associate a finite standard tran-
sition system (i.e., whose transitions are generated using only the rules of Defi-
nition 1) to each finitary agent 5. An agent is finitary if the degree of parallelism
that it has and that it can reach in its future evolutions is (finitely) bounded.

D e f i n i t i o n 4 (f i n i t a r y a g e n t s) . The degree of parallelism par(p) of an agent p
is defined as

par(nil) = 0 par(~u.p) = 1
par(/ : :p) - par(p) p a r (p \ a) -- par(p)
par(p [q) - par(p) + par(q) pa r (p + q) -- 1

par(rec z.p) = 1

A CCS agent p is finitary if max{par(p') [p ~_2~... _~ p,} < oo.

A syntactical condition which implies that an agent is finitary is the absence
of parallel compositions in the bodies of recursive definitions. However, there are
many interesting finitary agents, like recz.a.(b.6.d.z [c.~.nil)\~, which do not
satisfy this condition.

The axioms P a r , Res and Loc are not sufficient in the context of location
equivalence: consider the agent p = rec z.a.z and its computation

p - ~ l : :p -~ l::m::p ~ l : :m::n::p ~ . . .
1 Im Iron

The location prefixes continue to grow during the computation, and this must
be avoided to obtain finite transition systems. Using the axiom

D e l l : : m : : p - m::p

the previous computat ion of p could be transformed into:
a

p -7* 1 ::p -~+l,~ ! :: m :: p -- m ::p ,~t "~ m :: 1 ::p _= ! ::p -~tm 1 :: m ::p _---- m ::p ---* .- .

which is cyclic. However, this axiom is not correct for the location equivalence
of Definition 3, since

l::m::a.p ~ l ::m::n::p
lrnn

whereas
{l

m :: a.p ----* m :: n ::p
gnr t

and the two labels do not correspond; this happens because the whole sequence
of locations is observed in the label of a transition.

Now we give a slightly different definition of location equivalence in which
only the newly created location and its direct parent are observed. It can be
shown that this new location equivalence coincides with the classical one for the
class of pure CCS agents.

5 Also a smaller set of axioms is sufficient to this purpose. Our set of axioms, however,
is very natural, and allows the identification of more agents.

272

P r o p o s i t i o n 5 (i n c r e m e n t a l l o c a t i o n e q u i v a l e n c e) . Let Po and qo be two
pure CCS agents. Then Po ~t qo iff m ::P0 ~ a t m ::q0 for some location m, where
the incremental location equivalence ~ At is the maximal symmetric relation such
that p ~Al q implies:

- for each p ~ f there exists some q ~ q~ with p' ~ t q~;
u ~ n t)gT~n

- for each p ~ p' there exists some q ~ q~ with p~ ~.At q~.

De l is a correct axiom for this alternative characterization and it allows,
combined with the other axioms, to associate to each agent a flat structure of
locations. Conceptually, these axioms show that agents can be seen in location
semantics as collections (multisets) of sequential sub-agents acting in different
locations. This intuitive fact, used in [6] to represent location agents, gets, in
this way, a formal foundation using simple structural axioms.

From now on p - q means that p and q are the same agent up to axioms
P a r , Res , Loc and Del .

P r o p o s i t i o n 6 . Using the structural axioms P a r , Res , Lo c and Del , every
location agent p can be written in the following form:

p - (p0 Ilx : : p l I " " I I . : : p .) \ a l �9 �9 �9 \ ~ m

Pi = six l " " l sini

where locations li are all distinct and sij are sequential processes.

Notice that even the introduction of axiom De l is not sufficient to associate
a finite location transition system (i.e., whose transitions are generated using
the rules of Definition 2 for visible actions) to each finitary agent. In fact, even
to very simple agents like l :: a.b.nil correspond infinitely many derivatives, since
the transition

! :: a.b.nil 2 . ! :: m :: b.nil = m :: b.nil
Im

can occur for every m E Loe. As we formally show in the following section,
however, in checking location equivalence it is not necessary to consider all these
different transitions, since they lead to states which differ only for the particular
choice of location names.

4 L o c a t i o n A u t o m a t a

D e f i n i t i o n 7 (l o c a t i o n a u t o m a t o n) . A location automaton is a tuple A =
(Q, w, ~-*, q0) where:

- Q is a set of states;
- w : Q --* 2~ ~162 associates to each state a finite set of locations;

a

- ~-* is a set of transitions; each transition has the form q ~-~ q' (visible

transition) or the form q ~Y-~ a q' (invisible transition), where:

273

�9 q, q~ E Q are the source and target states;
�9 l E w(q) is the location of the transition;
�9 ~r : w(q') '--* w(q) O {*} (a : w(q') '---* w(q) for an invisible transition)

is the injective (inverse) renaming corresponding to the transition; the
newly created location is denoted with the special mark * ~ Loc;

- q0 E Q is the initial state; we require that w(qo) = {l} for some l E Loc.

A location automaton is an automaton particularly suited for dealing with
locations. Each state p is labeled by the set w(p) of locations used in that state.
These locations have a meaning that is local, private to the state. Hence, the
particular choice of location names cannot by itself make a distinction between
two states of the location automaton.

Each visible transition ~%ao represents an action a occurring in a location I of
I

the source state. Due to the local meaning of locations, each transition must also
specify the correspondence between the locations of the source and those of the
target. This correspondence is obtained via the renaming 0-, which permits also
to deduce which locations of the source are forgotten in the target and which (if
any) location of the target is the newly created location.

Following the approach of the previous sections, invisible transitions do not
occur in a particular location and cannot create a new location.

The weak transitions of a location automaton can be defined as follows:

e p~ r r r p~ and 0- = 0 - 1 o 0 - 2 o �9 �9 �9 o f i n ; - p t:=~a if, for some n > 0, p ~"*al"*a2 "'" "--*a,

a p l E a E
- P~=*'o ifPt=->o,"'~mo2l=C'o~pl, l=0-1(m) and0-=0-1o0-2o0-3 �9

I

The composition o is defined so that 0-1 o0-2(n) = * if 0-2(n) = * and 0-1 o0-2(n) =
0-1(0-2(n)) otherwise.

On a location automaton a bisimulation is not simply a relation on states:
also a partial correspondence between the locations of the states has to be spec-
ified and the same states can be in relation via more than one correspondence.
The requirement that just one location is used in the initial state allows to fix
the initial correspondence (i.e., the correspondence between the locations of the
initial states) when two location automata are checked for equivalence.

D e f i n i t i o n 8 (l a - b i s i m u l a t i o n) . Two location automata A and B are location-
automaton bisimilar, written A ~,ta B, if there is some set ~ of triples, called
la-bisimulation, such that:

- if (p, 6, q) E T~ then p E QA, q E QB and di : wa(p) ~ wB(q) is a partial
bijection;

- (qoA,6o,qoB) E Tr where 60 maps the location associated to qOA to the
location associated to qoB;

a p l a ql - for each p t=~o in A (resp. q t=~p in B) there exist some 6' and some
I I

q t:~p q' in B (resp. p t=~ o p' in A) such that (p', ~', q') E ~ and ~'(m) = n
~(0 ~-'(0

implies 0-(m) = * = p(n) or ~(a(m)) = p(n);

274

- for each p I=~, p' in A (resp. q l=~p q' in B) there exist some 6' and some

q l=~p q' in B (resp. p I=r p' in A) such that (p', 6', q') E T~ and 6'(m) = n

implies 6(~r(m)) = p(n).

Notice that if p and q correspond via 6 in some bisimulation T~, then to
each visible transition of p a visible transition of q must correspond, such that
i) the two transitions perform the same action, ii) they occur in corresponding
locations (via 6), and iii) the reached states are related in 7~ by some 6 ~ which
relates two locations of the target states only if they both are the newly created
locations or if their corresponding locations in the source states are related by 6
(two locations of the target states can be not related also if the corresponding
locations are related in the source states).

Now we show how to associate location automata to pure CCS agents so
that location equivalent agents are mapped into la-equivalent automata. In the
construction it is useful to transform each reached state as described in Propo-
sition 6, to keep the number of generated states small. To this purpose, it is
also important to identify those states which differ only for a injeetive renaming
of the locations: as previously noted, such states are not distinguishable in the
context of location automata.

So we can define a function norm which, given an agent p, returns a pair
(# , a), where p~ is obtained transforming p in the form described in Proposi-
tion 6 and then by normalizing also the location names l l , . . . , l n (for instance
by replacing them with the first n locations of Loc), whereas a : loe(p') ,--* loe(p)
describes which location of p corresponds to a location of # .

D e f i n i t l o n 9 (f r o m a g e n t s to l o c a t i o n a u t o m a t a) . Let P0 be a pure CCS
agent and l0 be the minimal 6 location of Loc. The location automaton hut(p0) =
(Q, loc, ~--*,p0) is so defined: l0 ::p0 E Q and whenever p E Q then:

- i f p a p,, with m r loc(p), and (p" ,a) = aorra(p') then p" E Q and
u l r n

a

P ~[*/~10o P";

- if p ~ p' and (p", a) = norm(p') then p" E Q and p ~L,o p,,.

Notice that the locations associated to a state are exactly the locations that
appear syntactically in the state.

In the previous definition, when we deal with visible transitions we require
that m ~ loc(p); as stated in the remarks after Definition 3, this does not reduce
the discriminating power. Moreover, since we start from l0 ::P0 and normalize
the reached states as described in Proposition 6, it is easy to show that all the
visible transitions considered in the construction have the form p -~ p~ (i.e.,

/m

u = e). Finally, the particular location m which is chosen as the new location
does not play any role in the construction of the location automaton, due to the

6 Remember that set Loc is totally ordered and denumerable.

275

use o f , to denote the created location and to the normalization of the target
agent p'.

T h e o r e m 10. Given two pure agents p and q, p ~t q iff aut(p) ~za ant(q).

The proof of this theorem is based on the alternative characterization ~z~t of
the location equivalence given in Proposition 5.

The previous theorem also holds for other definitions of the function norm:
for instance norm can be defined simply as the identity or may only perform a
renaming of the locations. In these cases an infinite automaton would correspond
to finite state agents such as rec x.a.x. Actually, function norm can be used to
implement different tricks to reduce the computation time in an heuristic way.
The normalization function we have chosen can be computed very efficiently and
allows to build finite location automata for the class of finitary CCS agents.

P r o p o s i t i o n l l . A pure CCS agent is finitary iff the corresponding location
automaton is finite.

5 I r r e d u n d a n t A u t o m a t o n a n d U n f o l d i n g

In the location automaton, not all the locations associated to a state are involved
in the computations that can be performed starting from the state. The locations
that are never used in these computations can be safely deleted, obtaining a more
compact structure.

D e f i n i t i o n 12 (ac t ive loca t ions) . Given a location automaton A, the sets of
active locations corresponding to the states of A, denoted by al(p) with p E QA,
are the smallest sets such that:

- if p ~-~a P' then l ~ al(p);

- if p ~% p', m E al(p') and or(m) # . then a(m) E al(p);
i a

- if p ~Lo p' and m E al(p') then or(m) E al(p).

D e f i n i t i o n 1 3 (i r r e d u n d a n t r e d u c t i o n) . Let A = (Q,w,~-,, q0) be a loca-
tion automaton. Its irredundant reduction is the location automaton ~A =
(Q, al, ~--d, q0) where ~--~' is obtained from ~ by restricting the transition re-
namings concerning a state p to the active locations al(p).

We say that an automaton A is irredundant if ~A = A.

P r o p o s i t i o n 1 4 . Let A be a location automaton. Then ~A ~ta A.

A location automaton A can be visited beginning from the initial state. In this
visit, the global meaning of the private locations of the reached states should he

276

remembered 7. If the global meaning corresponding to the locations of a reached
a

state p is given by a : loc(p) ~ Loc and transition p 7~p q is followed, the global

meaning for q is given essentially by a o p. However, a global meaning has to
be associated also to the location created in the transition (the location of the
target state mapped in * by the transition renaming). To this purpose we use a
function new, which gets a transition p ~ p p~ and a global meaning ~ for the

locations of p and returns a new location name. A possible definition of new is
as follows:

{a (l) if I q~ p(w(p'))
neg(p ~*l" p''~r) = min{Loc \ tr(p(w(p')))} otherwise

This function new reuses the same location in which the action occurs if this
location is not used in the target state anymore; if it is still used, it chooses the
first unused location of the target state. Following this definition, if a sequential
process of the form a.p is acting in location l, after the execution of a the process
p is still located in l (no generation of new locations is needed in this case).

To formalize the idea of visiting a location automaton A, we associate to A
a standard labeled transition system (called the unfolding of A); each state of
the unfolding is a pair (state of the location automaton, global meaning of its
location) and each visible transition has the form

(p, (p',
ttm]

where a is an action, l is the location in which the action occurs and m is the
newly created location.

D e f i n i t i o n 15 (unfo ld ing) . The unfolding corresponding to a location automa-
ton A = (Q, w, ~--+, q0) is the labeled transition system mar(A) = (Qu, "% qou)
defined as follows:

- the initial state is qou = (q0,er0) E Qu, where a0 maps the location corre-
sponding to q0 into the minimal location 10;

- if (p, ~) �9 Q~ and p ~*p p' then (p', or') �9 Qu and (p, ~) ~ (p', a'), where
~(O['q

tl
a' = (a U (* ~-* m)) o p and m = neu(p ~ p p', ~);

- if (p, a) �9 Q~ and p ~. p' then (p', a') �9 Qu and (p, ~r) --L (p', a'), where

OJ _-- O 'op .

It is easy to show that there are In-equivalent automata with non-equivalent
unfoldings. This happens because two corresponding states of the location au-
tomata can have a different number of locations, and this can lead to different
choices in the unfoldings when a new location has to been chosen.

r A state can be visited more than once, with different meanings for the private
locations.

277

In fact axiom Del is not sufficient to erase all the inactive locations. For
instance consider

l:: a . p l m ::(fl.q-,/3)

In this case location m guards a deadlocked process, so it in not active in the
agent. In the agent

(! :: a.7.b.p[m :: q.nil)',,~,

location m is non active since the process guarded by m can only act as a partner
of an invisible transition.

The following theorem express the main result of this paper: given two irre-
dundant location automata, then they are la-equivalent if and only if the corre-
sponding unfoldings are equivalent. This allows to apply a standard partitioning
algorithm for checking the equivalence of two automata and to obtain minimal
(standard) automata corresponding to them.

T h e o r e m 16. I f A and B are irredundant location automata then A ~ta B iff

Corol la ry17 . Given two pure agents p and q, p ~t q iff tmf(~aut(p))

6 Partitioning Algorithm and Complexity

Corollary 17 suggests an algorithm for checking location equivalence of two CCS
agents p and q:

1. construct (separately) the location automata corresponding to p and q;
2. discover (separately) the active locations of the two automata and get the

irredundant reductions: start marking the locations that are active due the
first condition of Definition 12 and continue marking all the locations reach-
able following the dependencies in the other conditions of Definition 12; at
the end discard the unmarked locations;

3. unwind (separately) the obtained irredundant automata;
4. use a standard algorithm for checking the weak equivalence of the obtained

transition systems (for instance, partition refinement [13]).

This algorithm works for all finitary agents, since for these we are sure that
finite location automata (and hence finite unwindings) can be built.

The following proposition gives a bound to the time complexity of checking
location equivalence for finitary agents in terms of the syntactical length and of
the maximal reachable degree of parallelism.

Proposition 18. Let p and q be pure CCS agents. I f h is their syntactical length
and

max{par(r) I P ~ -~h r or q ~ ---*m r} = k,

the location equivalence of p and q can be checked in 20(k'(l~176

278

For the standard CCS equivalence (still using the structurM axioms), the corre-
sponding bound is 2~176 so the two bounds coincide for the class of agents
for which the maximal reachable degree of parallelism k is polynomially bounded
in the syntactical size s . In particular this is true for the class of agents without
parallel composition within a recursive definition.

Notice that, though the upper bounds are very similar, there exist particular
agents for which the complexity of checking the ordinary (interleaving) equiva-
lence is substantially smaller than the upper bound, whereas the complexity of
checking the location equivalence is close to the bound. This happens in all the
cases in which the agents consist of many sequential processes in parallel but
only a small number of global states can be reached from them.

An extreme example is given by the agent

P = Pl [P2 ["" [Pn with Pi = rec z .a i . z

The only standard transitions the agent can perform are p 2~ p so just one state
is required in this case. If we consider location transitions, instead, there are lots
of reachable states, since initially all the processes Pi share the same location
and new locations are created every time a process pi acts for the first time,
leading to exponentially many configurations.

7 C o n c l u d i n g R e m a r k s

In this paper we associate to each CCS agent a labeled transition system in which
locality informations appear in the labels, so that location equivMent agents are
mapped into transition system which are bisimilar according to the ordinary
notion of bisimulation. As a consequence, standard algorithms can be used on
these transition systems. The worst-case complexity is similar to that of pure
CCS.

The use of locations in the transition systems obtained after unfolding is
similar to the one proposed in [6]; however, since no notion of active locations
was present in [6], Theorem 16 and Corollary 17 do not hold in that context;
there, the construction of the bijection between the locations of two agents that
are checked for equivalence can be avoided -- and hence ordinary algorithms can
be used -- only by avoiding location re-use, which leads to infinite transition
systems for finitary agents like rec z.a.(b.&d.~ Ic.6.nil)\6.

The theory has been presented on CCS, since it is simple, it has been used to
describe both specifications and programs and because it is the language used in
the original presentation of location semantics. It is important to point out that
our result is not related to CCS: our technique can be used for any language,
provided it can be equipped with an operational semantics with locations.

Location automata in particular seem to us a quite general operational model
for dealing with location semantics. Our hope is that also different approaches to

a It is interesting to notice that a computable function does not exists that bounds k
in function of h for all the linitazy agents.

279

locality semantics can be mapped into this model, so that the results of Section 5
can be re-applied.

As stated in the Introduction, the reduction of location equivalence to ordi-
nary bisimulation equivalence is important to obtain minimal realizations. These
are interesting both from a theoretical point of view - - equivalent agents give
rise to the same (up to isomorphism) minimal realization - - and a practical
point of view - - smaller state spaces can be obtained. It is impor tant to stress
out, however, that the realizations are minimal for the particular choice of func-
tion new. Different definitions are possible, which, for some particular agents,
can give rise to dramatical ly smaller "minimal" realizations. Mat ter of further
research is the possibility of defining better or opt imal new functions, which still
allow to map equivalent irredundant au toma ta to equivalent transition systems.

References

1. L. Aceto. A static view of localities. INRIA Report 1483, 1991. To appear in Formal
Aspects o] Computing.

2. G. Berry and G. Boudol. The chemical abstract machine. In Proc. POPL. ACM,
1990.

3. G. Boudol, I. Castellani, M. Hennessy and A. Kiehn. Observing localities. Theo-
retical Computer Science, 114: 31-61, 1993.

4. G. Boudol, I. Castellani, M. Hennessy and A. Kiehn. A theory of processes with
localities. INRIA Report 1632, 1991. Extended abstract in Proc. CONCUR'92,
LNCS 630, 1992.

5. I. Castellani. Observing distribution in processes: static and dynamic localities.
INRIA Report 2276, 1994:

6. F. Corradini and R. De Nicola. Distribution and locality of concurrent systems. In
Proc. ICALP'9$, LNCS 920, pages 154-165. Springer Verlag, 1994.

7. P. Inverardi and C. Priami. Evaluation of tools for the analysis of communicating
systems. In Bullettin o] EATCS, 45, 1991.

8. A. Kiehn. Local and global causes. Tech. Rep. 42/23/91, Institut ffir Informatik,
TU Mfinchen, 1991.

9. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
10. R. Milner. The polyadic r-calculus: a tutorial. In Logic and Algebra o] Specification,

NATO ASI Series F, Vol. 94. Springer Verlag, 1993.
11. U. Montanari and D. Yankelevich. A parametric approach to localities. In Proc.

ICALP'9~, LNCS 623. Springer Verlag, 1992.
12. U. Montanari and D. Yankelevich. Location Equivalence in a Parametric Setting.

Theoretical Computer Science, 149: 299-332, 1995.
13. R. Paige and R. E. Tarjan. Three partition refinement algorithms. SIAM Journal

on Computing, 16(6):973-989, 1987.
14. D. Yankelevich. Parametric Views of Process Description Languages. PhD Thesis.

Dipartimento di Informatica, Universit~ di Pisa, 1993. Available as report TD-
23/93.

15. Proceedings o] the Conference on Computer-Aided Verification - CA V'95, LNCS
939. P. Wolper Ed., Springer Veflag, 1995.

16. Proceedings of the International Symposium on Protocol Specification, Testing and
Verification - PSTV'95. IFIP WG 6.1, 1995.

