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Abs t r ac t .  Location equivalence is a bisimulation based equivalence for 
process calculi which is able to take into account the distributed nature 
of processes; the underlying idea is that each action occurs at a particular 
location. 
The definition of bisimulation for location equivalence is not the stan- 
dard one, since it must deal with the creation of new locations, and this 
leads to the necessity of using specific algorithms. In particular these 
algorithms work only on pairs of agents and do not allow to find the 
minimal representative for a class of equivalent agents. 
In this paper we associate to every agent a labeled transition system (in 
which the informations on the locations appear in the labels) so that 
location-equivalent agents are mapped into transition systems which are 
bisimilar according to the ordinary definition of bisimulation. The main 
consequence of this result is that the standard algorithms for ordinary 
bisimulation can be re-used, and in particular the partitioning algorithm 
which allows to obtain the minimal realization of a single agent. 

1 I n t r o d u c t i o n  

Communicat ion protocols and distributed systems tend to be difficult to under- 
s tand and they usually present complex behaviors. For this reason, there has 
been a considerable interest in finding automat ic  methods to validate and verify 
this kind of systems, both in academy and industry. Even entire conferences are 
dedicated to this problem [15, 16]. 

The  effort invested in this research gave rise to many  different tools and 
methods to verify distributed systems. A number  of such tools and methods  are 
based on the idea of comparing the actual behavior of a protocol or distributed 
system with its expected behavior, described by a specification [7]. Hence, the 
languages used are equipped with an equivalence relation between programs 
(and specifications). In general, one is not forced to use the same specification 
and programming  language, it suffices that  both  languages can be compiled to a 
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common model. For reactive, distributed systems, operational models are very 
adequate. Among these models, the most widely acknowledged as useful models 
of concurrent systems are the transition systems. Hence, the equivalence be- 
tween specifications and programs is actually defined as an equivalence between 
transition systems. 

In most cases, a variant of the so-called bisimulation equivalence is used [9]. 
This equivalence has an objective advantage from the point of view of verifica- 
tion, and it is that a well known algorithm exists to verify it, namely the partition 
refinement algorithm [13]. Besides checking for bisimilarity, this algorithm finds 
the transition system that is minimal in the class of equivalent (bisimilar) tran- 
sition systems. This is particularly interesting since this minimal realization can 
replace the original agent for all successive checks of properties. Moreover, mini- 
mization is also important if one is validating a large system, consisting of many 
programs composed in parallel, like in p~ }... ]Pn. It can be of substantial im- 
portance in this case to get the small representations of pi, namely p~, and then 
construct the transition system for p~ I . . .  I P~. Since the size of the transition 
system can be as big as the product of the sizes of the parallel components, the 
reduction in size in each Pi may have a great impact on the overall construction. 

Clearly, the equivalence relation is a semantic relation, in the sense that 
it takes into account semantic information. Hence, when choosing a particular 
equivalence one is fixing the meaning of programs and specifications. The oper- 
ational model describes the behavior of a system, but does not fix the semantics 
of the language. The equivalence, that abstracts away details of the operational 
model that are not relevant for the semantics, is needed to define the meaning 
of programs and specifications. 

The equivalence described so far, used in most tools and methodologies, is 
based on the so called interleaving semantics. Hence, when using any of these 
tools, the meaning of the protocols and distributed systems is forced to be the 
one given in the interleaving semantics. 

One drawback of this model is that parallelism is not considered a primitive 
concept, and it can be reduced to nondeterminism. This means that, for example, 
the programs a I b and a.b + b.a are identified, where I is the parallel composition, 

the sequential composition, + the nondeterministic choice, and a, b any actions. 
A consequence of this fact is that a system distributed in more sites is equivalent 
to a system executing the same actions in only one site. This is clearly not the 
intuition of protocol and distributed systems programmers and designers. 

Moreover, some properties of interest cannot be expressed using this seman- 
tics. For instance, the notion of local deadlock, i.e., a deadlock in one site that is 
not a global deadlock, cannot be expressed. The reason is very simple: suppose 
two processes provide the same service, concurrently, in two different sites. If 
one of them stops because a deadlock occurs, the global behavior is not affected: 
the system will still be able to provide the same service. 

In interleaving semantics, notions such as degree of parallelism, causality, 
local clocks, etc. are not taken into account. Many proposals have been done to 
give semantics to concurrent systems considering these aspects. Among these al- 
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ternative semantic models, one approach gives particular interest to the location 
where an event takes place [3, 4]. In this model, called locality semantics, each 
action occurs in a particular place. Hence, the programs a lb and a.b q-b.a are 
distinguished: the first one may perform an a and a b in different places, while 
the second executes the actions in only one place. Intuitively, the first program 
is distributed in two sites, while the second runs on a single processor. More- 
over, as it is possible to detect where an action occurs, it is possible to express 
conditions such as local deadlocks, as shown in [3]. 

As it was first proposed, this semantics gives rise to infinite transition sys- 
tems, even for very simple programs. From a technical point of view, each action 
that  a program executes creates a new location name associated with that  event. 
Hence, the transition system describing the behavior of a program does not con- 
tain cycles: each cycle is unfolded and the compact representation of behaviors 
given by transition systems is lost. 

Different techniques were proposed to deal with this problem, and alternative 
characterizations of the same equivalence, that  were not infinite in the sense 
described above, were developed [8, 14, 6, 11, 12]. 

From the point of view of verification, this is not the only problem that  this 
new semantics poses. Even with non infinite transition systems, each program 
may choose different names for locations. The equivalence must be checked up to 
bijections of names. For instance, the programs a I b and b I a must be identified. 
This means that  the correspondence between the left side of one program and 
the right side of the other must be established. This correspondence cannot be 
established statically once and for all, since locations may be created (by a fork 
action) or destroyed (by a join). Hence, one has to dynamically construct a 
mapping between location names. 

A consequence of this fact is that  partit ion refinement techniques cannot be 
used in order to check location bisimulation equivalence. Only the so-called on 
the fly methods can be used. These methods actually construct the equivalence 
dynamically, on the fly, and in consequence may construct the bijection as they 
go. 

While on the fly techniques have been shown to be very useful in some situ- 
ations, parti t ion algorithms are better in other contexts. Having both techniques 
available adds flexibility that  may help in the automatization of the verification 
process. Moreover, on the fly techniques cannot be used to construct a minimal 
transition system for a given program. 

In this work, we show how partit ion refinement techniques can be used to 
check location equivalence. Hence, our algorithm can be used, in particular, to 
get a minimal representative with respect to location equivalence. 

The main idea underlying this technique can be described as follows. First, we 
define transition systems with states labeled by sets of location names, showing 
which locations are in use in each state. Second, in order to make identical 
the names corresponding in the bijection, we choose the new names following 
a standard order. A similar idea was used in [14] in the so-called numbered 
transition system: locations are chosen following a strict ordering. However, this 
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is not enough to guarantee identity of names, if the new location is chosen 
as the first locations not presently used, since some locations may appear as 
presently used while in fact being not relevant. Actually, what is needed is a 
notion of relevance in the future computations of the program. We introduce a 
semantic concept of active location, and automata  using only active locations are 
called irredundant. Finally, we show that ordinary bisimulation of irredundant 
au tomata  coincides with location equivalence. From this result on semantics, it 
follows that  the usual parti t ion algorithm can be used. 

The paper is organized as follows. In Section 2 some background is presented, 
mainly about  the example language used (CCS) and about location equivalence. 
Section 3 introduces structural axioms. These are simplification axioms that  are 
used to enlarge the class of programs to which the algorithm may be applied. 
Many of these axioms have been used as rules of thumb in the implementation of 
some systems. For instance, they express the notion that useless �9 I nil constructs 
can be eliminated. 

In Section 4 we introduce location automata,  that  are simple transition sys- 
tems whose states are enriched with location names; and we define the notion 
of bisimulation of location automata.  Section 5 introduces the notion of active 
location and of irredundant au tomata  and presents the main result of the paper, 
namely the theorem that  shows that  our algorithm is sound. 

In Section 6, we analyze the complexity of our algorithm. Even with this finer 
semantics, the worst-case complexity of bisimulation checking does not change. 
Section 7 is devoted to concluding remarks. 

2 Background 

In this section we briefly recall the approach to locMity semantics introduced 
in [3, 4, 8]. Differently from the static approach of [1] - -  where the distributed 
nature of agents is made explicit by assigning different locations to their parallel 
components, like in a.(l ::Pl m :: q) - -  in [3, 4, 8] a more observational point of 
view is preferred. Location names are assigned dynamically, during the process 
of observation: the meaning of transition ! :: a.p --% 1 :: m :: p is that  the observer 

Im 

sees an action a emanating from a particular sublocation of I and associates 
name m to this sublocation 3. 

Let A be a set of atomic actions (ranged over by c~, f l , . . . )  and A = {& I a E 
A} a set of action complements disjoint from A. Act = A U A (ranged over by 
a, b , . . . )  is the set of visible actions (the operator : is extended to Act in such a 
way that ~ = a), r r Act is the invisible action and Actr = Act U {r} (ranged 
over by/~). 

Let Var be a set of process variables (ranged over by x, y . . . .  ) and Loc a 
totally ordered denumerable set of locations (ranged over by l, m , . . . ;  u, v , . . .  
denote sequences of locations). 

3 We refer to [5] for further comparisons of static and dynamic approach. 
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CCS location terms are defined by the following abstract syntax (the order 
of the operators gives their precedence): 

P : : = n i l  I #.P I i:: P I P \ a  I PIP I P +p I x I recx.p 

CCS location agents (ranged over by p ,q , . . . )  are guarded (in a rec subterm 
the process variable appears only within prefix contexts), closed (without free 
process variables) location terms. We call PLoc the set of all location agents. The 
set of location names that occur in p is denoted by loc(p); an agent p is pure if 
loc(p) = 0. 

Following definitions are derived from those of [4]. 

D e f i n i t i o n  I ( s t a n d a r d  t r a n s i t i o n s ) .  The standard transitions are defined by 
the following axioms and inference rules: 

t t  
It.p -"~ p 
P u p, implies l :: p ~-s l :: p' 
p ~--* p' implies p \ a  u.~ p ' \ a  if 

p ~ p' implies p [q u_~ p, I q and 

p --% p' and q -~ q' implies 
p' and p ---* implies p + q ~ p' 

p[rec z.p/z] u_~ p, implies rec z.p ~ p' 

q [ p ~ q [ p '  

p[q -~ p'lq'  
q+p U_.,p, 

D e f i n i t i o n 2  ( l oca t i on  t r a n s i t i o n s ) .  The location transitions are defined by 
the following axioms and inference rules: 

a . p - ~ i : : p  for all IELoc 
I 

p a.~p~ implies l : :p-~l : :p '  
t t  Itt  

p_L,p,  implies p [ q - ~ , p ' [ q  and q [ p ~ q [ p '  
11 l l  t l  

The rules for +,  \ and rec are analogous to the corresponding rules of Defini- 
tion 1. 

Notice that  there is no synchronization rule for the location transitions: since the 
invisible transitions do not occur in a particular location, the rules of Definition 1 
are used for them. 

We will use the following notation for weak transitions: =:~ = (.5.,)* and 
==~..-.. =~. 

u u 

D e f i n i t i o n  3 ( l o c a t i o n  equ iva l ence ) .  A relation 7~ C PLoc x PLoc is a location 
simulation if p 7~ q implies: 

- for each p ~ p', with l ~ loc(p, q), there exists some q ~ q' with p'T~ q'; 

- for each p ==~ p' there exists some q ==~ q' with p' 7~ q'. 

A relation 7~ is a location bisimulation if both ~ and 7~ -a are location simula- 
tions. Two processes p and q are location equivalent (written p ~1 q) i fp  T~ q for 
some location bisimulation 7~. 
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Condition I ~ loc(p, q) does not appear in [4]. In [8], however, it has been 
pointed out that  no discriminating power is added if we are allowed to choose a 
location twice in a computation and that  our definition is equivalent to the one 
in [4]. 

3 I n c r e m e n t a l  L o c a t i o n  E q u i v a l e n c e  

To check the equivalence of two CCS agents we have first to build finite transition 
systems corresponding to them. The aim of this section is to introduce the ideas 
that  allow to accomplish this finite construction for a wide class of agents. 

Each CCS agent can be seen as a system in which a set of sequential processes 
act in parallel, sharing a set of channels, some of which are global (unrestricted) 
whereas some other are local (restricted). Each sequential process is represented 
by a term of the form 

s : : = p . p  [ p + p  [ recx.p 

that  can be considered as a "program" describing the possible behaviors of the 
sequential process. 

These sequential processes are then connected by means of the operators of 
parallel composition, restriction and location prefixing, that  allow to describe 
the structure of the system in which the processes act. 

From this point of view the two parallel composition bars in 

P = a.Pl [(ft.(P2 [P3) + 7.P4) 

have different meanings, since the outermost indicates two processes that  can act 
in parallel, whereas the innermost represents a possible fork, a future activation 
of two processes. Another consequence of this point of view is that  the agents 

(sx I s2 ) \ c~ \3  and (s~ I s x ) \ 3 \ a  

should not be distinguished, since they represent the same processes acting with 
the same interconnection structure. 

We thus introduce a set of structural axioms, in the style of the Chemical 
Abstract Machine [2] and of the r-calculus [10], which identify all such agents 4. 

P a r  plni l  = p P l q = q l P  p l ( q l r ) = ( p l q ) [  r 
Res  p \ a  I q = (Pl q)\~ if c~ does not appear free in q 

n i l \ a  ---- nil p \ a \ ~  -- p\t3\o~ 
p \ a  = p[t3/a]\~ if/8 does not appear in p 

Loe / : : n i l - n i l  l : : (p[q)-( l : :p) l ( l : :q)  l : : ( p \ a ) - - ( l : : p ) \ a  

Consider for instance: 

p = rec x.( . .nill 

• (nillp)\  =p '  

4 We do not care about applying the structural axioms inside a sequential process. 
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The transition system corresponding to agent p in ordinary CCS is infinite (since 
p ~ p'), but using the structural axioms a finite one is generated (since p ___ p'). 
The  axioms we have introduced are sufficient to associate a finite standard tran- 
sition system (i.e., whose transitions are generated using only the rules of Defi- 
nition 1) to each finitary agent 5. An agent is finitary if the degree of parallelism 
that  it has and that  it can reach in its future evolutions is (finitely) bounded. 

D e f i n i t i o n 4  ( f i n i t a r y  a g e n t s ) .  The degree of parallelism par(p) of an agent p 
is defined as 

par(nil) = 0 par(~u.p) = 1 
par( / : :p)  - par(p) p a r ( p \ a )  -- par(p) 
par(p [ q) - par(p) + par(q) pa r (p +  q) -- 1 

par(rec z.p) = 1 

A CCS agent p is finitary if max{par(p') [ p ~_2~... _~ p,} < oo. 

A syntactical condition which implies that an agent is finitary is the absence 
of parallel compositions in the bodies of recursive definitions. However, there are 
many interesting finitary agents, like recz.a.(b.6.d.z [c.~.nil)\~, which do not 
satisfy this condition. 

The axioms P a r ,  Res  and Loc  are not sufficient in the context of location 
equivalence: consider the agent p = rec z.a.z and its computation 

p - ~  l : :p -~  l::m::p ~ l : :m::n::p ~ . . .  
1 Im Iron 

The location prefixes continue to grow during the computation,  and this must 
be avoided to obtain finite transition systems. Using the axiom 

D e l  l : : m : : p -  m::p 

the previous computat ion of p could be transformed into: 
a 

p -7* 1 ::p -~+l,~ ! :: m :: p -- m ::p ,~t "~ m :: 1 ::p _= ! ::p -~tm 1 :: m ::p _---- m ::p ---* .- .  

which is cyclic. However, this axiom is not correct for the location equivalence 
of Definition 3, since 

l::m::a.p ~ l ::m::n::p 
lrnn 

whereas 
{l 

m :: a.p ----* m :: n ::p 
gnr t  

and the two labels do not correspond; this happens because the whole sequence 
of locations is observed in the label of a transition. 

Now we give a slightly different definition of location equivalence in which 
only the newly created location and its direct parent are observed. It can be 
shown that  this new location equivalence coincides with the classical one for the 
class of pure CCS agents. 

5 Also a smaller set of axioms is sufficient to this purpose. Our set of axioms, however, 
is very natural, and allows the identification of more agents. 
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P r o p o s i t i o n 5  ( i n c r e m e n t a l  l o c a t i o n  e q u i v a l e n c e ) .  Let Po and qo be two 
pure CCS agents. Then Po ~t qo iff m ::P0 ~ a t  m ::q0 for some location m, where 
the incremental location equivalence ~ At is the maximal symmetric relation such 
that p ~Al  q implies: 

- for each p ~ f there exists some q ~ q~ with p' ~ t  q~; 
u ~ n  t)gT~n 

- for each p ~ p' there exists some q ~ q~ with p~ ~.At q~. 

De l  is a correct axiom for this alternative characterization and it allows, 
combined with the other axioms, to associate to each agent a flat structure of 
locations. Conceptually, these axioms show that agents can be seen in location 
semantics as collections (multisets) of sequential sub-agents acting in different 
locations. This intuitive fact, used in [6] to represent location agents, gets, in 
this way, a formal foundation using simple structural axioms. 

From now on p - q means that  p and q are the same agent up to axioms 
P a r ,  Res ,  Loc  and Del .  

P r o p o s i t i o n 6 .  Using the structural axioms P a r ,  Res ,  Lo c  and Del ,  every 
location agent p can be written in the following form: 

p -  (p0 Ilx : : p l  I " "  I I .  : : p . ) \ a l  �9 �9 �9 \ ~ m  

Pi = six l " " l sini 

where locations li are all distinct and sij are sequential processes. 

Notice that  even the introduction of axiom De l  is not sufficient to associate 
a finite location transition system (i.e., whose transitions are generated using 
the rules of Definition 2 for visible actions) to each finitary agent. In fact, even 
to very simple agents like l :: a.b.nil correspond infinitely many derivatives, since 
the transition 

! :: a.b.nil 2 .  ! :: m :: b.nil = m :: b.nil 
Im 

can occur for every m E Loe. As we formally show in the following section, 
however, in checking location equivalence it is not necessary to consider all these 
different transitions, since they lead to states which differ only for the particular 
choice of location names. 

4 L o c a t i o n  A u t o m a t a  

D e f i n i t i o n 7  ( l o c a t i o n  a u t o m a t o n ) .  A location automaton is a tuple A = 
(Q, w, ~-*, q0) where: 

- Q is a set of states; 
- w : Q --* 2~ ~162 associates to each state a finite set of locations; 

a 

- ~-* is a set of transitions; each transition has the form q ~-~ q' (visible 

transition) or the form q ~Y-~ a q' (invisible transition), where: 
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�9 q, q~ E Q are the source and target states; 
�9 l E w(q) is the location of the transition; 
�9 ~r : w(q') '--* w(q) O {*} (a : w(q') '---* w(q) for an invisible transition) 

is the injective (inverse) renaming corresponding to the transition; the 
newly created location is denoted with the special mark * ~ Loc; 

- q0 E Q is the initial state; we require that  w(qo) = {l} for some l E Loc. 

A location automaton is an automaton particularly suited for dealing with 
locations. Each state p is labeled by the set w(p) of locations used in that  state. 
These locations have a meaning that  is local, private to the state. Hence, the 
particular choice of location names cannot by itself make a distinction between 
two states of the location automaton.  

Each visible transition ~%ao represents an action a occurring in a location I of 
I 

the source state. Due to the local meaning of locations, each transition must also 
specify the correspondence between the locations of the source and those of the 
target. This correspondence is obtained via the renaming 0-, which permits also 
to deduce which locations of the source are forgotten in the target and which (if 
any) location of the target is the newly created location. 

Following the approach of the previous sections, invisible transitions do not 
occur in a particular location and cannot create a new location. 

The weak transitions of a location automaton can be defined as follows: 

e p~ r r r p~ and 0- = 0 - 1  o 0 -  2 o �9 �9 �9 o f i n ;  - p t:=~a if, for some n > 0, p ~"*al"*a2 "'" "--*a, 

a p l  E a E 
- P~=*'o ifPt=->o,"'~mo2l=C'o~pl, l=0-1(m) and0-=0-1o0-2o0-3 �9 

I 

The composition o is defined so that  0-1 o0-2(n) = * if 0-2(n) = * and 0-1 o0-2(n) = 
0-1(0-2(n)) otherwise. 

On a location automaton a bisimulation is not simply a relation on states: 
also a partial correspondence between the locations of the states has to be spec- 
ified and the same states can be in relation via more than one correspondence. 
The requirement that  just one location is used in the initial state allows to fix 
the initial correspondence (i.e., the correspondence between the locations of the 
initial states) when two location automata  are checked for equivalence. 

D e f i n i t i o n 8  ( l a - b i s i m u l a t i o n ) .  Two location automata  A and B are location- 
automaton bisimilar, written A ~,ta B, if there is some set ~ of triples, called 
la-bisimulation, such that: 

- if (p, 6, q) E T~ then p E QA, q E QB and di : wa(p) ~ wB(q) is a partial 
bijection; 

- (qoA,6o,qoB) E Tr where 60 maps the location associated to qOA to the 
location associated to qoB; 

a p l  a ql - for each p t=~o in A (resp. q t=~p in B) there exist some 6' and some 
I I 

q t:~p q' in B (resp. p t=~ o p' in A) such that  (p', ~', q') E ~ and ~'(m) = n 
~(0 ~-'(0 

implies 0-(m) = * = p(n) or ~(a(m)) = p(n); 
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- for each p I=~, p' in A (resp. q l=~p q' in B) there exist some 6' and some 

q l=~p q' in B (resp. p I=r p' in A) such that (p', 6', q') E T~ and 6'(m) = n 

implies 6(~r(m)) = p(n). 

Notice that  if p and q correspond via 6 in some bisimulation T~, then to 
each visible transition of p a visible transition of q must correspond, such that  
i) the two transitions perform the same action, ii) they occur in corresponding 
locations (via 6), and iii) the reached states are related in 7~ by some 6 ~ which 
relates two locations of the target states only if they both are the newly created 
locations or if their corresponding locations in the source states are related by 6 
(two locations of the target states can be not related also if the corresponding 
locations are related in the source states). 

Now we show how to associate location automata  to pure CCS agents so 
that  location equivalent agents are mapped into la-equivalent automata.  In the 
construction it is useful to transform each reached state as described in Propo- 
sition 6, to keep the number of generated states small. To this purpose, it is 
also important  to identify those states which differ only for a injeetive renaming 
of the locations: as previously noted, such states are not distinguishable in the 
context of location automata.  

So we can define a function norm which, given an agent p, returns a pair 
(# ,  a), where p~ is obtained transforming p in the form described in Proposi- 
tion 6 and then by normalizing also the location names l l , . . . , l n  (for instance 
by replacing them with the first n locations of Loc), whereas a : loe(p') ,--* loe(p) 
describes which location of p corresponds to a location of # .  

D e f i n i t l o n 9  ( f r o m  a g e n t s  to  l o c a t i o n  a u t o m a t a ) .  Let P0 be a pure CCS 
agent and l0 be the minimal 6 location of Loc. The location automaton hut(p0) = 
(Q, loc, ~--*,p0) is so defined: l0 ::p0 E Q and whenever p E Q then: 

- i f p  a p,, with m r loc(p), and (p" ,a)  = aorra(p') then p" E Q and 
u l r n  

a 

P ~[*/~10o P"; 

- if p ~ p' and (p", a) = norm(p') then p" E Q and p ~L,o p,,. 

Notice that  the locations associated to a state are exactly the locations that  
appear syntactically in the state. 

In the previous definition, when we deal with visible transitions we require 
that  m ~ loc(p); as stated in the remarks after Definition 3, this does not reduce 
the discriminating power. Moreover, since we start  from l0 ::P0 and normalize 
the reached states as described in Proposition 6, it is easy to show that all the 
visible transitions considered in the construction have the form p -~ p~ (i.e., 

/m 

u = e). Finally, the particular location m which is chosen as the new location 
does not play any role in the construction of the location automaton,  due to the 

6 Remember that set Loc is totally ordered and denumerable. 
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use o f ,  to denote the created location and to the normalization of the target 
agent p'. 

T h e o r e m  10. Given two pure agents p and q, p ~t  q iff aut(p) ~za ant(q). 

The proof of this theorem is based on the alternative characterization ~z~t of 
the location equivalence given in Proposition 5. 

The previous theorem also holds for other definitions of the function norm: 
for instance norm can be defined simply as the identity or may only perform a 
renaming of the locations. In these cases an infinite automaton would correspond 
to finite state agents such as rec x.a.x. Actually, function norm can be used to 
implement different tricks to reduce the computation time in an heuristic way. 
The normalization function we have chosen can be computed very efficiently and 
allows to build finite location automata for the class of finitary CCS agents. 

P r o p o s i t i o n l l .  A pure CCS agent is finitary iff the corresponding location 
automaton is finite. 

5 I r r e d u n d a n t  A u t o m a t o n  a n d  U n f o l d i n g  

In the location automaton, not all the locations associated to a state are involved 
in the computations that  can be performed starting from the state. The locations 
that  are never used in these computations can be safely deleted, obtaining a more 
compact structure. 

D e f i n i t i o n  12 (ac t ive  loca t ions ) .  Given a location automaton A, the sets of 
active locations corresponding to the states of A, denoted by al(p) with p E QA, 
are the smallest sets such that: 

- if p ~-~a P' then l ~ al(p); 

- if p ~% p', m E al(p') and or(m) # .  then a(m) E al(p); 
i a 

- if p ~Lo p' and m E al(p') then or(m) E al(p). 

D e f i n i t i o n 1 3  ( i r r e d u n d a n t  r e d u c t i o n ) .  Let A = (Q,w,~-,, q0) be a loca- 
tion automaton. Its irredundant reduction is the location automaton ~A = 
(Q, al, ~--d, q0) where ~--~' is obtained from ~ by restricting the transition re- 
namings concerning a state p to the active locations al(p). 

We say that  an automaton A is irredundant if ~A = A. 

P r o p o s i t i o n 1 4 .  Let A be a location automaton. Then ~A ~ta A. 

A location automaton A can be visited beginning from the initial state. In this 
visit, the global meaning of the private locations of the reached states should he 
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remembered 7. If the global meaning corresponding to the locations of a reached 
a 

state p is given by a : loc(p) ~ Loc and transition p 7~p q is followed, the global 

meaning for q is given essentially by a o p. However, a global meaning has to 
be associated also to the location created in the transition (the location of the 
target state mapped in * by the transition renaming). To this purpose we use a 
function new, which gets a transition p ~ p  p~ and a global meaning ~ for the 

locations of p and returns a new location name. A possible definition of new is 
as follows: 

{a ( l )  if I q~ p(w(p')) 
neg(p ~*l" p''~r) = min{Loc \ tr(p(w(p')))} otherwise 

This function new reuses the same location in which the action occurs if this 
location is not used in the target state anymore; if it is still used, it chooses the 
first unused location of the target state. Following this definition, if a sequential 
process of the form a.p is acting in location l, after the execution of a the process 
p is still located in l (no generation of new locations is needed in this case). 

To formalize the idea of visiting a location automaton A, we associate to A 
a standard labeled transition system (called the unfolding of A); each state of 
the unfolding is a pair (state of the location automaton, global meaning of its 
location) and each visible transition has the form 

(p, (p', 
ttm] 

where a is an action, l is the location in which the action occurs and m is the 
newly created location. 

D e f i n i t i o n  15 (unfo ld ing) .  The unfolding corresponding to a location automa- 
ton A = (Q, w, ~--+, q0) is the labeled transition system mar(A) = (Qu, "% qou) 
defined as follows: 

- the initial state is qou = (q0,er0) E Qu, where a0 maps the location corre- 
sponding to q0 into the minimal location 10; 

- if (p, ~) �9 Q~ and p ~*p p' then (p', or') �9 Qu and (p, ~) ~ (p', a'), where 
~(O['q 

tl  
a'  = (a U (* ~-* m)) o p and m = neu(p ~ p  p', ~); 

- if (p, a) �9 Q~ and p ~. p' then (p', a') �9 Qu and (p, ~r) --L (p', a'), where 

OJ _-- O 'op .  

It is easy to show that  there are In-equivalent automata  with non-equivalent 
unfoldings. This happens because two corresponding states of the location au- 
tomata  can have a different number of locations, and this can lead to different 
choices in the unfoldings when a new location has to been chosen. 

r A state can be visited more than once, with different meanings for the private 
locations. 
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In fact axiom Del is not sufficient to erase all the inactive locations. For 
instance consider 

l:: a . p l m  ::(fl.q-,/3) 

In this case location m guards a deadlocked process, so it in not active in the 
agent. In the agent 

(! :: a.7.b.p[ m :: q.nil)',,~, 

location m is non active since the process guarded by m can only act as a partner 
of an invisible transition. 

The following theorem express the main result of this paper: given two irre- 
dundant location automata, then they are la-equivalent if and only if the corre- 
sponding unfoldings are equivalent. This allows to apply a standard partitioning 
algorithm for checking the equivalence of two automata and to obtain minimal 
(standard) automata corresponding to them. 

T h e o r e m  16. I f  A and B are irredundant location automata then A ~ta B iff 

Corol la ry17 .  Given two pure agents p and q, p ~t q iff tmf(~aut(p)) 

6 Partitioning Algorithm and Complexity 

Corollary 17 suggests an algorithm for checking location equivalence of two CCS 
agents p and q: 

1. construct (separately) the location automata corresponding to p and q; 
2. discover (separately) the active locations of the two automata and get the 

irredundant reductions: start marking the locations that are active due the 
first condition of Definition 12 and continue marking all the locations reach- 
able following the dependencies in the other conditions of Definition 12; at 
the end discard the unmarked locations; 

3. unwind (separately) the obtained irredundant automata; 
4. use a standard algorithm for checking the weak equivalence of the obtained 

transition systems (for instance, partition refinement [13]). 

This algorithm works for all finitary agents, since for these we are sure that 
finite location automata (and hence finite unwindings) can be built. 

The following proposition gives a bound to the time complexity of checking 
location equivalence for finitary agents in terms of the syntactical length and of 
the maximal reachable degree of parallelism. 

Proposition 18. Let p and q be pure CCS agents. I f  h is their syntactical length 
and 

max{par(r) I P ~ . . . . . .  -~h r or q ~ ---*m r} = k, 

the location equivalence of p and q can be checked in 20(k'(l~176 
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For the standard CCS equivalence (still using the structurM axioms), the corre- 
sponding bound is 2~176 so the two bounds coincide for the class of agents 
for which the maximal reachable degree of parallelism k is polynomially bounded 
in the syntactical size s . In particular this is true for the class of agents without 
parallel composition within a recursive definition. 

Notice that, though the upper bounds are very similar, there exist particular 
agents for which the complexity of checking the ordinary (interleaving) equiva- 
lence is substantially smaller than the upper bound, whereas the complexity of 
checking the location equivalence is close to the bound. This happens in all the 
cases in which the agents consist of many sequential processes in parallel but 
only a small number of global states can be reached from them. 

An extreme example is given by the agent 

P = Pl [P2 [""  [ Pn with Pi = rec z .a i . z  

The only standard transitions the agent can perform are p 2~ p so just one state 
is required in this case. If we consider location transitions, instead, there are lots 
of reachable states, since initially all the processes Pi share the same location 
and new locations are created every time a process pi acts for the first time, 
leading to exponentially many configurations. 

7 C o n c l u d i n g  R e m a r k s  

In this paper we associate to each CCS agent a labeled transition system in which 
locality informations appear in the labels, so that location equivMent agents are 
mapped into transition system which are bisimilar according to the ordinary 
notion of bisimulation. As a consequence, standard algorithms can be used on 
these transition systems. The worst-case complexity is similar to that of pure 
CCS. 

The use of locations in the transition systems obtained after unfolding is 
similar to the one proposed in [6]; however, since no notion of active locations 
was present in [6], Theorem 16 and Corollary 17 do not hold in that context; 
there, the construction of the bijection between the locations of two agents that 
are checked for equivalence can be avoided -- and hence ordinary algorithms can 
be used -- only by avoiding location re-use, which leads to infinite transition 
systems for finitary agents like rec z.a.(b.&d.~ Ic.6.nil)\6. 

The theory has been presented on CCS, since it is simple, it has been used to 
describe both specifications and programs and because it is the language used in 
the original presentation of location semantics. It is important to point out that 
our result is not related to CCS: our technique can be used for any language, 
provided it can be equipped with an operational semantics with locations. 

Location automata in particular seem to us a quite general operational model 
for dealing with location semantics. Our hope is that also different approaches to 

a It is interesting to notice that a computable function does not exists that bounds k 
in function of h for all the linitazy agents. 
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locality semantics can be mapped into this model, so that  the results of Section 5 
can be re-applied. 

As stated in the Introduction, the reduction of location equivalence to ordi- 
nary bisimulation equivalence is important  to obtain minimal  realizations. These 
are interesting both from a theoretical point of view - -  equivalent agents give 
rise to the same (up to isomorphism) minimal realization - -  and a practical 
point of view - -  smaller state spaces can be obtained. It  is impor tant  to stress 
out, however, that  the realizations are minimal for the particular choice of func- 
tion new. Different definitions are possible, which, for some particular agents, 
can give rise to dramatical ly smaller "minimal" realizations. Mat ter  of further 
research is the possibility of defining better  or opt imal  new functions, which still 
allow to map  equivalent irredundant au toma ta  to equivalent transition systems. 

References  

1. L. Aceto. A static view of localities. INRIA Report 1483, 1991. To appear in Formal 
Aspects o] Computing. 

2. G. Berry and G. Boudol. The chemical abstract machine. In Proc. POPL. ACM, 
1990. 

3. G. Boudol, I. Castellani, M. Hennessy and A. Kiehn. Observing localities. Theo- 
retical Computer Science, 114: 31-61, 1993. 

4. G. Boudol, I. Castellani, M. Hennessy and A. Kiehn. A theory of processes with 
localities. INRIA Report 1632, 1991. Extended abstract in Proc. CONCUR'92, 
LNCS 630, 1992. 

5. I. Castellani. Observing distribution in processes: static and dynamic localities. 
INRIA Report 2276, 1994: 

6. F. Corradini and R. De Nicola. Distribution and locality of concurrent systems. In 
Proc. ICALP'9$, LNCS 920, pages 154-165. Springer Verlag, 1994. 

7. P. Inverardi and C. Priami. Evaluation of tools for the analysis of communicating 
systems. In Bullettin o] EATCS, 45, 1991. 

8. A. Kiehn. Local and global causes. Tech. Rep. 42/23/91, Institut ffir Informatik, 
TU Mfinchen, 1991. 

9. R. Milner. Communication and Concurrency. Prentice Hall, 1989. 
10. R. Milner. The polyadic r-calculus: a tutorial. In Logic and Algebra o] Specification, 

NATO ASI Series F, Vol. 94. Springer Verlag, 1993. 
11. U. Montanari and D. Yankelevich. A parametric approach to localities. In Proc. 

ICALP'9~, LNCS 623. Springer Verlag, 1992. 
12. U. Montanari and D. Yankelevich. Location Equivalence in a Parametric Setting. 

Theoretical Computer Science, 149: 299-332, 1995. 
13. R. Paige and R. E. Tarjan. Three partition refinement algorithms. SIAM Journal 

on Computing, 16(6):973-989, 1987. 
14. D. Yankelevich. Parametric Views of Process Description Languages. PhD Thesis. 

Dipartimento di Informatica, Universit~ di Pisa, 1993. Available as report TD- 
23/93. 

15. Proceedings o] the Conference on Computer-Aided Verification - CA V'95, LNCS 
939. P. Wolper Ed., Springer Veflag, 1995. 

16. Proceedings of the International Symposium on Protocol Specification, Testing and 
Verification - PSTV'95. IFIP WG 6.1, 1995. 


