
Checking System Properties via Integer
Programming*

Stephan Melzer and Javier Esparza

Institut fiir Informatik
Technische Universitgt Mfinchen
Arcisstr. 21, D-80290 Miinchen

e-mail: {melzers,esparza} @informatik.tu-muenchen.de

Abstrac t . The marking equation is a well known verification method
in the Petri net community. It has also be applied by Avrunin, Corbett
et al. to automata models. It is a semidecision method, and it may fail to
give an answer for some systems, in particular for those communicating
by means of shared variables. In this paper, we complement the mark-
ing equation by a so called trap equation. We show that both together
significantly extend the range of verifiable systems by conducting several
case studies.

1 I n t r o d u c t i o n

The use of linear algebra and integer programming for verification purposes
has a long tradit ion in Petri net theory [6, 19, 18, 20]. One of the best known
techniques is the state or marking equation [6, 20]. This is a linear equation which
can be easily derived from the description of the net and its initial marking (in
linear time). It can be seen as a set of linear constraints s that every reachable
marking must satisfy. In other words, the solutions of s are a superset of the
reachable markings. In order to use the marking equation, we add to it new
linear constraints s which specify the markings which do not satisfy a desirable
property p.2 Then, we use integer programming to solve the system s U s if
the system has no solution, every reachable marking satisfies P.

The disadvantage of this technique is the fact that the markings satisfying
s are only a superset of the reachable markings: the solutions of s U s may or
may not correspond to a reachable marking. Therefore, the marking equation is
only a semidecision method. Its main advantage is that it does not explore the
state space, and therefore it avoids the state explosion problem. It can also be
used to verify systems having infinite state spaces.

The marking equation can be applied to many different models of concur-
rency, not only to Petri nets. Actually, the most comprehensive study of its

* This work was partially supported by the Sonderforschungsbereich SFB-342 A3
SAM.

2 It is also possible to impose hnear constraints on the occurrence sequence leading
to those markings. This is a very useful feature, but we omit it here for the sake of
simplicity.

251

applications for verification has been carried out by Avrunin, Corbett et al. us-
ing coupled automata as a model [2, 3, 8]. They have developed the Constrained
Expression Toolset, later updated to the Inequality Necessary Condition Ana-
lyzer (INCA), a tool for the verification of a large class of safety and liveness
properties. It is easy to see that the basis of the technique implemented in INCA
is equivalent to the marking equation. In [7], Corbett shows that INCA is able
to prove deadlock freedom for 19 different examples taken from different sources,
and can compete with symbolic and partial order theorem provers.

One of the main limitations of the marking equation is that it tends to fail
for systems which communicate via shared variables. For instance, it cannot
prove mutual exclusion of any of the most popular mutual exclusion algorithms
(Dekker's, Dijkstra's, Knuth's, Peterson's etc.) without user's help. The reason is
that the method is not sensitive to the guards which allow to perform an action
only ifa variable has a certain value, in the sense that the systems with or without
the guards are assigned the same set of constraints. Since the correctness of these
algorithms crucially depends on these guards, the method fails.

In this paper, we show how to obtain a set of constraints which better ap-
proximate the set of reachable markings, and are sensitive to these guards. We
then test the improved algorithm on a number of examples. In particular, we
automatically prove mutual exclusion of five mutual exclusion algorithms.

This refined set of constraints is derived from some results of Petri net the-
ory concerning so called traps. Therefore, it is convenient to present our results
in Petri net terms. However, there would be no problem in recasting them for,
say, the communicating automata of Corbett [7], the synchronized products of
transition systems of Arnold and Nivat (see, for instance, [1]), or for CCS pro-
cesses of the form (P1 I . . . I Pn)\L, where the Pi are regular. All of them can be
easily translated into (1-safe) Petri nets. The common idea of the translations
is simple: each sequential component is modelled by means of a Petri net, just
mapping states to places and transitions of the transition system into transitions
of the Petri net. Communication is then modelled by merging transitions.

Linear upper approximation of the set of reachable states have also been used
by Cousot and Halbwachs and others in the field of abstract interpretation [9, 15].
The main difference with our approach is that we derive the linear approximation
directly form our structure of the system, in one single step, and not by means
of successive approximations, as in [9].

Our paper is organised as follows. In Section 2 we introduce some basic
definitions. Section 3 describes the marking equation. In Section 4 we introduce
traps, and present our improved method. In Section 5 we apply the results to
examples. In Section 6 we present a result on checking deadlock freedom. Finally,
we present our conclusions in Section 7.

2 B a s i c n o t a t i o n s

A net is a triple N = (P, T, W) where P N T = $ and W: (P • T) U (T x P) ~ IN.
P is the set of places (symbolized by circles), T the set of transitions (symbolized

252

by rectangles) and W is the weight function. The pre-set ofx E PUT is *x = {y E
PUT[W(y , x) > O}. The post-set of x E P U T t s x* = {y E PUT[W(z , y) > 0}.
The pre- and post-set of a subset of P U T are the union of the pre- and post-sets
of its elements.

All the examples of Section 5 (and all the examples of [7]) can be modelled
by ordinary nets, in which the weight function has codomain {0, 1}. However,
more general weight functions play an important role in the development of the
results of Section 4, and that is why we define nets in this generality.

A function M : P --* IN is called a marking. A Petri net is a pair (N, M0)
where N is a net and M0 a marking of N called initial marking. A transition
t E T is enabled at M iff Vp E *t : M(p) > W(p, t). If t is enabled at M, then

t may fire or occur, yielding a new marking M I (denoted M t-L* M'), where
i ' (p) = U(p) + W(t, p) - W(p, t).

A sequence of transitions, a = tit2 . . . tr is an occurrence sequence of (N, M0)

iff there exist markings M 1 , . . . M r such that M0 ~ M1 t2) M 2 . . . t r Mr.
The marking Mr is said to be reachable from M0 by the occurrence of a (denoted
M ~,Mr) .

A Petri net (N, M0) is safe iff M(p) _< 1 for every reachable marking M and
every place p.

A linear programming problem or linear problem is a system A �9 X < B of
linear (in)-equalities called the constraints, plus maybe a linear function C T. X
called the objective function. A solution of the problem is a vector of rational
numbers that satisfy the constraints. A solution is optimal if it maximises the
value of the objective function (over the set of all solutions).

An integer programming problem consists of the same elements as a linear
programming problem, but only integer solutions are allowed. In a mized pro-
gramming problem, some variables may take rational values, and some only in-
teger ones.

A linear, integer or mixed programming problem is feasible if it has a solution.
Otherwise it is infeasible.

3 T h e m a r k i n g e q u a t i o n

Each place p of a net has associated a token conservation equation. Given an
occurrence sequence M0 - a ~ M, the number of tokens that p contains at the
marking M is equal to the number of tokens it contains at M0, plus the tokens
added by (the firings of) the input transitions of p, minus the tokens removed
by the output transitions. If we denote by #(or, t) the number of times that a
transition t occurs in tr, we can write the token conservation equation for p as:

U(p) = Uo(p) + ~ #(a, t)W(t, p) - Z #(a, t)W(p, t)
tE*p tEp*

The token conservation equations for every place are usually written in the
following matrix form:

M = M 0 + N - a

253

where ~r = (#(a, t l) , . . . ,#(cr, tm)) is called the Parikh vector of a, and N
denotes the incidence matrix of N, a P • T integer matr ix given by

N(p, t) = W(p, t) - W(t, p)

If a given marking M is reachable from M0, then there exists a sequence ~r
a + M. So the following problem has at least one solution, namely satisfying Mo

X : = a .

Variables: X, integer.
M = M o + N . X
X>_O

The equation M = M0 + N �9 X (and, by extension, the whole problem) is
called the marking equation. If the marking equation has no solution, then M is
not reachable from M0.

We wish to verify that every reachable marking satisfies a desirable property,
or, equivalently, that no marking satisfying the negation of this desirable prop-
erty is reachable. The negation of the property can often be expressed by means
of linear constraints on the markings of the net. Here are two examples:

- Mutual exclusion.
In Petri net models of mutual exclusion algorithms the possible states of
a process (idle, requesting, critical, . . .) are modelled by places which can
hold at most one token. The process is in the critical section if the corre-
sponding place is marked. If S l , . . . , sn are the places corresponding to the
critical sections, then the reachable markings that violate the mutual exclu-
sion property are those satisfying

M(sl) + . . . + M(sn) > 2

- Deadlock freedom in safe Petri nets.
A marking is a deadlock if it does not enable any transition. In safe Petri
nets a place can hold at most one token, and therefore a transition is enabled
if and only if the total number of tokens in its input places is at least equal
to the number of input places. In other words, the reachable deadlocked
markings satisfy

E M(s) < I*tl
sfi*t

for every transition t.

A linear property of N is a predicate "P on the markings of N (or, equivalently,
a subset of the markings of N) such that

P (M) 4:~ A . M < b

for some matr ix A and vector b. We can use the marking equation to verify
properties whose negation is linear. If some marking satisfying ~ is reachable
from M0, then the generalised marking equation

254

Variables: M, X: integer
M = M o + N . X

A . M < b
M,X >_O

has a solution. 3 Therefore, if the generalised marking equation is infeasible, every
reachable marking satisfies the negation of P. We can use integer programming
to check infeasibility.

The implication "infeasibility =~ -~P holds for every reachable marking" still
holds if M and X are allowed to take rational values. So, in principle, one may
try to use ordinary linear programming to check infeasibility. Unfortunately, the
experiments show that in most cases even though the desired property holds, the
marking equation has non-integer solutions, and therefore linear programming
is of little use. Using integer programming leads to much better results [7, 8].

Unfortunately, the marking equation still fails very often when the Petri net
models a distributed system with shared variables. The components of this kind
of systems test the value of a variable to determine the flow of control. Now,
consider the two Petri nets of Figure 1. The Petri net on the left models a
component which may change state, from so to sl, only if the variable x has
value 0, which happens not to be the case. In the Petri net on the right, the
component can change its state independently of the value of x. Obviously, the
marking {sl} is not reachable on the left, and reachable on the right. However,
the marking equations of these two nets coincide. Therefore, the generalised
marking equation cannot be used to prove that {Sl} is not reachable on the left.

t 52

x=O

S!

Fig. 1. A limitation of the marking equation

s2

x~O

We could of course prove this by constructing the teachability graph, which
is very small in this example, but may grow exponentially in the size of the net
(or be infinite). An alternative is the use of traps [24, 11].

D e f i n i t i o n 1. Traps

A set R of places of a net is a trap if R* C * R. �9 1

z Since M is in fact a finear function of X, it would still be more general to add
a constraint of the form C �9 X < d, and this is in fact the approach of [8]. Since
the examples of this paper only consider constraints on markings, we will use the
constraint shown above for clarity.

255

In the sequel, we shall use the letter {9 to denote traps. Traps have the
following fundamental property:

P r o p o s i t i o n 2 . Marked traps remain marked

Let (N, Mo) be a Petri net, and let 0 be a trap of N. I f 19 is marked at
Mo (i.e., if ~-']pe ~ Mo(p) > 0), then 19 remains marked at every reachable
marking. �9 2

The set {s0,s2} is a trap of the net on the left, and this trap is marked at
the initial marking {so}. However, the trap is not marked at {sl}. Therefore,
the marking {sl} is not reachable.

If a marking marks every trap that is marked at M0 we say that it satisfies
the trap property. Proposition 2 states that, on top of the marking equation, a
reachable marking must satisfy the trap property as well. We have thus a refined
test of non-reachability.

In order to check that every marking satisfying a linear property P violates
the trap property we may compute all the traps marked at M0, say O1,. �9 On,
and then compute iteratively the subsets :Pi of P that mark the traps O1,. �9 Oi
for 1 < i < n. However, this method is very inefficient, because the number of
traps may be exponential in the size of the net 4. In order to make traps useful
for automatic verification, we have to find an alternative, which we present in
the next section.

4 T h e t r a p e q u a t i o n

In this section we obtain the generalised trap equation for a linear property 7 ~.
This is a linear equation which has a solution if and only if no marking satisfies
simultaneously P and the trap property.

The first step towards our goal is to find a link between traps and linear alge-
bra. Fortunately, we can profit from several existing results. In [17], Lautenbach
showed that there exists a tight relation between the traps of a net N and the
solutions of the equation y T . N e = 0, where Ne is obtained from N by means of
a relatively complicated transformation. Later, Lautenbach's results were used
and slightly improved by Esparza and Silva in [12]. Finally, Ezpeleta, Couvreur
and Silva found another improvement [13]. They showed that Lautenbach's net
Ne can be replaced by a simpler one. N and the new Ne have the same places,
transitions and arcs: they only differ in the weights of some arcs leading from
transitions to places.

4 In fact, it suffices to compute all minimal traps, which are the nonempty traps not
included in any other trap. However, there may also be exponentially many minimal
traps.

256

T h e o r e m 3. Algebraic characterization of traps [13]

Let N = (P, T, W) be a net. Let N e = (P, T, We) , where

Wo(p,t) = w(p, t)

Ep'e*t W(p ' , t) i f p E t*
Wo(t , p) = 0 otherwise

A set 6) C_ P is a trap of the net N if and only if the equation y T . N e > 0
has a nonnegative solution Y such that IIYII = 6). �9 3

We illustrate this result on the Petri net of Figure 2. The vectors yT and
yT satisfy the equation of Theorem 3, and therefore {s3, ss} and {s3, s4, sr are
traps of the net. The vector yT does not satisfy it, and in fact {sl, s2} is not a
trap.

Fig. 2. An example.

1000i]0 0 - 1 0 0 0
1 0 1 - 1 Y T = (I ' O ' I ' 0 ' I ' O)

N e = 0 1 0 - 1 Y T = (O ' O ' I ' I ' O ' I)
0 0 - I 2 Y T = (I ' I ' 0 ' 0 ' 0 ' 0)

0 0 0 2--

We can use Proposition 2 to test if a marking M violates the trap property.

P ropos i t i on 4.

Let (N, Mo) be a Petri net, and let M be a marking of N . M satisfies the
trap property if and only i f the problem below is infeasible.

Variables: Y : rational.
y T . N e >_ 0

Y _> 0 (o = IIYII is a trap)

y T . Mo > 0 (0 is initially marked)

y T . M = 0 (6) is not marked at M)

257

Proof: By Theorem 3, a solution of the problem corresponds to a trap initially
marked, but unmarked at M, and vice versa. �9 4

Now, in order to test if M violates the trap property we solve a linear pro-
gramming problem instead, which intensionally checks if every initially marked
trap remains marked at M.

However, Proposition 4 is not directly useful when we consider linear prop-
erties. If M becomes a variable subject to the linear condition A. M < b, then
the equation y T . M = 0 becomes non-linear, which very much complicates the
verification. To remove this difficulty we shall use one of the many versions of
the Minkowski-Farkas Lemma (see, for instance, [25]).

T h e o r e m 5. Minkowski-Farkas Lemma

One and only one of the following two problems is feasible:

Variables: X: rational. Variables: Y: rational.
Y r . A > O

A . X < b - y T . b < 0
x>_o Y>_O

In order to apply this theorem, we first have to modify the problem of Propo-
sition 4. We observe that, since M is a nonnegative vector and any solution Y
must also be nonnegative, the constraint y T . M = 0 can be safely replaced by
y T . M < O. So the problem is equivalent to (i.e., has the same solutions as):

Variables: Y: rational.
yr . (Nel- M) _> 0

y r . (-Me) < 0
Y>_O

where (Ne [-M) denotes the matrix obtained by adding - M to Ne as rightmost
COlUMn.

Now, by Proposition 4 and the Minkowski-Farkas Theorem, M satisfies the
trap property if and only if the following problem is feasible:

Variables: X: rational.
(N e l - M) . X < -M0

X > 0

Notice that the dimension of X is equal to the number of transitions of N
plus 1, because of the addition of the column M. Define X = (X ~ I x), i.e., X I
is the vector containing all the components of X but the last, and x is the last
component of X. With these notations, we can rewrite the problem as:

Variables: X ~, x: rational.
xM >_ Mo + No " X '

X l , x >_ 0

258

Assume that this problem has a solution for x = 0. Then, since M is nonnega-
tive, it also has a solution for every x > 0. So we can replace x > 0 by x > 0, and
the resulting problem is still feasible if and only if M satisfies the trap property.

1 t Now, since x > 0, we can divide the first inequality by it. Redefining X := ~X
and then x := ~, we finally get the trap equation:

Variables: M :integer; X, x: rational.
M >_xMo+ N e . X
X>_O
x > 0

We have reached our goal: the trap equation is linear, and M appears isolated
on the left side, as in the marking equation. We can thus generalise it to linear
properties by adding the constraint A. M < b.

T h e o r e m 6 . Generalised trap equation

Let (N, 114o) be a Petri net, and let P be a linear property of the markings of
N, characterised by the equation A . M < b. l f the problem below is infeasible,
then no marking satisfies both P and the trap property.

Variables: M: integer; X, x: rational
M > xMo + Ne . X

A . M < b
M,X>_ 0

x > 0
116

Finally, putting together the marking and trap equations we obtain a negative
test for linear properties:

C o r o l l a r y 7.

Let (N, Mo) be a Petri net, and let P be a linear property of the markings of
N, characterised by the equation A . M < b. l f the problem below is infeasible,
then every reachable marking satisfies the negation of P.

Variables: M, XI : integer; X2, x: rational
M = M o + N . X 1
M > xMo + N e .X~

A . M <b
M, X1,X~ >_ 0

x > 0
117

This problem can be solved using mixed programming, a combination of linear
and integer programming. Mixed programming solves systems of the form A.X <
b, where part of the variables are required to take integer values, while others
may be rational. The constraint x > 0 does not fit in this format, but this

259

problem can be easily solved making use of the optimization facilities of mixed
programming solvers: we solve the system with x >_ 0 as constraint, but search
for the solution with maximal value of x. If this value is 0, then the original
problem is infeasible.

5 Examples

In this section we show that a number of properties of several systems that could
not be verified by the marking equation alone can be verified by the combination
of the marking equation and the trap equation.

As a first case study, we consider five popular mutual exclusion algorithms
taken from [23], namely those by De Bruijn, Dekker, Dijkstra, Knuth and Pe-
terson. For each of them we verify deadlock freeness and mutual exclusion.

The algorithms are easily encoded in B(PN) 2 (Basic Petri net Programming
Notation), an imperative language designed to have a simple Petri net seman-
tics [5]. 1-safe Petri nets are then automatically generated by the PEP-tool [4].
We then generate the corresponding mixed problems, which are solved using
CPLEX TM (version 3.0) [10] on a SUN SPARC 20/712.

None of the properties can be proved using linear programming. However,
we do not have to require both M and X1 to be integer in Corollary 7: it suffices
to require it for M. The results of the two tables below correspond to this case.

In the table on the left we have considered algorithms for two processes. On
the right we have considered Dijkstra's algorithm for n processes.

Both tables have the same structure. The first column shows the name of
example, e.g. Dijkstra 5 means Dijkstra's mutex algorithm for 5 processes. The
next two numbers indicate the numer of places and transitions of the Petri
net. PEP generates a number of redundant places and transitions, which have
not been removed for the case study. The fourth column describes the verified
property: Deadlock (actually deadlock-freedom) or Mutex (mutual exclusion).
The next column shows which constraints were needed to verify the property:
ME (marking equation) or ME + TE (marking equation plus trap equation).
The last column gives the CPU time in seconds.

Dekker

Peterson

Dijkstra 2

Knuth 2

De Bruijn

liP;} [Ti[Property [Program }Time I [Example }lPll ITi[Property [Program [Time [
Mutex TE + ME 0.22

50, 75 Mutex TE + ME 0.27 Dijkstra 2 64 89 Deadlock ME 0.25
Deadlock TE + ME 0.61
Mutex TE + ME 0.31 Dijkstra 3 98160 Mutex TE + ME 5.02

4G 69 Deadlock ME 0.44 Deadlock ME 0.88

64 89 Mutex TE + ME 0.22 Dijkstra 4134257 Mutex TE "F ME 28.50
Deadlocl ME 0.25 Deadlock ME 1.55

Mutex TE + ME 120.12
74140 DeadlockMutex TEdE + ME 0.670"67 Dijkstra 5172i386 Deadlock MR 10.45

2 8 0 1 6 6 Mutex TE + ME 0.91 Dijkstra 6212553 Mutex TE + ME 144.37
Deadlock ME 1.09 Deadlock !ME 53.30

The next table shows results for a a slotted ring protocol described in [21],
in which n processes are placed in a ring. In [21] the state space of the example
was encoded into BDDs - Binary Decision Diagrams - and then used to check

260

different properties, one of which was deadlock freedom. The construction of the
BDD for a ring of 9 processes (the largest ring considered in [21]) took 4080
seconds. Using our method we can prove deadlock-freedom in 0.68 seconds. The
trap equation is not needed in this case. The example shows that linear constraint
methods can compete with symbolic model checkers (there exist other examples
(see [7]) in which BDD methods are more efficient).

Example

Slotted Ring 2
Slotted Ring 3
Slotted Ring 4
Slotted Ring 5
Slotted Ring 6
Slotted Ring 7
Slotted Ring 8
Slotted Ring 9
Slotted Ring 10

IPI I ITI IProperty IProgramlTime]
20 20 Deadlock ME
301 30 Deadlock ME
40 40 Deadlock ME
50 50 Deadlock ME

60 Deadlock ME
70 Deadlock ME
80 Deadlock ME
90 Deadlock ME

.00 Deadlock ME

60

90:
100

10.02
0.03
0.03
:0.07
i0.20
0.32
0.63
0.68
2.72

Finally, we consider a less academic example. We prove deadlock freedom
of two versions of a call handling for intelligent telephone networks which is
closely related to a Basic Call State Model [22] of the ITU-T (former CCITT)
standardization committee. The systems are described in [16]. We have used the
B(PN) 2 translations of [14]. The first version (Telephone) is the original protocol,
while the second version (Telephone (par)) is a refinement which allows parallel
communications.

IExamp le [IPlllTllProperty]Program]Time I

Telephone 87 188 Deadlock}ME q- TE 10.82
Telephone(par) 232 672 Deadlock ME -I- TE 705.68

6 Siphons

In Petri net theory, traps are usually studied together with siphons [24, 11]. The
results of Section 4 lead to 'dual' results about siphons. We study their possible
applications in this section.

D e f i n i t i o n 8. Siphons, proper siphons

A set R of places of a net is a siphon if �9 R C_ R �9 A siphon is called proper
if it is not the empty set. �9 8

In the sequel, we shall use the letter ,U to denote siphons. Since a transition
which puts tokens in the places of a siphon also removes tokens from them, we
have the following fundamental property:

P r o p o s i t i o n 9. Unmarked siphons remain unmarked

Let (N, M0) be a Petri net, and let S be a siphon of N. If S is unmarked
at Mo, then S remains unmarked at every reachable marking. �9 9

261

Proposition 9 provides a further negative test for reachability: if M marks
some siphon unmarked at/140, then M is not reachable. Using another version
of the Alternatives Theorem we can obtain a siphon equation, which may be
added to the marking and trap equations. However, the siphon equation has little
interest. The reason is the following: since a siphon E unmarked at M0 remains
unmarked, no transition of ,U* can ever occur. This is usually undesirerable and
a very serious design error. In all the Petri net models we have considered so far
(correct or incorrect), the initial marking marks every siphon, and so the siphon
equation does not add discriminating power.

Siphons do help in a different way. In Section 3 we showed that the set of
deadlocked markings of a Petri net that put at most one token on a place is
linear. It is easy to see that this property ceases to hold if the deadlocks may
put more than one token. In general, all we can say is that the set of deadlocks
is the union of a finite number of linear sets, namely those characterised by
equations of the form

M(sl) + . . . + M(sn) = 0

where the set { s l , . . . , s n } contains exactly one input place of each transition.
So in principle we could verify deadlock freedom by solving as many integer
problems as linear sets. However, this is very inefficient, because the number of
linear sets may be exponential in the size of the net.

The following observation is the key to a better method:

Proposition 10.

Let N = (P,T, W) be a net, and let M be a deadlocked marking of N. The
set S = {p G P [M(p) = 0} is a proper siphon of N. [] 10

By this proposition, in order to check deadlock freedom it suffices to verify
that every proper siphon remains marked at every reachable marking. Moreover,
this new property is not too strong: most correct systems satisfy it, because the
input transitions of an unmarked siphon cannot occur anymore, and, once again,
this is undesirable in all the examples we have examined.

We borrow again a result from [13] :

T h e o r e m 11. Algebraic characterization of siphons [13]

Let N = (P, T, W) be a net. Let No = (P, T, W~), where

J" ~"]~p'e," W (t , p ') i l p G * t W~(p, t) =
otherwise

W~ (t, p) = W(t, p)

A set S C P is a siphon of the net N if and only if the equation y r . N ~ < 0
has a nonnegative solution Y such that IIYII = s . [] 11

So a marking M of N satisfies the siphon property iff the problem

262

Variables: Y:rational.
y T . N~ <_ 0

Y > 0 (22 = IIYII is a siphon.}

y Z . M = 0 (S is not marked at M.)

is feasible. Using another version of the Alternatives Theorem and following
a procedure similar to the one we used for the trap equation, we obtain that
the markings satisfying the siphon property are the solutions of the equation
M > N~ �9 X, where X < 0. Then, the markings which violate the property are
those satisfying Mi < (N.v)i �9 X, where Mi is the i-th component of M, and
(N.v)i the i-th row of N~. So we have:

T h e o r e m 12.

s (N, Mo) be a Petri net. I f none of the problems below is feasible, then
every reachable marking marks all siphons, and (N, Mo) is deadlock free.

Variables: M, XI : integer; X2 : rational
M = M o + N . X 1
M~ < (N~:)i. X~

M, Xx >__ 0
X~ < 0

where Mi is the i-th component of M, and (N~)i the i-th row of N2.
[] 12

The number of inequation systems to solve is equal to the number of places
of the net. So we have reduced the possibly exponential number of systems to
linearly many.

7 C o n c l u s i o n

We have extended the range of systems that can be verified using linear con-
straints by adding to the marking equation a new trap equation. The new
equation proves to be very useful for the analysis of systems communicating
by means of shared variables. We have proved properties of five mutual exclu-
sion algorithms and a telephone communication protocol, none of which could
be automatically proved before by linear methods.

We have also given a natural solution to a limitation of the method, namely
the fact that deadlock-freedom is not a linear property for arbitrary Petri nets.
We have introduced a slightly stronger property, in practice as desirable as dead-
lock freedom, which can be computed more easily.

263

References

1. Andr~ Arnold. Verification and comparison of transition systems. In M.C. Gaudel
and J.P. Jouannaud, editors, TAPSOFT '93: Theory and Practice of Software
Development, volume 668 of Lecture Notes in Computer Science, pages 121-135.
Springer-Verlag, 1993.

2. G. S. Avrunin, J. C. Corbett, and U. A. Buy. Integer Programming in the Analysis
of Concurrent Systems. In K.G. Larsen and A. Skou, editors, Computer Aided
Verification, volume 575 of Lecture Notes in Computer Science, pages 92-102,
1991.

3. G.S. Avrunin, U.A. Buy, J.C. Corbett, L.K. Dillon, and J.C. Wileden. Automated
Analysis of Concurrent Systems with the Constrained Expression Toolset. 1EEE
Transactions in Software Engineering, 17(11):1204-1222, 1991.

4. E. Best and H. Fleischhack (eds.). Pep: Programming environment based on nets.
Technical report, University of Hildesheim, Germany, 1994.

5. E. Best and R. P. Hopkins. B(PN) 2 - A Basic Petri Net Programming Notation.
In Proc. of PARLE-93, volume 694 of Lecture Notes in Computer Science, pages
379-390. Springer-Verlag, 1993
Also: Hildesheimer Informatik Fachbericht 27/92 (1992).

6. G.V. Brams. Rdseaux de Petri: Theorie et Practique, Vols. I and 11. Masson, 1982.
7. J.C. Corbett. Evaluating Deadlock Detection Methods for Concurrent Software. In

T. Ostrand, editor, Proceedings o 1 the 1994 International Symposium on Software
Testing and Analysis, pages 204-215, New York, 1994.

8. J.C. Corbett and G.S. Avrunin. Using Integer Programming to Verify general
Safety and Liveness properties. Formal Methods in System Design, 6(1):97-123,
1995.

9. P. Cousot and N.Halbwachs. Automatic discovery of linear restraints among vari-
ables of a program. In 5th A CM Symposium on Principles o1 Programming Lan-
guages. ACM-Press, 1978.
CPLEX Optimization Inc. Using the CPLEX T M Callable Library and CPLEX T M

Mixed Integer Library.
J. Desel and J. Esparza. Free-choice Petri Nets, volume 40 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 1995.
J. Esparza and M. Silva. A Polynomial-Time Algorithm to Prove Liveness of
Bounded Free Choice Nets. Theoretical Computer Science, 102:185-205, 1992.
J. Ezpeleta, J. M. Couvreur, and M. Silva. A New Technique for Finding a Gener-
ating Family of Siphons, Traps and ST-Components. Application to Colored Petri
Nets. In G. Rozenberg, editor, Advances in Petri Nets, volume 674 of Lecture
Notes in Computer Science, pages 126-147. Springer Verlag, 1993.
B. Grahlmann. Verifying telecommunication protocols with pep (draft). Technical
report, University of Hildesheim, Germany, 1995.
N. Halbwachs. About synchronous programming and abstract interpretation. In
B. Le Charlier, editor, SAS '94: Static Analysis Symposium, volume 864 of Lecture
Notes in Computer Science, pages 179-192. Springer-Verlag, 1994.
Stephan Kleuker. A gentle introduction to specification engineering using a case
study in telecommunications. In P.D. Mosses, M. Nielsen, and M.I. Schwartzbach,
editors, TAPSOFT '95, volume 915 of Lecture Notes in Computer Science.
Springer-Verlag, 1995.

10.

11.

12.

13.

14.

15.

16.

264

17. K. Lautenbach. Linear algebraic calculation of dea~tlocks and traps. In
H.J. Genrich K. Voss and G. Rozenberg, editors, Concurrency and Nets, pages
315-336. Springer-Veflag, 1987.

18. K. Lautenbach. Linear Algebraic Techniques for Place/Transition Nets. In
W. Brauer, W. Reisig, and G. Rozenberg, editors, Petri Nets: Central Models and
Their Properties, Advance in Petri Nets 1986, volume 254 of Lecture Notes in
Computer Science, pages 142-167. Springer-Verlag, 1987.

19. G. Memmi and G. Roucairol. Linear Algebra in Net Theory. In W. Brauer, editor,
Net Theory and Applications, volume 84 of Lecture Notes in Computer Science,
pages 213-223. Springer-Verlag, 1980.

20. Ta~tao Murata. Petri nets: Properties, analysis and applications. Proc. of the
]EEE, 77(4):541-580, 1989.

21. Enric Pastor, Oriol Roig, Jordi Cort~ulella, and Rosa M. Badia. Petri net analysis
using boolean manipulation. In Robert Valette, editor, Application and Theory of
Petri Nets 1994, volume 815 of Lecture Notes in Computer Science, pages 416 -
435. Springer-Verlag, 1994.

22. CCITT Recommendations Q.1200. Intelligent networks, final version. Technical
report, 1992.

23. M. Raynal. Algorithms]or Mutual Exclusion. North Oxford Academic, 1986.
24. W. Reisig. Petri Nets, volume 4 of EATCS Monographs on Theoretical Computer

Science. Springer Verlag, 1985.
25. A. Schrijver. Theory of Linear and Integer Programing. Series in Discrete Mathe-

matics. Wiley, 1986.

