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Abstract. We show the benefits of applying modular monadic semantics to 
compiler construction. Modular monadic semantics allows us to define a 
language with a rich set of features from reusable building blocks, and 
use program transformation and equational reasoning to improve code. 
Compared to denotafional semantics, reasoning in monadic style offers the 
added benefits of highly modularized proofs and more widely applicable 
results. To demonstrate, we present an axiomatization of environments, 
and use it to prove the correctness of a well-known compilation technique. 
The monadic approach also facilitates generating code in various target 
languages with different sets of built-in features. 

1 Introduction 

We propose a modular semantics which allows language designers to add (or 
remove) programming language features without causing global changes to the 
existing specification, derive a compilation scheme from semantic descriptions, 
prove the correctness of program transformation and compilation strategies, 
and generate code in various target languages with different built-in features. 

Our goals are similar to that of Action Semantics [21] and related efforts by, 
for example, Wand [27], Lee [16], Appel & Jim [1], and Kelsey & Hudak [14]. 
None of the existing approaches are completely satisfactory in achieving the 
above goals. For example, it has long been recognized that traditional deno- 
tational semantics [24] is not suitable for compiler generation for a number of 
crucial reasons [16], among which is the lack of modularity and extensibility. 

We take advantage of a new development in programming language theory, 
a monadic approach [19] to structured denotational semantics, that achieves a 
high level of modularity and extensibility. The source language we consider in 
this paper has a variety of features, including both call-by-name and call-by- 
value versions of functions: 

e : : -  n I e l  -]- e2 (arithmetic operations) 
I v lAy . e l ( e l  e2)n I(el e2)v (cbn and cbv functions) 
I callcc (first-class continuations) 
I e l  : =  e2 I ref e I deref e (imperative features) 

* This work was supported by the Advanced Research Project Agency and the Office of Naval Research under 
Arpa Order 8888, Contract N00014-92-C-0153. 
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I Assignments 1 IFunction Calls 1 := larnbda 

I Continuations ~ / ~ k ~ ~  etic Ops'~ 
callcc ~ ~ ~ ~ + , ~  

p.re  ,mb a  lc.l.s 
~ " ~ - - ~ ~ .  ~ error reporting 

- ~ - - ' ~ . . ~  store 
Modular construction . . " ~  continuatzons 
of the kernel environment 

Fig. 1. The organization of modular monadic semantics 

Figure I shows how our modular monadic semantics is organized. Language 
designers specify semantic modules by using a set of "kernel-level" operations. 
The expression "el : -  e2", for example, is interpreted by the low-level primitive 
operation "update". 

While it is a well-known practice to base programming language seman- 
tics on a kernel-language, the novelty of our approach lies in how the kernel- 
level primitive operations are organized. In our framework, depending on how 
much support the upper layers need, any set of primitive operations can be 
put  together in a modular way using an abstraction mechanism called monad 
transformers [19] [17]. Monad transformers provide the power needed to rep- 
resent the abstract notion of programming language features, but  still allow 
us to access low-level semantic details. In fact, since monad transformers are 
defined as higher-order functions, our monadic semantics is no more than a 
structured version of denotational semantics, and all conventional reasoning 
methods (such as fl substitution) apply. 

We will investigate how an interpreter based on the modular monadic se- 
mantics can be turned into a compiler. In Section 2, we will define a composi- 
tional high-level semantics for our source language which guarantees that we 
can unfold all recursive calls to the evaluator, and thus avoid the overhead of 
dispatching on the abstract syntax tree. In section 3, we show how monad laws 
and axioms can be used to optimize intermediate code. To demonstrate the rea- 
soning powers of monad transformers, in Section 4 we generalize Wand's [28] 
proof of the correctness of a well-known technique to overcome the overhead 
of dynamic variable lookups by transforming variables in the source language 
into variables in the meta-language. In section 5 we discuss how to utilize the 
modularity provided by monad transformers to target different languages. 

The contributions of this paper are: 
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- proposing a monad-based modular approach to semantics directed compiler 
generation, 

- applying monad laws to program transformation, 
- presenting a monadic style axiomatization of environments, 
- demonstrating that reasoning in monadic style enables us to better structure 

proofs and obtain more general results than in denotational semantics, and 
- taking advantage of monad transformer properties (for example, naturality 

of liftings) to utilize target language features. 

We present our results in the traditional denotational semantics style [24], 
augmented with a Haskell-like [10] type declaration syntax to express monads 
as type constructors. We use the denotation semantics notation because it is 
more succinct than a real programming language such as Haskell. No prior 
knowledge of monads is assumed. 

2 A Modular Monadic Semantics 

In this section we use some of the results from our earlier work on modular 
interpreters [17] to define a modular semantics for our source language. 

2.1  A H i g h - l e v e l  M o n a d i c  S e m a n t i c s  

Traditional denotational semantics maps, say, a term, an environment and a con- 
tinuation to an answer. In contrast, monadic semantics maps terms to computa- 
tions, where the details of the environment, store, etc. are "hidden". Specifically, 
our semantic evaluation function E has type: 

E : Term --+ Compute Value 

where Value denotes the result of the computation. The type constructor Compute 
is called a monad. It abstracts away the details of a computation, exposing only 
the result type. We will define monads more formally later, but for now we note 
that Compute comes equipped with two basic operations: 

then : Compute a --+ (a -~ Compute b) --+ Compute b 
return : a --+ Compute a 

We usually write "then" in an infix form. Intuitively, "cl then )w.e2" is a compu- 
tation that first computes cl, binds the result to v, and then computes c2. "Return 
v" is a trivial computation that simply returns v as result. 

In the standard semantics, Value is the domain sum of basic values and 
functions. Functions map computations to computations: 2 

type Fun = Compute Value --~ Compute Value 
type Value = Int + Bool + Addr + Fun + . . .  

2 This generality allows us to model both call-by-name and call-by-value. 
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The standard semantics for arithmetic expressions is as follows: 

E[n] = return(n in Value) 
E[el + e2] = E[el] then Avl. 

El[e2] then .~V 2. 
if eheekType(vl, vz) then err "type error" 

else return((vl lint) + (v2 lint) in Value) 

We use a primitive monadic combinator (a semantic function directly supported 
by the underlying monad Compute): 

err : String --+ Compute a 

to report type errors. For clarity, from now on we will omit domain injec- 
tion/projection and type checking. 

"E[n]"  just returns the number n (injected into the Value domain) as the 
result of a trivial computation. To evaluate "el + e2", w e  evaluate el and e2 in 
turn, and then sum the results. In denotational semantics, the interpretations 
for arithmetic expressions are slightly different depending on whether we are 
passing an environment around, or whether we write in direct or continuation- 
passing styles. In contrast, our monadic semantics for arithmetic expressions stays the 
same no matter what details of computation (e.g., continuations, environments, states) 
are captured in the underlying monad. 

Function abstractions and applications need access to an environment Env 
which maps variable names to computations, and two more primitive monadic 
combinators which retrieve the current environment and perform a computa- 
tion in a given environment, respectively: 

type Env = Name -~ Compute Value 
rdEnv : Compute Env 
inEnv : Env --+ Compute Value --+ Compute Value 

The standard semantics for functions is as follows: 

E[v] = rdEnv then Ap.p v 
E[Av.e] = rdEnv then Ap. return(Ac.inEnv (p[c/v]) E[e]) 
El(el ez)n] = E~el] then ),LrdEnv then )~p./(inEnv p E[e=]) 
El(el e2),] = E[el] then ;q.E[e2] then )~v./(retum v) 

The difference between call-by-value and call-by-name is clear: the former 
reduces the argument before invoking the function, whereas the latter packages 
the argument with the current environment to form a closure. 

To simplify the presentation somewhat, we assume that imperative features 
can be defined using the primitive monad combinator: 

update : (Store -r Store) ~ Compute Store 

for some suitably chosen Store. We can read the storeby passing update the iden- 
tity function, and change the store by passing it a state transformer. Although 
update returns the entire state, properly defined store-manipulating functions 
can guarantee that the store is never duplicated (see, for example, [26]). 

With the kernel-level function: 
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callcc : ((Value -4 Compute Value) -4 Compute Value) -4 Compute Value 

The semantics of "callcc" is a function expecting another function as an argu- 
ment, to which the current continuation will be passed: 

E[callcc] = return()~f.f then )~f'.callcc(~k.f'(;~a.a then k))) 

Our high-level monadic semantics somewhat resembles to action semantics, 
except that it uses only "then" and "return" to thread computations. Together 
wi th primitive monadic combinators, these two operations are powerful enough 
to model various kinds of control flows (e.g., error handling, function calls and 
callcc) in sequential languages. Like in action semantics, we make an effort to 
give a high-level view of the source language semantics. 

We require that a semantics specified in terms of monadic combinators be 
compositional: the arguments in recursive calls to E are substructures of the argu- 
ment received on the left-hand side. From a theoretical point of view, it makes 
inductive proofs on program structures possible. In practice, this guarantees 
that given any abstract syntax tree, we can recursively unfold all calls to the 
interpreter, effectively removing the run-time dispatch on the abstract syntax 
tree. 

2.2 Constructing the Compute Monad 

It is clear that monad Compute needs to support the following primitive monad 
combinators: 

err : String -+ Compute a 
rdEnv : Compute Env 
inEnv : Env --+ Compute Value -4 Compute Value 
update : (Store -4 Store) -4 Compute Store 
callcc : ((Value -+ Compute Value) -4 Compute Value) -4 Compute Value 

If we follow the traditional denotational semantics approach, now is the time 
to set up domains and implement the above functions. The major drawback of 
such monolithic approach is that if we add some source language features later 
on, all the functions may have to be redefined. 

For the sake of modularity, we start from a simple monad and add more and 
more features. The simplest monad of all is the identity monad. All it captures 
is function application: 

t ype  ld a = a 

returnzd x = z 
c thenld f = f c 

A monad transformer takes a monad, and returns a new monad with added 
features. For example, "StateT s" adds a state s to any monad m: 

type StateT s m a = s -4 m (s, a) 
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Continuation: Environment: 
type ContT r m a = (a ~ m r) --~ m r type EnvT e m a = e ~ m a 

return(contr r ,.) a = )~k.ka 
c then(contr ~ ,.) f = )tk.c()~a.fak) 
callcc f = )~k.f()~a.~k'.ka)k 

return(EnvT e , . )  a = ,~p. return, ,  a 
c then(EnvT ~ ,") k = ,~p.cp then , .  ,~a .kap 
rdEnv = ,~p. return, ,  p 
inEnv p c = ,~p'.c p 

Errors: 
type Error a = Ok a [ Error String 
type ErrorT m a = m (Error a) 
return(ErrorT ,") a = return,. ,Ok 
c then(EfforT , . )  k = c then, .  Aa. case a of  

(Ok x) 

err = returnm .Error 

kx  
(Error msg) -+ return," (Error msg) 

Fig. 2. Monad transformers 

return(starer, m )  :c = As. return,,(s,  x) 
c then(starer, ,n) k = Aso.c so thenm A(sl,  a) .k  a sl  

To see how monad  transformers work,  let us apply  StateT to the identi ty m o n a d  
Id: 

type  StateT s I d a  = s ~ Id (s, a) 
= s (s ,  a)  

return(starer, Id) x = 

e t h e n ( s t a r e r ,  ~d) k = 

As. returnzd(s, z) 

Aso.c so thenld A(sl ,  a) .k  a sl  
Aso.let (sl, a) = m so in k a sl 

Note  that "StateT s Id" is the s tandard state mo n ad  found,  for example,  in 
Wadler 's  work  [25]. 

To make  the newly  introduced state accessible, "StateT s"  introduces update 
on s which applies f to the state, and returns the old state: 

update  : (s ~ s) -~  StateT s m a 
update  f = As. r e t u r n ( f  s, s) 

Figure 2 gives the definitions of several other m o n ad  transformers,  including 
those for errors (ErrorT), continuations (ContT) and environments  (EnvT). N o w  
we can construct Compute by applying a series of m o n a d  transformers to the 
base mona d  Id: 

type  Compute a = EnvT  Env (ContT Answer  (StateT Store (ErrorT Id) ) ) a 

Env,  Store and  Answer  are the type of the environment ,  store and answer, re- 
spectively. 
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Every monad transformer t has a function: 
lift(, m) : m a -+ t ra a 
which embeds a computation in monad ra into " tra ' .  Functions err, update and 
rdEnv are easily lifted using lift: 

err(, ,") = lift(= ,.) �9 err , .  
update( ,  ,.) = lift(= ,.) �9 update , .  
rdEnv(,  ,.) = lift(t , . ) rdEnv , .  

Some liftings of calico, inEnv and the definitions of lift for each monad transformer 
are listed in the following table: 

t m  
EnvT e m 
ContT ans m 
StateT s m 

ErrorT ra 

callcc(= ,.) f 
Ap.callcc,,,( Ak..f ( Aa.Ap'.ka)p) 

Aso.callcc,. (Ak. 
f(~a.;~s,.k(s,, a))s0) 

callcc,. (Ak.f(Aa.k(Ok a))) 

inl-nv(= ,.) p c 
,~p'.inEnv,. p (cp') 

,~s.inEnv,. p (cs) 

inEnv,, p c 

lift(, ,") c 
~p.c 
)&.c then, ,  k 
As.c then,,, Ax. 

return, .  (s, x )  
m a p , .  Ok 

Fig. 3. Liftings 

One issue remains to be addressed. The update function introduced by StateT 
does not work on Compute, which contains features added later by other monad 
transformers. In general, this is the problem of lifting operations through monad 
transformers. Figure 3 gives a brief summary of useful liftings (See [17] for a 
detailed description.) For example, in the Compute monad above, "update f "  
is: "As.Ok ( f  s, s)" when first introduced by StateT. After Compute is finally 
constructed, "update f "  becomes: "Ap.Ak.As.k s ( f  s)." 

In summar~ monad transformers allow us to easily construct monads with a 
certain set of primitive monadic combinators, defined as higher-order functions. 

3 U s i n g  M o n a d  L a w s  t o  T r a n s f o r m  P r o g r a m s  

Following the monadic semantics presented in the previous section, by unfold- 
ing all calls to the semantic function E, we can transform source-level programs 
into monadic-style code. For example, "((Ax.x + 1) 2)v" is transformed to: 

rdEnv then )~p. 
return(Ac.inEnv (p [c / "  x"])  

(rdEnv then )~p. 
p ' x "  then Avl. 
return 1 then Av=. 
return(vl + v2))) then Af. 

return 2 then ,kv. 
f ( re turn v) 
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In this section we formally introduce monads and their laws, and show how 
to use the laws to simplify the above program. 

3.1 Monads and Monad Laws 

Definition 1. A monad M is a type constructor, together with two operations: 

then : M a - +  (a -~ M b) -+ M b 
return : a --+ M a 

satisfying the following laws [25]: 

(return a) then k = k a (left unit) 
c then return = c (right unit) 

Cl then ,~v1.(c2 then ~v2.c3) = (cl then ,~vz.c2) then ~v2.c3 (associativity) 

Intuitively, the (]eft and right) unit laws say that trivial computations can 
be skipped in certain contexts; and the associativity law captures the very basic 
property of sequencing, one that we usually take for granted in programming 
languages. 

We can verify, by equational reasoning, for example, that returnld and thenid 
satisfy the above laws, and EnvT, ContT etc. indeed transform monads to mon- 
ads. 

3.2 Applying Monad Laws to Program Transformation 

Monad laws are useful for transforming (and optimizing) monadic style inter- 
mediate programs. For example, our compiler translates the expression "2 + 3" 
to: 

return 2 then )~vz. return 3 then •V 2. return(v1 + V2) 

We can apply the left unit ]aw twice, and reduce the above to: "return(2 + 3)', 
which can of course be further optimized to "return 5". 

Each application of a monad law usually corresponds to a number of fl 
reductions. Monad laws allow us to perform/~ reductions at the "right" places, 
and avoid those corresponding to actual computations in the source program 
(such as the final reduction of "2 + 3" to "5" in the above example), which in 
turn may lead to non-termination. 

Without knowledge about the environment-handling operations inEnv and 
rdEnv, however, monad laws alone can only simplify the example in the begin- 
ning of the section to: 

rdEnv then Ap. 
(Ic.inEnv (p[c/" x"]) 

(rdEnv then ,~p. 
p'x" then ,~v. 
return(v + 1))) 

(return2)) 
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To further simplify the above program, we need to look at the laws environment- 
related operations should satisfy. 

3.3 Environment Axioms 

We axiomatize the environment-manipulating functions as follows: 

Definition 2. Monad M is an environment monad if it has two operations: 
rdEnv and inEnv, which satisfy the following axioms: 

(inEnv p) �9 return = return (unit) 
inEnv p (cl then )~v.c2) " -  inEnv p cl then )w.inEnv p c2 (distribution) 

inEnv p rdEnv = return p (cancellation) 
inEnv p (inEnv r e) = inEnv r e (overriding) 

Intuitively, a trivial computation cannot depend on the environment (the 
unit law); the environment stays the same across a sequence of computations 
(the distribution law); the environment does not change between a set and a 
read if there are no intervening computations (the cancellation law); and an 
inner environment supercedes an outer one (the overriding law). 

Proposition 3. The monads supporting rdEnv and inEnv constructed using monad 
transformers ErrorT, EnvT, StateT and ContT are environment monads. 

As with the monad laws, the environment axioms can be verified by equa- 
tional reasoning. 

Equipped with the environment axioms, we can further transform the ex- 
ample monadic code to: 

rdEnv then ,~p.(,~c.c then )w. return(v + 1))(return 2) 

Note that explicit environment accesses have disappeared. Instead, the meta- 
language environment is directly used to support function calls~ This is exactly 
what many partial evaluators achieve when they transform interpreters to com- 
pilers. 

Once again note that the true computation in the original expression "( ( )~x. x + 
1) 2)~" is left unreduced. In the traditional denotational semantics framework, it 
is harder to distinguish the redexes introduced by the compilation process from 
computations in the source program. In the above example, we could safely 
further reduce the intermediate code: 

(,kc.c then ,kv. return(v + 1))(return 2) 
return2 then )w. return(v + 1) (8) 

=~ return 3 (left unit) 

However, in general, unrestricted/~ reduction for arbitrary source programs 
could result in unwanted compile-time exceptions, such as in "((Ax.lO/x) O)v." 
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4 U s i n g  Monad  Laws to Reason about Computat ions  

We successfully transformed away the explicit environment in the above exam- 
ple, but  can we do the same for arbitrary source programs? It turns out that we 
can indeed prove such a general result by using monad laws and environment 
axioms. We follow Wand [28], define a "natural semantics" which translates 
source language variables to lexical variables in the meta-language, and prove 
that it is equivalent to the standard semantics. 

4.1 A Natural Semantics 

We adopt Wand's definition of a natural semantics (different from Kahn's [5] 
notion) to our functional sub-language. For any source language variable name 
v, we assume there is a corresponding variable name vm in the meta-language. 

Definition 4. A natural semantics uses the environment of the meta-language 
for variables in the source language, and is given as follows: 

N~v~ = v,, 
N~,Xv.e] = return(,Xv,,.N[e]) 
N~(el e2),] = N~el] then Af. f(Nie2]) 
IVy(el e2)v] = N~el ]  then )~f.N[e2] then Av.f(return v) 

Other source-level constructs, such as +, :=, and callcc, do not explicitly deal 
wi th the environment, and have the same natural semantics as standard seman- 
tics. 

4.2 Correspondence between Natural and Standard Semantics 

The next theorem, a variation of Wand's [28], guarantees that it is safe to imple- 
ment function calls in the source language using the meta-language environ- 
ment. 

Theorem 5. Let e be a program in the source language, E[e] be its standard semantics 
in an environment monad, N~e] be its natural semantics in the same monad, 3 and p be 
the mapping from the source language variable names v to vm, we have: 

inEnv p E[e] = N H  

To emphasize the modularity provided in our framework, we first prove 
the theorem for the functional sub-language, and then extend the result to the 
complete language. 

3 This means that in natural semantics, we are still implicitly passing around an environment, even though it 
is never used. Thus the theorem as stated does not strictly c o ~ n d  to Wand's result [28]. Fortunately, the 
naturality afliflings (see our earlier work [17] for details) guarantees that adding and removing a feature does 
not  affect computations which do not use that particular feature. Therefore the theorem still holds if we remove 
the explicit environment support from the underlying monad in natural semantics. (The next section addr"=-~=s 
this in more detail.) 
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Proof for the Functional Sub-language We can establish the theorem for the 
functional sub-language by induction on the structure of programs composed 
out of variables, lambda abstractions, and function applications. The full proof 
is given in the Appendix. The basic technique is the same as Wand's, except that 
in addition to the basic rules of lambda calculus (e.g.,/3 reduction), we also use 
monad laws and environment axioms. 

The proof is possible because both the source language and meta language 
are lexically scoped. If the source language instead supported dynamically 
scoped functions: 

E[Av.e] = return(Ac.rdEnv then Ap.inEnv (p[c/v]) E[e]) 

where the caller-site environment is used within the function body, the theorem 
would  fail to hold. 

Extension to the Complete Language Consider another source language con- 
struct "callcc'. Since in proving the theorem we only used the axioms of envi- 
ronment monads, none of the cases already analyzed need to be proved again. 
We only have to verify that: 

- the monad supporting continuations is still an environment monad, and 
- the induction hypothesis holds for "callcc". 

The former is stated in Proposition 3, and can be proved once and for all as 
we come up with monad transformers. The latter can be easily proved: "callcc" 
does not explicitly deal with the environment, and has exactly the same natural 
semantics as the standard semantics. In addition, it is a trivial computation (see 
the definition in the last section). Thus the induction hypothesis holds following 
the unit axiom of environment monads. 

Similarly we can extend the theorem to cover other features such as " := ' .  

4.3 Benefits of Reasoning in Monadic Style 

Modular Proofs In denotational semantics, adding a feature may change the 
structure of the entire semantics, forcing us to redo the induction for every case 
of abstract syntax. For example, Wand [28] pointed out that he could change 
the semantics into continuation-based, and prove the theorem, but  only by 
modifying the proofs accordingly. 

Modular monadic semantics, on the other hand, offers highly modularized 
proofs and more general results. This is particularly applicable to real pro- 
gramming languages, which usually carry a large set of features and undergo 
constantly evolving designs. 

Axiomatization of Programming Language Features Denotational semantics 
captures a computation as a piece of syntax tree coupled with an environment, 
a store etc. On the other hand, we view computations as abstract entities with 
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a set of equations. Therefore, like Semantic Algebras [20] in action semantics, 
monads provide an axiomatic view of denotational semantics. 

The environment axioms provide an answer to the question: "what consti- 
tutes an environment?" We are investigating useful axioms for other program- 
ming language features, such as exceptions and continuations. 

5 Targeting Monadic Code 

In general, it is more efficient to use target language built-in features instead of 
monodic combinators defined as higher-order functions. We have seen how the 
explicit environment can be "absorbed" into the meta-language. This section 
addresses the question of whether we can do the same for other features, such 
as the store and continuation. 

We can view a target language as having a built-in monad supporting a set 
of primitive monadic combinators. For example, the following table lists the 
correspondence between certain ML constructs and primitive monadic combi- 
nators: 

[primitive monadic operators ML construct 

return x z 
el then Ax.c2 let val  x = cl in  C2 e n d  
update* ref, !, := 
cal lcc callcc 
err raise Err 

, ML reference cells support single-threaded states. 

It is easy to verify that the monad laws are satisfied in the above context. 
For example, the ML let  construct is associative (assuming no unwanted name 
capturings occur): 

let  val  V 2 = let val  vl = cl 
in C2 end  

in c3 end  

let val  vl = cl 
in let  val  v2 = c2 

in c3 e n d  e n d  

Recall (in Section 2) that the Compute monad is constructed as: 

type  Compute a = EnvT Env ( ContT Answer ( StateT Store (ErrorT Id) ) ) a 

Now we substitute the base monad Id with the built-in ML monad (call it MML): 

type Compute' a = EnvT Env (ContT Answer (StateT Store (ErrorT MML) ) ) a 

Note that Compute' supports two sets of continuation, state and error han- 
dling functions. The monadic code can choose to use the ML built-in ones 
instead of those implemented as higher-order functions. In addition, all liftings 
we construct satisfy an important property (called the Naturality of Liftings [19] 
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[17]): adding or deleting a monad transformer does not change the result of pro- 
grams which do not use its operations. Since none of the monad transformers 
in Compute ~ is used any more, it suffices to run the target program on Compute": 

type Compute" a = MML a 

which directly utilizes the more efficient ML built-in features. 
The above transformation is possible because ML has a strictly richer set 

of features than our source language. If the source language requires a non- 
updatable version of state (for example, for the purpose of debugging), the 
corresponding state monad transformer will remain, and ensure the state is 
threaded correctly through all computations. If we instead target our source 
language to C, both the environment and continuation transformers have to be 
kept. 

Therefore by using a monad with a set of primitive monadic combinators, 
we can expose the features embedded in the target language. It then becomes 
clear what  is directly supported in the target language, and what needs to be 
compiled explicitly. 

The above process seems trivial, but  would have been impossible had we 
been working with traditional denotational semantics. Various features clutter 
up and make it hard to determine whether it is safe to remove certain interpre- 
tation overhead, and how to achieve that. 

Earlier work [15] [7] [17] has shown that the order of monad transformers (in 
particular, some cases involving ContT) has an impact on the resulting semantics. 
In practice, we need to make sure when we discard monad transformers, that 
the resulting change of ordering does not have unwanted effects on semantics. 

6 Related work 

Early efforts (e.g., [27]) in semantics-directed compiler generation were based 
on traditional denotational semantics. 

Mosses" s Action Semantics [21] allows modular specification of programming 
language semantics, from which efficient compilers can be generated. Action 
semantics (e.g., [3]) and a related approach by  Lee [16] have been successfully 
used to generate efficient compilers. While action semantics is easy to construct, 
extend, understand and implement, we note the following comments made by 
Mosses ([21], page 5): 

"Although the foundations of action semantics are firm enough, the theory for 
reasoning about actions (and hence about programs) is still rather weak, and 
needs further development. This situation is in marked contrast to that of deno- 
tational semantics, where the theory is strong, but severe pragmatic difficulties 
hinder its application to realistic programming languages." 

Action semantics provided much of the inspiration for our work, which 
essentially attempts to formulate actions in a denotational semantics framework. 
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Monad transformers roughly correspond to facets in action semantics, although 
issues such as concurrency are beyond the power of our approach. 

Moggi [19] first used monads and monad transformers to structure denota- 
tional semantics. 4 Wadler [26] [25] popularized Moggi's ideas in the functional 
programming community by using monads in functional programs, in partic- 
ular, interpreters. This paper is built upon our work on monad-based modular 
interpreters [17], which in turn follows a series of earlier attempts by Steele [23], 
Jones and Duponcheel [11], and Espinosa [7]. 

Moggi [19] raised the issue of reasoning in the monadic framework. Wadler 
[26] listed the state monad laws. Hudak [9] suggested a more general framework 

mutable abstract data types (MADTs) D to reason about states. 
Meijer [18] combined the standard initial algebra semantics approach with 

aspects of Action Semantics to derive compilers from denotational semantics. 
An interesting area of future research is to combine the nice algebraic properties 
in Meijer's framework with the modularity offered in ours. 

One application of partial evaluation [12] is to automatically generate com- 
pilers from interpreters. A partial evaluator has been successfully applied to 
an action interpreter [2], and similar results can be achieved with monadic 
interpreters [6]. 

Staging transformations, first proposed by Jorring and Scherlis [13], are a 
class of general program transformation techniques for separating a given com- 
putation into stages. Monad transformers make computational stages somewhat 
more explicit by separating compile-time features, such as the environment, 
from run-time features. 

Several researchers, including Kelsey and Hudak [14], Appel and Jim [1], and 
others, have built efficient compilers for higher-order languages by transforming 
the source language into continuation-passing style (CPS). The suitability of a 
monadic form as an intermediate form has been observed by many researchers 
(including, for example, Sabry and FeUeisen [22] and Hatcliff and Danvy [8]). We 
will continue to explore along this direction in order to generate machine-level 
code from a monadic intermediate form. 

7 Conclusions 

We have shown that the monadic framework provides good support for high- 
level extensible specifications, program transformations, reasoning about com- 
putations, and code generation in various target languages. Monadic-style 
proofs are better structured and easier to extend. The modular monadic seman- 
tics allows us to have an axiomatized formulation of well-known programming 
languages features such as environments. Overall, we believe that modular 
monadic semantics is particularly suitable for compiler construction. 
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The  proof  of  theorem 5 

The main theorem is then proved by induction on the structure of programs: 
Case )tv.e: 
inEnv p (E[Av.e]) 

= inEnv p (rdEnv then Ap. return(Ac.inEnv (p[e/v]) E[e]])) 
= inEnv p rdEnv then Ap'. 

inEnv p (return(Ac.inEnv (p'[c/v]) E[e]])) (dist.) 
= return p then )~p'. return(),c.inEnv (p'[c/v]) E[e]) (cancel., unit) 
= return()~c.inEnv (p[c/v]) E[e]l) (]eft unit) 
= return(,~vm.inEnv (p[v,,/v]) Ell'el) (c= renaming) 
= return()~v,,,.N[e]) (ind. hypo.) 
= N[,Xv.e] 

Other eases (v, (el e2)., (el e2)~) can be similarly proved. 


