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A b s t r a c t .  There is a main difference between a program which is in- 
terpreted by an interpreter written in a strongly-typed language and a 
compiled version. Such an interpreter usually uses a universal domain 
for the values it manipulates. A value encoding is necessary. A compiled 
program works directly on values. A layer of interpretation for value rep- 
resentation is inserted. On the other hand, a way to derive automatically 
a compiler from an interpreter is to use a partial evaluator applied to the 
interpreter and the interpreted program. This leads to a problem when 
we want that this technique removes all the layer of interpretation be- 
cause value encoding must disappear. It is not the case for conventional 
partial evaluator. This paper proposes to introduce a new domain for 
partial evaluators called alternative values and a new algorithm of spe- 
cialization (based on events) which can solve this problem of removing 
value encoding. We conclude by reporting a successful specialization of 
an interpreter written in a strongly-typed language by the partial evalu- 
ator LaMix which is based on those ideas. 
k e y w o r d s :  partial evaluation, alternative values, type specialization, in- 
terpreters, strongly-typed language. 

1 I n t r o d u c t i o n  

Usually a compiled p rog ram is more  efficient than  interpret ing it. A compiler  
removes the layer of  interpretat ion.  For interpreters wri t ten in a s t rong ly- typed  
language,  the difference is much more  distinct because values man ipu la t ed  dur ing 
in terpre ta t ion need to be encoded into a universal type.  Three main  differences 
separate  a compiled p rogram and its in terpretat ion:  

1. A compiler  t ransforms source expressions into c o m m a n d s  of  the object  lan- 
guage. 

2. A compiler  introduces variables but  an interpreter  uses a da t a  s t ruc ture  for 
environments .  

3. A compiler  works on typed expressions but  an interpreter  needs to  encode 
the values it manipulates .  
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In the framework of partial evaluation [6, 2], a typical application consists in 
specializing an interpreter when the interpreted program is known. This process 
looks like a compilation of the interpreted program into the language in which 
the interpreter is written [4, 12]. 

If we want that this mechanism acts as a compiler, it must solve the above 
points. This leads to the following operations. 

1. Specialization of the eval loop of the interpreter with respect to the inter- 
preted program. Control points of the interpreted program (a data) become 
points of the residual program. 

2. Elimination of structures like environments which have to be replaced by 
variables or products of values (in particular, strings used to identify the 
variables of the interpreted program must disappear). 

3. Specialization of values manipulated by the interpreter. Because interpreters 
usually use a universal datatype to describe values associated to variables or 
expressions, a compilation needs to introduced typed expressions. 

The first problem has been solved by partial evaluation a long time ago. 
The idea consists in specializing the functions of the interpreter with respect 
to the value (and sub-values) of the data representing the interpreted program. 
The solution offered by partial evaluation is particularly simple because it just 
consists in propagating data coming from the interpreted program through the 
interpreter. 

The second operation which transforms structures like environments into 
stores and references to new variables is solved by the simple mechanism shown 
above when the interpreter is written specially for this purpose (by dividing 
environments in two structures, one holding a list of identifiers, a second hold- 
ing their values). More generally, this problem has been solved by the partial 
evaluators that can handle partially known structures [9] when environments are 
represented by association lists. 

Practically no work in the framework of partial evaluation tackles the third 
problem. The technique of tag removal [7] consists in eliminating constructors 
when the value associated to an expression is always built with a unique con- 
structor. Mogensen has also introduced the notion of constructor specialization 
[10] and [3] has extended his technique. New types are created but their partial 
evaluators either creat dead code or loop too frequently. This third problem is 
however very important if we want to have a residual program at least as effi- 
cient as a compiled version, especially when the interpreted program have several 
phases and use intermediary data structures. For instance, a lot of programs start 
by analyzing its input (a parser) then they compute a certain function on this 
internal representation, leaving an internM representation of the result. A last 
phase transforms this representation into more readable data (a printer). A par- 
tial evaluator must introduce specialized representations for those intermediary 
data. 

Another reason for trying to solve this problem is due to Launchbury in 
[8] for the construction of self-applicable partial evaluators for strongly-typed 
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languages. It is known that  the self-application of a partial evaluator leads to 
compiler and compiler generator using the Futamura projections [4]. For this 
goal, a main problem is that  a partial evaluator, like interpreters, uses a uni- 
versal domain for representing values associated to expressions. In fact, it is the 
general problem of coding programs and data when they need to be manipulated. 
Sometime a double encoding is performed (for instance, for the self-application of 
a partial evaluator, the partial evaluator is encoded as a parameter of itself and 
the second argument which may be an interpreter is encoded twice). Eliminating 
internal encoding results in a better residual program. 

This paper is organized as follows. After introducing partial evaluation and 
the problem for strongly-typed languages, Section 3 introduces the domain of 
alternative values. Its use and utility are explained in Sections 4 and 5. Section 
6 introduces the problem of comparison between alternative values and Section 
7 solves it by using a mechanism based on events. Section 8 shows a successful 
example of specialization using this technique. Finally, Section 9 concludes. 

2 P a r t i a l  E v a l u a t i o n  

Let us start  by presenting briefly the concept of partial evaluation. Starting with 
a function of two arguments f : A x B -4 C and a value a E A, a partial evaluator 
returns a residual program defining a function fa : B -4 C such that, 

vb e B A(b) = / ( a ,  b) 

The residual program for fa is supposed to be an optimized version of the original 
one using the fact that  the first parameter of f has been fixed to a. For instance, 
f may represent the function "power" which takes two integers x and n and 
returns x n. A ML program (we use the dialect Caml-Light [13]) that computes 
such a function is: 

l e t  r e c  p o w e r  x n = i f  n = 0 t h e n  1 e l s e  x * ( p o w e r  x ( n - l ) )  ; ;  

One can specialize this algorithm when n is known. For instance the cube of x is 
obtained for n = 3. By propagating n through power, a partial evaluator returns 
the residual program which defines the function c u b e :  

let cube x = x * x * x ; ;  

It is obvious that  cube is more efficient than calling power with its second pa- 
rameter equals to 3. The fixed data is called static and the remainder dynamic. 
Here, n is static and x dynamic. 

2.1 P a r t i a l  E v a l u a t o r s  a n d  I n t e r p r e t e r s  

This technique is particularly interesting when the specialized program is an 
interpreter and the static data is the interpreted program. Let us consider mix 
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as a partial evaluator for programs written in Z:, int as an interpreter for a 
language S defined by a /2  program and P as a S program. In fact int needs 
two arguments: the first one is a S program and the second one is the data  

for this program. If intp = mix(int, P) 1 is the residual program obtained by 
specializing int for P,  we have the equality: 

Thus, intp represents a "compiled" version of P in the language s This abil- 
ity of partial evaluators to create automatically a compilation process using an 
interpreter is known since a long time [4, 12]. 

2.2 A C o m p i l e r  f r o m  an  I n t e r p r e t e r  

Moreover, if the partial evaluator is written in the same language that  it spe- 
cializes, we can create a "comp___iler" for S programs if we apply it to itself and to 
int. If compint = mix(-m-'~, T~) then we have: 

[ ~ ]  ( ~ ) =  [miz(-m-~, ~n----~] (~) = mix(Tfft,~) = inte 

The function compint gets a S program and returns an equivalent s program. 
It performs compilation of S programs into s programs. 

As a consequence, if everything was perfect, all what we need to build a com- 
piler for a language S into a language s is an interpreter for S programs written 
in s and a partial evaluator for s programs written in s We can summarize 
the motivation in this case by: it is usually easier to write an interpreter for 
a new language S (for instance, from denotational semantics) than to write a 
specific compiler for it. Moreover, a unique partial evaluator can build different 
compilers for various new languages (from several interpreters). 

In practice, this process succeeds if mix is sufficiently powerful to eliminate 
the layer of interpretation introduced by int. The program mix has to solve the 
three problems introduced at the beginning of the paper. Here we are focused 
on the third problem: the removing of value encoding used by interpreters. 

2.3 T y p e  Spec ia l i za t ion  

To illustrate the significance of this problem, let us introduce a concrete example. 
Suppose we have a program that  derives symbolic expressions. It takes, as input, 
a list of symbols representing a function (in prefix notation) and returns a list 
of symbols (with the same convention) representing the derivative of the input. 
This program may be split into four phases. 

- Reading an input list of symbols and building a tree representing this ex- 
pression (this is a parsing phase). 

1 An overlined function means a representation of its definition 
2 L~ ] means the function defined by the program ~ (it is p) 
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- Deriving the abstract tree. This phase returns a new tree for the derivative. 
- Simplification of the resulting expression (for instance, a multiplication by 

one may disappear). 
- Transforming the abstract tree into a list of symbols (this is a printing phase). 

This algorithm uses an internal representation for symbolic expressions on 
which the main process is performed. Now, let us suppose that  this program 
Pderive is written in a language $, that  int is an interpreter for S programs writ- 
ten in s and mix is a partial evaluator for s programs. If the interpreter uses a 
universal datatype to represent all values it manipulates then the internal repre- 
sentation for symbolic expressions needs to be encoded in this universal domain. 
As a consequence, if the partial evaluator can not perform type specialization, 
the layer of value-encoding will stay in the residual program. 

This fact is especially important  if s is a strongly typed language because 
the interpreter needs to encode the values it calculates by adding tags giving the 
kind of value it manipulates. For instance, an interpreter may use this sum type 
for representing values: 

type Values = Int of int 
I String of string 

I Cons of string * Values list 

I Tuple of  Values list ; ;  

The  first constructor Int says that  it is an integer, the second String, a string, 
the third Cons, a constructor whose name is given (a string) and whose ar- 
guments are put  in a list. The fourth constructor Tuple  serves to introduce 
products. 

Now, since int uses this type, the value that  represents a particular symbolic 
expression must be coded. Suppose symbolic expressions are as follows: 

E ~ Z  
S(e) e 6 E 
X(e) e e E 
M(e) e �9 E 
P(el,e2) el,e2 � 9  
I(e) e �9 E 
T(el,e2) el,e2 � 9  

[Z] = Az.0 
IS(e)] = ~ . 1  + [e](~) 
[x (e ) ]  = ~. ,~  �9 [4(~)  
[M(e)] = )~x.- [el(x) 
[P(el, e2)] = Ax. [e,](x) + [e2](x) 

I T ( e l ,  e2)] ---- Ax. [ e l i ( x )  * [ e2 ] (x )  

The constructors are the constant zero, the successor, a variable (times an ex- 
pression - -  for instance x 3 is X(X(X(S(O))))),  the opposite, the inverse, the 
addition and the multiplication. 

To encode them in the type Values,  a string is choose for each constructor 
and arguments are put  in a list: 

Cons("O', D) for Z Cons("S", [e]) for S(e) 
Cons("x",[e]) for X(e) Cons("-",[e]) for M(e) 
Cons("+",[el;e2]) for P(el,e2) Cons("/",[e]) for I(e) 
Cons(" *",[el;e2]) for T(el,e2) 
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If mix does not perform type specialization those representations will stay in 
the residual program. Removing this layer of interpretation means that a new 
datatype for symbolic expression is introduced like this one: 

type Expr = Zero 
Succ of Expr 
Var of Expr 
Minus of Expr 

Plus of Expr * Expr 
Inverse of Expr 
Times of Expr * Expr ;; 

3 A N e w  D o m a i n  o f  S p e c i a l i z a t i o n  

Since we are interested by intermediary results returned by specialized functions, 
we need to describe this kind of values. For instance, the function of Pd~i.~ that 
parses the input returns values belonging to the domain/)parse: 

Op,,~,, ~ ConW'O",  I]) 
Con~("S', [,t]) 
Con~("~:", [d]) 
Con~(" - ", [d]) 
Cons(" + ", [d, ; d~]) 
Cons("~', [d]) 
Cons(",  ", [a,; as]) 

d 6 Dparse 
d 6 Dparse 
d 6 Dpa~se 
dl, d2 6 Dpa,-se 
d 6 Dp~,,.,~ 
dz, d2 6 Dpa,.s, 

Because mix must describe the value returned by the specialized version of int 
that corresponds to the parsing function of P, the domain of values that mix 
manipulated has to support this form of description. 

In fact, each constructor are build by a particular expression during the 
specialization of int. So, we can index each constructor by the code that creates 
it. We suppose for the moment that the specialization of int corresponding to 
the parsing function creates only one instance for each kind of above structures. 
Thus there exists a unique place in the specialized functions of int that builds 
for each of the 7 constructors Cons, the 7 strings "0", "S",... and the different 
constructors of list (7 empty lists, 9 "cons" lists). Each code may be indexed by 
a unique index: 

Dp . . . .  ...+ ConsA(,,O,,1, ~a) 
ConsB("S "2, d ::b i]~) 
COnSC("X "~, d ::'~ I]') 
ConsD(,,_ ,,4,d ::J B g) 
ConsE(,, + ,,5, dl ::h d2 ::~ [1 ~) 
ConsF ("/"6, d ::k ill) 
Consa(,, , ,,7, dl ::m d2 ::n ~o) 

d 6 Dparse 
d 6 Dpa,.,e 
d 6 Dp,~,.~r 
dl, d2 6 Dp . . . .  
d 6 Dp,,rse 
dl, d2 6 Dp . . . .  

Now, this domain may be described by an alternative between different construc- 
tors (we say constructor clones for a constructor and its index) and a function 
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which maps those indexed constructors to their arguments. Let I c  be the set of 
constructor index, C zc the set of constructor clones (i.e. the set C x 2:c) and 1) 
the type of values used by miz.  Let CArg : C zc x i n t  --+ I? the function which 
returns the value of the n-th argument of a constructor clone. The value which 
describes Dpa~s, may be defined by: 

Dp . . . .  = COnsAIConsBICo"s CIConsDIco"S~ICo'*sFIco"s G 
CArg(Cons A, 1) ~-+ "0 "I 
CArg(ConsA,2) ~-+ I1 a 
CArg(Cons s, 1) v-+ "S "2 
CArg(ConsS, 2) ~.+ ::b 
CArg(:: b, 1) ~ CO.s~ICo'~'ICo,~Clco"sDIcon~EICo'~FIConsG 
CArg(:: b, 2) ~-+ 8 c 

We use the term alternative values for this kind of values. For instance, Dparse is 
an alternative between 7 constructor clones. Alternative values is a lattice with 
union and intersection (in the sense of the set of real values that  they define) as 
least and upper bounds. 

In comparison with the domains used by current partial evaluators, this struc- 
ture (given by a value of 1) and the function CArg) is quite original. Usually par-  
tial evaluators have a domain which can describe completely known values (i.e., a 
constant) or completely unknown (symbolized by a particular constant noted .1_ 
or -F). Partial  evaluators using partially static structures have the possibility to 
incorporate the unknown constant as a sub-value of a value (for instance (T,  1) 
is a partially static structure representing a pair whose first component is un- 
known and its second is 1). In [5], Haraldsson introduces a notion of alternative 
of values which associates different possible constants to an expression. A value 
is then described by a set of constants (for instance a value may be one of the 
integers 1 and 2). This domain can not describe a set of values like Dp,~rse which 
can be seen as a context-free grammar description. In [3], a similar domain is 
used to describe values associated to an expression (they are called subdomain 
properties) but non-terminals are not the same as ours. 

4 Conditional Specialization 

The dual of constructor clones is conditional clones. If the original program has 
the conditional: 

match e with 
CI(Xl)-> e 1 

e. 
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a conditional clone of it, is a structure where index are added: 

match e with 

cI"(xl)  -, el '1 
I .  , a . /  \ c , '  ( x , ) - >  e~ ' '~  

As constructors are used by conditionals for selecting a branch, constructor 
clones select a branch clone. A branch clone is constituted of a set of constructor 
clones which can activate this branch and a clone of the expression correspond- 
ing to this branch. Branch clones are put together to create a conditional clone. 
The element c/l~'j are the set of constructor clones corresponding to this branch 
clone. Those constructor clones come from the alternative value associated to e. 
Thus, for each branch clone corresponding to the i-th original branch, we know 
the alternative value of xi (with the function CArg) and the expression clone 
i,j e i may use this fact. 

5 T h e  U t i l i t y  o f  A l t e r n a t i v e  V a l u e s  

The utility of alternative values comes from the technique of tag removal [7]. 
We can also say that they lead to type reconstruction then type simplification. 
With the example above, the domain Dpars~ is described by an alternative of 7 
constructor clones. 

- A type reconstruction says that its new type is constituted by 7 constructors 
(which are instances of the original constructor Cons). 

- The first component of C o n s  A is the unique string "0 "1. Its new type is 
constituted by a restriction of the string type to this unique element. 

- The type reconstruction of the second component of Cons A is a restriction 
of the list type constituted of the unique element ~a. 

- The type of the second component of Cons s is constituted by the unique 
constructor of list ::b. 

- For ::b, the first component is an alternative between several constructor 
clones (the same as for Dparse) and the second component has only one 
element D c. 

The type reconstruction takes the different alternative values of each ex- 
pression and tries to find new type definitions witch are compatible with type 
constraints. To simplify, for our example this leads to the "definitions": 

type Values_parse = Cons_A of string_l * list_a 
I Cons_B of string_2 * list_b 
I Cons_C of string_3 * list_d 
I Cons_D of string_4 * list_f 
[ Cons_E of string_5 * list_h 
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] Cons_F of string_6 * list_k 
[ Cons_G of string_7 * list_m 

and string_l = "0"_I 
and list_a = []_a 

and string_2 = "S"_2 

and list_b = Values_parse ::_b list_c 

and list_c = []_c 

Here, a liberal notation is used for constructor clones. For instance, "0"_1 means 
a constructor whose value is the string "0",  : :_b  means a constructor (which 
infix notation) similar to a list constructor. 

The second step consists, with this new types, to simplify them. The principle 
is very simple. When a reconstructed type has only one constructor, this con- 
structor may be removed (tag removal). For product type, constant components 
are removed. For the type Values_parse it gives the simplified definition: 

type Values_parses = Cons_A 
Cons_B of Values_parse 
Cons_C of Values_parse 
Cons_D ol Values_parse 
Con~_E of Values_parse * Values_parse 
Cons_F of Values_parse 
Cons_G of Values_parse * Values_parse ; ;  

Of course, we need to transform expressions using this type: 

- A constructor from a reconstructed type with only one element is replaced 
by a product of its arguments (if any). 

- A conditional of which its test expression belongs to a reconstructed type 
with only one element is replaced by a binding of local variables and the 
unique branch of this conditional. 

match el wi th  ci(x) -> e ~ l e t  x = el in  e 

Thus, this type specialization gives a more efficient program by removing the 
building of unnecessary constructors and by simplification of conditional with 
only one branch. Products  and projections are speeiMized with regard to their 
constant arguments. Only non-constant parts are retained. 

6 P r o b l e m  of Equali ty Between Values 

Now that  the domain used by mi~ is defined, we can try to extend the technique 
of partial evaluator for alternative values. There exists two problems: 
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- A partial  evaluator must  identify certain specialized versions of the original 
functions. This mechanism usually compares the known par ts  of the argu- 
ments of the specialized functions and identifies them when they are equal. 
To exploit the same mechanism, an equality test between alternative val- 
ues must  be found. But, how can this comparison be made? An equality 
based on structural equivalence of context-free g r ammars  [11] is complex. 
Moreover, there is a natural  order r- on g rammars  saying than G1 l- G2 if 
s C/~(G2).  For instance, if a parameter  is constructed with Cons A and 
another one with Cons A or Cons B, an element of the first one is an element 
of the second. Since Cons A r- ConsAICons B, a specialized function with 
an argument  described by ConsAICons B may be used for the parameter  
C o n s  A . 

- We also need to compare two constructor clones when they appear  in the 
alternative value associated to the test expression of a conditional. Some 
t ime several constructor clones must activate the same branch clone. In fact, 
during specialization, there are no reason that  the number  of constructor 
clones is bound. As a consequence, if each constructor clone is said to be 
distinct to the other ones, the partial  evaluator may  loop by creating an 
infinite number  of branch clones. For instance, if f is defined by: 

let recf x = match x with true -> f false I false -> f true;; 

This function is not realistic since it always loops. However, such a scheme 
may appear  in a real function. Suppose that  f is specialized for z equals to 
true ~ 

�9 A first branch clone in f is created for true ~ 
�9 Then, f calls itself with an argument  equals to fa l se  1. The constructor 

clone fa l se  1 appears in the "true ~ branch of f .  A new branch is inserted 
for fa l se  1 . 

�9 Th i s  new branch calls f with a new constructor clone t rue  s as argument.  
This clone creates another branch. 

Finally an infinite number  of versions of true and f a l se  is built, leaving the 
(infinite) program: 

l e t  rec f x = match x with 
true_0 -> f f a l s e _ l  

I f a l s e _ l  -> f t rue_2 
I true_2 -> f false_3 

To solve those problems, we have introduced a new mechanism for identifying 
specialized functions and constructor clones. This mechanism is not based on 
comparison of alternative values but rather on a resource analysis needed by 
each specialized expression. 
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7 Not ion of Event 

To introduce the mechanism that  identifies functions and constructor clones, we 
s tar t  with a simple example. The function below append concatenates two lists: 

l e t  rec append x y = match x with e :: 1 -> e :: append 1 y J [] -> y ;;  

This  function may be specialized when x is bound to the list v = [1; 2] and y is 
unknown. It  gives three versions of append corresponding to the three lists [1; 2], 
[2] and ~. In this case, the traditional identification based on equality between 
the known par t  of function arguments works perfectly: 

- The part ial  evaluator starts with a first version of append with x bound to 
[1; 2]. This function is called append_0, append 0 calls append with its first 
pa ramete r  equals to [2]. 

- The partial  evaluator creates a new version of append (append_l )  with x 
bound to [2]. Then, append_l  calls append with the first argument  equals 
to the empty  list D. 

- A third version of append is created for this new value of x (append_2).  
- The  part ial  evaluator stops because no new version of append needs to be 

specialized. 

This process leaves the residual program: 

l e t  append 2 y = y ;; 
l e t  append_l y = 2 :: append_2 y ; ; 
l e t  a p p e n d _ 0  y = 1 : :  a p p e n d _ l  y ; ;  

I f  functions are unfolded, a more efficient program is returned: 

l e t  append_0 y = 1 :: 2 :: y ;; 

Because, with alternative values, we do not want to compare values, we can not 
use this simple mechanism. If  we look at the events tha t  occur when append 
is evaluated with its first argument equals to [1; 2], we can see that  this list is 
matched by the conditional of append. Then, during the first recursive call, the 
sub-list [2] is tested. At the second recursive call, it is the empty  list. 

Now, suppose that  the constructors of the list [1; 2] have been indexed (they 
are constructor clones): 1 ::= 2 ::b De. Then the first call to append matches 
the constructor ::a, the second call matches ::b and the third one matches De. 
This fact gives a mechanism to distinguish the three calls to append without 
comparing the known argument:  

- append_0 is the initial call. 
- The call to append_l  is due to the event between ::a and the conditional of 

append. 
- The call to append_2 is due to the event between ::b and the conditional of 

append. 
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Thus, function identification is made by comparing the events that occurs 
between two calls. A similar mechanism may be applied for identification of 
constructor clones. This system try to know which part of the original value is 
needed to create a particular constructor. For instance, with the previous exam- 
ple, the list constructor appearing in append_0 depends on the event between the 
conditional of append and the constructor ::a. The list constructor of append_l 
depends on two events: the one needed for the previous constructor (from ::a) 
and the one between the conditional of append and the constructor ::b. 

We can restrict this resource analysis by computing, for each expression, 
which part of the initial data is needed to "activate" it. With an interpreter, 
this mechanism associates to each expression the part of the data structure 
representing the interpreted program which is needed at this point. 

8 A n  E x a m p l e  of  spec ia l izat ion  

This section reports the successful partial evaluation of an interpreter for an ap- 
plicative language when the interpreted program has three phases and performs 
symbolic derivative of arithmetics expression. 

This experiment was made with the partial evaluator LaMix [1] that imple- 
ments the ideas presented in this article. LaMix specializes programs written in 
a subset LaML of Carol-Light. LaML is a pure first order functional language 
with global function definitions, algebraic type declarations and a limited form 
of pattern-matching. LaMix is an experimental on-line partial evaluator based 
on alternative values and events. 

8.1 A T iny  I n t e r p r e t e r  i n t T M L  for T M L  

The interpreter intTML is written in LaML. It is essentially untyped but ac- 
cepts constructed values and has a simple mechanism of pattern-matching. The 
language TML that it recognizes is defined by: 

l ) =  
E =  

def  f ( z l , . . . , z , ) =  e 
v a r  x 

le t  x = el in e~ 

t r u e  

f a l s e  

s  e ( e l  . . . .  , e . )  

i f  e l  t h e n  e2 e l s e  e3 

match e w i t h  

el(z1,1 . . . . .  Z l , r n l ) - >  el  

I e n ( X n , 1 , - . . ,  x . . . .  ) ->  en 
I c~n f(e~,...,e,,) 

d~ E ~  
f E ~, t i e r ,  e E E  
x E I J  

x E F, e l , e2  E E 

c E C ,  ei E E  
e , E s  

e, ei E C., ci E C, xi,j E "I) 
f E .l:, ei E E 
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The sets ~', 12 and C contain respectively identifiers for functions, variables and 
constructors. P is the set of TML programs, 7) corresponds to function definitions 
and C to expressions. 

An expression is either a variable (a parameter of the current function or 
a variable bound by pattern-matching or let-expression), a let-expression which 
binds a variable to the value calculated for an expression, the t ruth values t r u e  
and f a l s e ,  a constructor built from an identifier and a list of expression, an 
if-then-else, a pattern-matching conditional which computes an expression and 
following its value choose a case after binding the variables of the pat tern to the 
values of the arguments of the constructor. The last construction calls a defined 
function. Variables are local to functions. 

8.2 A T M L  P r o g r a m  fo r  D e r i v i n g  S y m b o l i c  E x p r e s s i o n s  

The TML program below performs a symbolic derivation of arithmetic expres- 
sions. It takes, as input, a stream of symbols representing a function in the prefix 
notation. The first phase builds an internal representation from the input stream 
as a tree of arithmetic operators and constants (the function pa r se ,  not defined 
here). Then, a function derives this tree returning the derivative abstract tree 
(the function d e r i v e ) .  A last phase constructs the stream of symbols repre- 
senting the abstract tree using prefix notation (the function p r i n t ,  not defined 
below). 
def  d e r i v e ( e )  : u t c k  �9 s i t k  

Z -> c e n s t r  Z 
S(e)  -> CA]~ d e r i v e ( e )  
X(e) -> cexstr  P(e,cenetr g ( c a l l  der ive(e) ) )  
H(e) -> c e u t r  H(c ~11 der ive(e) )  
P(ei ,e2) -> teaser P (ca l l  derive(el),ca~LT der ive(e2)) 
I ( e i )  -> censer H(ceastr T ( ca l l  de r i ve (e l ) ,  ceastr T(e,e) ) )  
$(e i ,e2)  -> ceaetr P(ceaJtr T ( C ~  de r i ve (e l ) ,e2 ) ,  

c e n s e r  T(el,r der ive(e2)) )  
def ~il(i) = p r i se (der i ve (parse ( i ) ) )  

8.3 P a r t i a l  E v a l u a t i o n  o f  intTML 

The interpreter intTML may be specialized for this program. Here, the main 
function is called exec. LaMix returns the following residual program (we have 
retained the code generated for d e r i v e ) :  

tTpe u = Tae_L I Tag_q I Tag.P * f  Valle_O I Yag.O of u 
J TaS.B ef falue.O I Tag_g ef false.O I $ag.L ef y a l u . O  �9 Ya lu .O  
J TaS.E e2 Yal,e_O �9 u I TaS_J ef u I T&g.T ef u �9 u  
I Tag . I  e t  Valle_O �9 Y~le_O I Tag_g ef  Yalle.O I TaE.F ef  u  * V a l u . O  
J t a g . E  ef V~lle_O �9 u J Tag_D I f  f a l l e . O  �9 u  
I Tag.C ef f ~ l l e . O  �9 u J Tag_B e~ u  J t a g . l  e f  u  �9 Y ~ l e . O  ; ;  

l e t  rer bind_2 vs : hatch ve u i t k  
Tag.I -> ~ag_q 
Tag.P p -> Tag.A(p,Tag.B(biJt4.2 p ) )  
Tag.O p -> biad_2 p 
T ~ . I  p -> Tag.J(b i ld .2  p) 
TaS.H p -> ~ag.G(Tag.l(biad.2 p,Ta~_I(vg,ve)))  
TaK_L p -> TaK.F(bisd .2(~s t  p ) , b i s d _ 2 ( s s d  p ) )  
Tas_K p -> T a s . C ( f a g . D ( b i s d . 2 ( f e t  p ) , n 4  p ) , T a s . E ( f e t  p ,b ind .2(emd p ) ) )  ; ;  

l e t  rec e x e c s  = b i a d _ 3 ( b i s d . 2 ( b i a d . l ( s ) )  ; ;  

As one can see, a new types has been created. The type Value_2 is a specialized 
version of the universal type Value for abstract tree constructors. The relation 
between the new constructors and the symbolic derivative program is as follows: 
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Tag.l~ ~ ~ Tas.q --~ Z 
Tag_P(e) --e X(r Tag_0(e) --e S(e) 
Tag.l(e) --~ M ( r  Tag.H(e) --~ I ( r  
Tag_L(el,e2) --~ P(r  e2) Tag.l((el,e2) -+ T(e l ,  e2)  
Ta$_,I(Q) --+ M(e) Ta~.I(et,e2) --~ T(=I, e2) 
Tag.ll(el,e2) -+ T(e l ,  r ~ag.G(e) -~- M(e) 
Tag_F(el,e2) -+ P(r  r Tag.s --+ T(=I, e2) 
7a6.P(el,e2) --+ T(e l ,  r Tag.C(el,e2) --e P (e l ,  e2) 
Tag.B(e) --+ X ( e )  Tag.h(el,e2) --)- P(cl, e2)  

The function b ind_ l  corresponds to pa r se ,  bind_2 to d e r i v e  and bind_3 to 
prin~. We can notice that there are different versions of the same initial con- 
structor of the TML program. It is due to the different instances of them in 
the TML program. However, from the point of view of efficiency, the residual 
program is as quick as an optimal one (tests give an improvement in t ime of 
about 45-50). 

Our goals as they were introduced at the beginning of the paper, are plainly 
reached. LaMix has been able: 

- to transform completely the interpreted program into control points in the 
residual program, 

- to eliminate environment used by intrTML and 
- to introduce new types for intermediary results of residual functions. The 

encoding of TML constructors by intrTML has disappeared inside the residual 
program. 
Of course, the residual program needs to receive an encoded argument and it 
returns an encoded value. We cannot avoid this problem because the residual 
function and the original one must be equivalent. 

9 Conclusion and Related Works 

The alternative values and the mechanism of identification (events) has been 
able to remove all the layer of interpretation for the example shown here. In 
particular, a new type definition for intermediary results was generated. The 
value encoding of the interpreter has been completely removed. The residual 
program looks like a compiled version of the original one. 

This technique realizes a complete compilation of the original program (as 
a compiler does) derived from an interpreter. Moreover, the use of events to 
identify specialized objects (by comparison to other partial evaluators) ensures 
termination of the compilation process for abstract datatypes. 

The two main works on type specialization are [10] which introduces the 
notion of constructor specialization and [3] which extends this technique and 
uses an abstract specialization phase based on sub-domains properties. This last 
paper has similarities with our work since the objectives are the same and the 
different phases of this system are similar to our. However, there are some dif- 
ferences. The first one is that  LaMix is an on-line partial evaluator and in [3] 
the system is off-line with a binding time analysis. As a consequence, specialized 
objects for this partial evaluator are identified by  the known part  of their argu- 
ments. In the same way, comparisons between context-free grammars (which de- 
scribe sub-domain properties) are made. We have said that  this comparisons are 
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difficult to implement  (and are t ime-consuming).  It  was one of the main reasons 
to use events. Another problem comes from the fact that  this partial  evaluator 
may  loop very easily (more often than its predecessors because it preserves more 
static informations).  Events prevent LaMix to run forever on recursive abst ract  
data types  since there are only a finite number  of events relative to them. 

LaMix may  be extended in different ways. We work to add polymorphism,  
higher order function and side effects. Another impor tant  task will be to trans- 
form LaMix into an off-line partial evaluator. 
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