
Removing Value Encoding Using Alternative
Values in Partial Evaluation of Strongly-Typed

Languages

Denis Bechet

CRIN-CNRS & INRIA-Lorraine
Boite Postale 239

54506 Vandceuvre-les-Nancy, France
e-mail: Denis.Bechet@loria.fr

A b s t r a c t . There is a main difference between a program which is in-
terpreted by an interpreter written in a strongly-typed language and a
compiled version. Such an interpreter usually uses a universal domain
for the values it manipulates. A value encoding is necessary. A compiled
program works directly on values. A layer of interpretation for value rep-
resentation is inserted. On the other hand, a way to derive automatically
a compiler from an interpreter is to use a partial evaluator applied to the
interpreter and the interpreted program. This leads to a problem when
we want that this technique removes all the layer of interpretation be-
cause value encoding must disappear. It is not the case for conventional
partial evaluator. This paper proposes to introduce a new domain for
partial evaluators called alternative values and a new algorithm of spe-
cialization (based on events) which can solve this problem of removing
value encoding. We conclude by reporting a successful specialization of
an interpreter written in a strongly-typed language by the partial evalu-
ator LaMix which is based on those ideas.
k e y w o r d s : partial evaluation, alternative values, type specialization, in-
terpreters, strongly-typed language.

1 I n t r o d u c t i o n

Usually a compiled p rog ram is more efficient than interpret ing it. A compiler
removes the layer of interpretat ion. For interpreters wri t ten in a s t rong ly- typed
language, the difference is much more distinct because values man ipu la t ed dur ing
in terpre ta t ion need to be encoded into a universal type. Three main differences
separate a compiled p rogram and its in terpretat ion:

1. A compiler t ransforms source expressions into c o m m a n d s of the object lan-
guage.

2. A compiler introduces variables but an interpreter uses a da t a s t ruc ture for
environments .

3. A compiler works on typed expressions but an interpreter needs to encode
the values it manipulates .

78

In the framework of partial evaluation [6, 2], a typical application consists in
specializing an interpreter when the interpreted program is known. This process
looks like a compilation of the interpreted program into the language in which
the interpreter is written [4, 12].

If we want that this mechanism acts as a compiler, it must solve the above
points. This leads to the following operations.

1. Specialization of the eval loop of the interpreter with respect to the inter-
preted program. Control points of the interpreted program (a data) become
points of the residual program.

2. Elimination of structures like environments which have to be replaced by
variables or products of values (in particular, strings used to identify the
variables of the interpreted program must disappear).

3. Specialization of values manipulated by the interpreter. Because interpreters
usually use a universal datatype to describe values associated to variables or
expressions, a compilation needs to introduced typed expressions.

The first problem has been solved by partial evaluation a long time ago.
The idea consists in specializing the functions of the interpreter with respect
to the value (and sub-values) of the data representing the interpreted program.
The solution offered by partial evaluation is particularly simple because it just
consists in propagating data coming from the interpreted program through the
interpreter.

The second operation which transforms structures like environments into
stores and references to new variables is solved by the simple mechanism shown
above when the interpreter is written specially for this purpose (by dividing
environments in two structures, one holding a list of identifiers, a second hold-
ing their values). More generally, this problem has been solved by the partial
evaluators that can handle partially known structures [9] when environments are
represented by association lists.

Practically no work in the framework of partial evaluation tackles the third
problem. The technique of tag removal [7] consists in eliminating constructors
when the value associated to an expression is always built with a unique con-
structor. Mogensen has also introduced the notion of constructor specialization
[10] and [3] has extended his technique. New types are created but their partial
evaluators either creat dead code or loop too frequently. This third problem is
however very important if we want to have a residual program at least as effi-
cient as a compiled version, especially when the interpreted program have several
phases and use intermediary data structures. For instance, a lot of programs start
by analyzing its input (a parser) then they compute a certain function on this
internal representation, leaving an internM representation of the result. A last
phase transforms this representation into more readable data (a printer). A par-
tial evaluator must introduce specialized representations for those intermediary
data.

Another reason for trying to solve this problem is due to Launchbury in
[8] for the construction of self-applicable partial evaluators for strongly-typed

79

languages. It is known that the self-application of a partial evaluator leads to
compiler and compiler generator using the Futamura projections [4]. For this
goal, a main problem is that a partial evaluator, like interpreters, uses a uni-
versal domain for representing values associated to expressions. In fact, it is the
general problem of coding programs and data when they need to be manipulated.
Sometime a double encoding is performed (for instance, for the self-application of
a partial evaluator, the partial evaluator is encoded as a parameter of itself and
the second argument which may be an interpreter is encoded twice). Eliminating
internal encoding results in a better residual program.

This paper is organized as follows. After introducing partial evaluation and
the problem for strongly-typed languages, Section 3 introduces the domain of
alternative values. Its use and utility are explained in Sections 4 and 5. Section
6 introduces the problem of comparison between alternative values and Section
7 solves it by using a mechanism based on events. Section 8 shows a successful
example of specialization using this technique. Finally, Section 9 concludes.

2 P a r t i a l E v a l u a t i o n

Let us start by presenting briefly the concept of partial evaluation. Starting with
a function of two arguments f : A x B -4 C and a value a E A, a partial evaluator
returns a residual program defining a function fa : B -4 C such that,

vb e B A(b) = / (a , b)

The residual program for fa is supposed to be an optimized version of the original
one using the fact that the first parameter of f has been fixed to a. For instance,
f may represent the function "power" which takes two integers x and n and
returns x n. A ML program (we use the dialect Caml-Light [13]) that computes
such a function is:

l e t r e c p o w e r x n = i f n = 0 t h e n 1 e l s e x * (p o w e r x (n - l)) ; ;

One can specialize this algorithm when n is known. For instance the cube of x is
obtained for n = 3. By propagating n through power, a partial evaluator returns
the residual program which defines the function c u b e :

let cube x = x * x * x ; ;

It is obvious that cube is more efficient than calling power with its second pa-
rameter equals to 3. The fixed data is called static and the remainder dynamic.
Here, n is static and x dynamic.

2.1 P a r t i a l E v a l u a t o r s a n d I n t e r p r e t e r s

This technique is particularly interesting when the specialized program is an
interpreter and the static data is the interpreted program. Let us consider mix

80

as a partial evaluator for programs written in Z:, int as an interpreter for a
language S defined by a /2 program and P as a S program. In fact int needs
two arguments: the first one is a S program and the second one is the data

for this program. If intp = mix(int, P) 1 is the residual program obtained by
specializing int for P, we have the equality:

Thus, intp represents a "compiled" version of P in the language s This abil-
ity of partial evaluators to create automatically a compilation process using an
interpreter is known since a long time [4, 12].

2.2 A C o m p i l e r f r o m an I n t e r p r e t e r

Moreover, if the partial evaluator is written in the same language that it spe-
cializes, we can create a "comp___iler" for S programs if we apply it to itself and to
int. If compint = mix(-m-'~, T~) then we have:

[~] (~) = [miz(-m-~, ~n----~] (~) = mix(Tfft,~) = inte

The function compint gets a S program and returns an equivalent s program.
It performs compilation of S programs into s programs.

As a consequence, if everything was perfect, all what we need to build a com-
piler for a language S into a language s is an interpreter for S programs written
in s and a partial evaluator for s programs written in s We can summarize
the motivation in this case by: it is usually easier to write an interpreter for
a new language S (for instance, from denotational semantics) than to write a
specific compiler for it. Moreover, a unique partial evaluator can build different
compilers for various new languages (from several interpreters).

In practice, this process succeeds if mix is sufficiently powerful to eliminate
the layer of interpretation introduced by int. The program mix has to solve the
three problems introduced at the beginning of the paper. Here we are focused
on the third problem: the removing of value encoding used by interpreters.

2.3 T y p e Spec ia l i za t ion

To illustrate the significance of this problem, let us introduce a concrete example.
Suppose we have a program that derives symbolic expressions. It takes, as input,
a list of symbols representing a function (in prefix notation) and returns a list
of symbols (with the same convention) representing the derivative of the input.
This program may be split into four phases.

- Reading an input list of symbols and building a tree representing this ex-
pression (this is a parsing phase).

1 An overlined function means a representation of its definition
2 L~] means the function defined by the program ~ (it is p)

81

- Deriving the abstract tree. This phase returns a new tree for the derivative.
- Simplification of the resulting expression (for instance, a multiplication by

one may disappear).
- Transforming the abstract tree into a list of symbols (this is a printing phase).

This algorithm uses an internal representation for symbolic expressions on
which the main process is performed. Now, let us suppose that this program
Pderive is written in a language $, that int is an interpreter for S programs writ-
ten in s and mix is a partial evaluator for s programs. If the interpreter uses a
universal datatype to represent all values it manipulates then the internal repre-
sentation for symbolic expressions needs to be encoded in this universal domain.
As a consequence, if the partial evaluator can not perform type specialization,
the layer of value-encoding will stay in the residual program.

This fact is especially important if s is a strongly typed language because
the interpreter needs to encode the values it calculates by adding tags giving the
kind of value it manipulates. For instance, an interpreter may use this sum type
for representing values:

type Values = Int of int
I String of string

I Cons of string * Values list

I Tuple of Values list ; ;

The first constructor Int says that it is an integer, the second String, a string,
the third Cons, a constructor whose name is given (a string) and whose ar-
guments are put in a list. The fourth constructor Tuple serves to introduce
products.

Now, since int uses this type, the value that represents a particular symbolic
expression must be coded. Suppose symbolic expressions are as follows:

E ~ Z
S(e) e 6 E
X(e) e e E
M(e) e �9 E
P(el,e2) el,e2 � 9
I(e) e �9 E
T(el,e2) el,e2 � 9

[Z] = Az.0
IS(e)] = ~ . 1 + [e](~)
[x (e)] = ~. ,~ �9 [4(~)
[M(e)] =)~x.- [el(x)
[P(el, e2)] = Ax. [e,](x) + [e2](x)

I T (e l , e2)] ---- Ax. [e l i (x) * [e2] (x)

The constructors are the constant zero, the successor, a variable (times an ex-
pression - - for instance x 3 is X(X(X(S(O))))), the opposite, the inverse, the
addition and the multiplication.

To encode them in the type Values, a string is choose for each constructor
and arguments are put in a list:

Cons("O', D) for Z Cons("S", [e]) for S(e)
Cons("x",[e]) for X(e) Cons("-",[e]) for M(e)
Cons("+",[el;e2]) for P(el,e2) Cons("/",[e]) for I(e)
Cons(" *",[el;e2]) for T(el,e2)

8 2

If mix does not perform type specialization those representations will stay in
the residual program. Removing this layer of interpretation means that a new
datatype for symbolic expression is introduced like this one:

type Expr = Zero
Succ of Expr
Var of Expr
Minus of Expr

Plus of Expr * Expr
Inverse of Expr
Times of Expr * Expr ;;

3 A N e w D o m a i n o f S p e c i a l i z a t i o n

Since we are interested by intermediary results returned by specialized functions,
we need to describe this kind of values. For instance, the function of Pd~i.~ that
parses the input returns values belonging to the domain/)parse:

Op,,~,, ~ ConW'O", I])
Con~("S', [,t])
Con~("~:", [d])
Con~(" - ", [d])
Cons(" + ", [d, ; d~])
Cons("~', [d])
Cons(", ", [a,; as])

d 6 Dparse
d 6 Dparse
d 6 Dpa~se
dl, d2 6 Dpa,-se
d 6 Dp~,,.,~
dz, d2 6 Dpa,.s,

Because mix must describe the value returned by the specialized version of int
that corresponds to the parsing function of P, the domain of values that mix
manipulated has to support this form of description.

In fact, each constructor are build by a particular expression during the
specialization of int. So, we can index each constructor by the code that creates
it. We suppose for the moment that the specialization of int corresponding to
the parsing function creates only one instance for each kind of above structures.
Thus there exists a unique place in the specialized functions of int that builds
for each of the 7 constructors Cons, the 7 strings "0", "S",... and the different
constructors of list (7 empty lists, 9 "cons" lists). Each code may be indexed by
a unique index:

Dp+ ConsA(,,O,,1, ~a)
ConsB("S "2, d ::b i]~)
COnSC("X "~, d ::'~ I]')
ConsD(,,_ ,,4,d ::J B g)
ConsE(,, + ,,5, dl ::h d2 ::~ [1 ~)
ConsF ("/"6, d ::k ill)
Consa(,, , ,,7, dl ::m d2 ::n ~o)

d 6 Dparse
d 6 Dpa,.,e
d 6 Dp,~,.~r
dl, d2 6 Dp
d 6 Dp,,rse
dl, d2 6 Dp

Now, this domain may be described by an alternative between different construc-
tors (we say constructor clones for a constructor and its index) and a function

83

which maps those indexed constructors to their arguments. Let I c be the set of
constructor index, C zc the set of constructor clones (i.e. the set C x 2:c) and 1)
the type of values used by miz. Let CArg : C zc x i n t --+ I? the function which
returns the value of the n-th argument of a constructor clone. The value which
describes Dpa~s, may be defined by:

Dp = COnsAIConsBICo"s CIConsDIco"S~ICo'*sFIco"s G
CArg(Cons A, 1) ~-+ "0 "I
CArg(ConsA,2) ~-+ I1 a
CArg(Cons s, 1) v-+ "S "2
CArg(ConsS, 2) ~.+ ::b
CArg(:: b, 1) ~ CO.s~ICo'~'ICo,~Clco"sDIcon~EICo'~FIConsG
CArg(:: b, 2) ~-+ 8 c

We use the term alternative values for this kind of values. For instance, Dparse is
an alternative between 7 constructor clones. Alternative values is a lattice with
union and intersection (in the sense of the set of real values that they define) as
least and upper bounds.

In comparison with the domains used by current partial evaluators, this struc-
ture (given by a value of 1) and the function CArg) is quite original. Usually par-
tial evaluators have a domain which can describe completely known values (i.e., a
constant) or completely unknown (symbolized by a particular constant noted .1_
or -F). Partial evaluators using partially static structures have the possibility to
incorporate the unknown constant as a sub-value of a value (for instance (T, 1)
is a partially static structure representing a pair whose first component is un-
known and its second is 1). In [5], Haraldsson introduces a notion of alternative
of values which associates different possible constants to an expression. A value
is then described by a set of constants (for instance a value may be one of the
integers 1 and 2). This domain can not describe a set of values like Dp,~rse which
can be seen as a context-free grammar description. In [3], a similar domain is
used to describe values associated to an expression (they are called subdomain
properties) but non-terminals are not the same as ours.

4 Conditional Specialization

The dual of constructor clones is conditional clones. If the original program has
the conditional:

match e with
CI(Xl)-> e 1

e.

84

a conditional clone of it, is a structure where index are added:

match e with

cI"(xl) -, el '1
I . , a . / \ c , ' (x ,) - > e~ ' '~

As constructors are used by conditionals for selecting a branch, constructor
clones select a branch clone. A branch clone is constituted of a set of constructor
clones which can activate this branch and a clone of the expression correspond-
ing to this branch. Branch clones are put together to create a conditional clone.
The element c/l~'j are the set of constructor clones corresponding to this branch
clone. Those constructor clones come from the alternative value associated to e.
Thus, for each branch clone corresponding to the i-th original branch, we know
the alternative value of xi (with the function CArg) and the expression clone
i,j e i may use this fact.

5 T h e U t i l i t y o f A l t e r n a t i v e V a l u e s

The utility of alternative values comes from the technique of tag removal [7].
We can also say that they lead to type reconstruction then type simplification.
With the example above, the domain Dpars~ is described by an alternative of 7
constructor clones.

- A type reconstruction says that its new type is constituted by 7 constructors
(which are instances of the original constructor Cons).

- The first component of C o n s A is the unique string "0 "1. Its new type is
constituted by a restriction of the string type to this unique element.

- The type reconstruction of the second component of Cons A is a restriction
of the list type constituted of the unique element ~a.

- The type of the second component of Cons s is constituted by the unique
constructor of list ::b.

- For ::b, the first component is an alternative between several constructor
clones (the same as for Dparse) and the second component has only one
element D c.

The type reconstruction takes the different alternative values of each ex-
pression and tries to find new type definitions witch are compatible with type
constraints. To simplify, for our example this leads to the "definitions":

type Values_parse = Cons_A of string_l * list_a
I Cons_B of string_2 * list_b
I Cons_C of string_3 * list_d
I Cons_D of string_4 * list_f
[Cons_E of string_5 * list_h

85

] Cons_F of string_6 * list_k
[Cons_G of string_7 * list_m

and string_l = "0"_I
and list_a = []_a

and string_2 = "S"_2

and list_b = Values_parse ::_b list_c

and list_c = []_c

Here, a liberal notation is used for constructor clones. For instance, "0"_1 means
a constructor whose value is the string "0", : :_b means a constructor (which
infix notation) similar to a list constructor.

The second step consists, with this new types, to simplify them. The principle
is very simple. When a reconstructed type has only one constructor, this con-
structor may be removed (tag removal). For product type, constant components
are removed. For the type Values_parse it gives the simplified definition:

type Values_parses = Cons_A
Cons_B of Values_parse
Cons_C of Values_parse
Cons_D ol Values_parse
Con~_E of Values_parse * Values_parse
Cons_F of Values_parse
Cons_G of Values_parse * Values_parse ; ;

Of course, we need to transform expressions using this type:

- A constructor from a reconstructed type with only one element is replaced
by a product of its arguments (if any).

- A conditional of which its test expression belongs to a reconstructed type
with only one element is replaced by a binding of local variables and the
unique branch of this conditional.

match el wi th ci(x) -> e ~ l e t x = el in e

Thus, this type specialization gives a more efficient program by removing the
building of unnecessary constructors and by simplification of conditional with
only one branch. Products and projections are speeiMized with regard to their
constant arguments. Only non-constant parts are retained.

6 P r o b l e m of Equali ty Between Values

Now that the domain used by mi~ is defined, we can try to extend the technique
of partial evaluator for alternative values. There exists two problems:

86

- A partial evaluator must identify certain specialized versions of the original
functions. This mechanism usually compares the known par ts of the argu-
ments of the specialized functions and identifies them when they are equal.
To exploit the same mechanism, an equality test between alternative val-
ues must be found. But, how can this comparison be made? An equality
based on structural equivalence of context-free g r ammars [11] is complex.
Moreover, there is a natural order r- on g rammars saying than G1 l- G2 if
s C/~(G2). For instance, if a parameter is constructed with Cons A and
another one with Cons A or Cons B, an element of the first one is an element
of the second. Since Cons A r- ConsAICons B, a specialized function with
an argument described by ConsAICons B may be used for the parameter
C o n s A .

- We also need to compare two constructor clones when they appear in the
alternative value associated to the test expression of a conditional. Some
t ime several constructor clones must activate the same branch clone. In fact,
during specialization, there are no reason that the number of constructor
clones is bound. As a consequence, if each constructor clone is said to be
distinct to the other ones, the partial evaluator may loop by creating an
infinite number of branch clones. For instance, if f is defined by:

let recf x = match x with true -> f false I false -> f true;;

This function is not realistic since it always loops. However, such a scheme
may appear in a real function. Suppose that f is specialized for z equals to
true ~

�9 A first branch clone in f is created for true ~
�9 Then, f calls itself with an argument equals to fa l se 1. The constructor

clone fa l se 1 appears in the "true ~ branch of f . A new branch is inserted
for fa l se 1 .

�9 Th i s new branch calls f with a new constructor clone t rue s as argument.
This clone creates another branch.

Finally an infinite number of versions of true and f a l se is built, leaving the
(infinite) program:

l e t rec f x = match x with
true_0 -> f f a l s e _ l

I f a l s e _ l -> f t rue_2
I true_2 -> f false_3

To solve those problems, we have introduced a new mechanism for identifying
specialized functions and constructor clones. This mechanism is not based on
comparison of alternative values but rather on a resource analysis needed by
each specialized expression.

87

7 Not ion of Event

To introduce the mechanism that identifies functions and constructor clones, we
s tar t with a simple example. The function below append concatenates two lists:

l e t rec append x y = match x with e :: 1 -> e :: append 1 y J [] -> y ;;

This function may be specialized when x is bound to the list v = [1; 2] and y is
unknown. It gives three versions of append corresponding to the three lists [1; 2],
[2] and ~. In this case, the traditional identification based on equality between
the known par t of function arguments works perfectly:

- The part ial evaluator starts with a first version of append with x bound to
[1; 2]. This function is called append_0, append 0 calls append with its first
pa ramete r equals to [2].

- The partial evaluator creates a new version of append (append_l) with x
bound to [2]. Then, append_l calls append with the first argument equals
to the empty list D.

- A third version of append is created for this new value of x (append_2).
- The part ial evaluator stops because no new version of append needs to be

specialized.

This process leaves the residual program:

l e t append 2 y = y ;;
l e t append_l y = 2 :: append_2 y ; ;
l e t a p p e n d _ 0 y = 1 : : a p p e n d _ l y ; ;

I f functions are unfolded, a more efficient program is returned:

l e t append_0 y = 1 :: 2 :: y ;;

Because, with alternative values, we do not want to compare values, we can not
use this simple mechanism. If we look at the events tha t occur when append
is evaluated with its first argument equals to [1; 2], we can see that this list is
matched by the conditional of append. Then, during the first recursive call, the
sub-list [2] is tested. At the second recursive call, it is the empty list.

Now, suppose that the constructors of the list [1; 2] have been indexed (they
are constructor clones): 1 ::= 2 ::b De. Then the first call to append matches
the constructor ::a, the second call matches ::b and the third one matches De.
This fact gives a mechanism to distinguish the three calls to append without
comparing the known argument:

- append_0 is the initial call.
- The call to append_l is due to the event between ::a and the conditional of

append.
- The call to append_2 is due to the event between ::b and the conditional of

append.

88

Thus, function identification is made by comparing the events that occurs
between two calls. A similar mechanism may be applied for identification of
constructor clones. This system try to know which part of the original value is
needed to create a particular constructor. For instance, with the previous exam-
ple, the list constructor appearing in append_0 depends on the event between the
conditional of append and the constructor ::a. The list constructor of append_l
depends on two events: the one needed for the previous constructor (from ::a)
and the one between the conditional of append and the constructor ::b.

We can restrict this resource analysis by computing, for each expression,
which part of the initial data is needed to "activate" it. With an interpreter,
this mechanism associates to each expression the part of the data structure
representing the interpreted program which is needed at this point.

8 A n E x a m p l e of spec ia l izat ion

This section reports the successful partial evaluation of an interpreter for an ap-
plicative language when the interpreted program has three phases and performs
symbolic derivative of arithmetics expression.

This experiment was made with the partial evaluator LaMix [1] that imple-
ments the ideas presented in this article. LaMix specializes programs written in
a subset LaML of Carol-Light. LaML is a pure first order functional language
with global function definitions, algebraic type declarations and a limited form
of pattern-matching. LaMix is an experimental on-line partial evaluator based
on alternative values and events.

8.1 A T iny I n t e r p r e t e r i n t T M L for T M L

The interpreter intTML is written in LaML. It is essentially untyped but ac-
cepts constructed values and has a simple mechanism of pattern-matching. The
language TML that it recognizes is defined by:

l) =
E =

def f (z l , . . . , z ,) = e
v a r x

le t x = el in e~

t r u e

f a l s e

s e (e l , e .)

i f e l t h e n e2 e l s e e3

match e w i t h

el(z1,1 Z l , r n l) - > el

I e n (X n , 1 , - . . , x) -> en
I c~n f(e~,...,e,,)

d~ E ~
f E ~, t i e r , e E E
x E I J

x E F, e l , e2 E E

c E C , ei E E
e , E s

e, ei E C., ci E C, xi,j E "I)
f E .l:, ei E E

89

The sets ~', 12 and C contain respectively identifiers for functions, variables and
constructors. P is the set of TML programs, 7) corresponds to function definitions
and C to expressions.

An expression is either a variable (a parameter of the current function or
a variable bound by pattern-matching or let-expression), a let-expression which
binds a variable to the value calculated for an expression, the t ruth values t r u e
and f a l s e , a constructor built from an identifier and a list of expression, an
if-then-else, a pattern-matching conditional which computes an expression and
following its value choose a case after binding the variables of the pat tern to the
values of the arguments of the constructor. The last construction calls a defined
function. Variables are local to functions.

8.2 A T M L P r o g r a m fo r D e r i v i n g S y m b o l i c E x p r e s s i o n s

The TML program below performs a symbolic derivation of arithmetic expres-
sions. It takes, as input, a stream of symbols representing a function in the prefix
notation. The first phase builds an internal representation from the input stream
as a tree of arithmetic operators and constants (the function pa r se , not defined
here). Then, a function derives this tree returning the derivative abstract tree
(the function d e r i v e) . A last phase constructs the stream of symbols repre-
senting the abstract tree using prefix notation (the function p r i n t , not defined
below).
def d e r i v e (e) : u t c k �9 s i t k

Z -> c e n s t r Z
S(e) -> CA]~ d e r i v e (e)
X(e) -> cexstr P(e,cenetr g (c a l l der ive(e)))
H(e) -> c e u t r H(c ~11 der ive(e))
P(ei ,e2) -> teaser P (ca l l derive(el),ca~LT der ive(e2))
I (e i) -> censer H(ceastr T (ca l l de r i ve (e l) , ceastr T(e,e)))
$(e i ,e2) -> ceaetr P(ceaJtr T (C ~ de r i ve (e l) ,e2) ,

c e n s e r T(el,r der ive(e2)))
def ~il(i) = p r i se (der i ve (parse (i)))

8.3 P a r t i a l E v a l u a t i o n o f intTML

The interpreter intTML may be specialized for this program. Here, the main
function is called exec. LaMix returns the following residual program (we have
retained the code generated for d e r i v e) :

tTpe u = Tae_L I Tag_q I Tag.P * f Valle_O I Yag.O of u
J TaS.B ef falue.O I Tag_g ef false.O I $ag.L ef y a l u . O �9 Ya lu .O
J TaS.E e2 Yal,e_O �9 u I TaS_J ef u I T&g.T ef u �9 u
I Tag . I e t Valle_O �9 Y~le_O I Tag_g ef Yalle.O I TaE.F ef u * V a l u . O
J t a g . E ef V~lle_O �9 u J Tag_D I f f a l l e . O �9 u
I Tag.C ef f ~ l l e . O �9 u J Tag_B e~ u J t a g . l e f u �9 Y ~ l e . O ; ;

l e t rer bind_2 vs : hatch ve u i t k
Tag.I -> ~ag_q
Tag.P p -> Tag.A(p,Tag.B(biJt4.2 p))
Tag.O p -> biad_2 p
T ~ . I p -> Tag.J(b i ld .2 p)
TaS.H p -> ~ag.G(Tag.l(biad.2 p,Ta~_I(vg,ve)))
TaK_L p -> TaK.F(bisd .2(~s t p) , b i s d _ 2 (s s d p))
Tas_K p -> T a s . C (f a g . D (b i s d . 2 (f e t p) , n 4 p) , T a s . E (f e t p ,b ind .2(emd p))) ; ;

l e t rec e x e c s = b i a d _ 3 (b i s d . 2 (b i a d . l (s)) ; ;

As one can see, a new types has been created. The type Value_2 is a specialized
version of the universal type Value for abstract tree constructors. The relation
between the new constructors and the symbolic derivative program is as follows:

90

Tag.l~ ~ ~ Tas.q --~ Z
Tag_P(e) --e X(r Tag_0(e) --e S(e)
Tag.l(e) --~ M (r Tag.H(e) --~ I (r
Tag_L(el,e2) --~ P(r e2) Tag.l((el,e2) -+ T(e l , e2)
Ta$_,I(Q) --+ M(e) Ta~.I(et,e2) --~ T(=I, e2)
Tag.ll(el,e2) -+ T(e l , r ~ag.G(e) -~- M(e)
Tag_F(el,e2) -+ P(r r Tag.s --+ T(=I, e2)
7a6.P(el,e2) --+ T(e l , r Tag.C(el,e2) --e P (e l , e2)
Tag.B(e) --+ X (e) Tag.h(el,e2) --)- P(cl, e2)

The function b ind_ l corresponds to pa r se , bind_2 to d e r i v e and bind_3 to
prin~. We can notice that there are different versions of the same initial con-
structor of the TML program. It is due to the different instances of them in
the TML program. However, from the point of view of efficiency, the residual
program is as quick as an optimal one (tests give an improvement in t ime of
about 45-50).

Our goals as they were introduced at the beginning of the paper, are plainly
reached. LaMix has been able:

- to transform completely the interpreted program into control points in the
residual program,

- to eliminate environment used by intrTML and
- to introduce new types for intermediary results of residual functions. The

encoding of TML constructors by intrTML has disappeared inside the residual
program.
Of course, the residual program needs to receive an encoded argument and it
returns an encoded value. We cannot avoid this problem because the residual
function and the original one must be equivalent.

9 Conclusion and Related Works

The alternative values and the mechanism of identification (events) has been
able to remove all the layer of interpretation for the example shown here. In
particular, a new type definition for intermediary results was generated. The
value encoding of the interpreter has been completely removed. The residual
program looks like a compiled version of the original one.

This technique realizes a complete compilation of the original program (as
a compiler does) derived from an interpreter. Moreover, the use of events to
identify specialized objects (by comparison to other partial evaluators) ensures
termination of the compilation process for abstract datatypes.

The two main works on type specialization are [10] which introduces the
notion of constructor specialization and [3] which extends this technique and
uses an abstract specialization phase based on sub-domains properties. This last
paper has similarities with our work since the objectives are the same and the
different phases of this system are similar to our. However, there are some dif-
ferences. The first one is that LaMix is an on-line partial evaluator and in [3]
the system is off-line with a binding time analysis. As a consequence, specialized
objects for this partial evaluator are identified by the known part of their argu-
ments. In the same way, comparisons between context-free grammars (which de-
scribe sub-domain properties) are made. We have said that this comparisons are

91

difficult to implement (and are t ime-consuming). It was one of the main reasons
to use events. Another problem comes from the fact that this partial evaluator
may loop very easily (more often than its predecessors because it preserves more
static informations). Events prevent LaMix to run forever on recursive abst ract
data types since there are only a finite number of events relative to them.

LaMix may be extended in different ways. We work to add polymorphism,
higher order function and side effects. Another impor tant task will be to trans-
form LaMix into an off-line partial evaluator.

References

1. D. Bechet. Les valeurs alternatives et la notion d'dvdnement dans l'dvaluation
partielle. PhD thesis, Universit~ de Paris VII, Paris, France, october 1995.

2. C. Consel and O. Danvy. Tutorial notes on partial evaluation. In Twentieth ACM
Symposium on Principles of Programming Languages, Charleston, South Carolina,
January 1993, pages 493-501. ACM, New York: ACM, 1993.

3. D. Dussart, E. Bevers, and K. de Vlaminck. Polyvariant constructor specialisa-
tion. In Partial Evaluation and Semantics-Based Program Manipulation, La Jolla,
California, June 1995, pages 54-65. ACM SIGPLAN, 1995.

4. Y. Futamura. Partial evaluation of computation process - an approach to a
compiler-compiler. Systems, Computers, Controls, 2(5):45-50, 1971.

5. A. Haraldsson. A Program Manipulation System Based on Partial Evaluation.
PhD thesis, LinkSping University, Sweden, 1977. LinkSping Studies in Science and
Technology Dissertations 14.

6. N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Pro-
gram Generation. Englewood Cliffs, N J: Prentice Hall, 1993.

7. J. Launchbury. Projection Factorisations in Partial Evaluation. Cambridge: Cam-
bridge University Press, 1991.

8. J. Launchbury. A strongly-typed self-applicable partial evaluator. In J. Hughes,
editor, Functional Programming Languages and Computer Architecture, Cam-
bridge, Massachusetts, August 1991 (Lecture Notes in Computer Science, voi. 5~3),
pages 145-164. ACM, Berlin: Springer-Verlag, 1991.

9. T. Mogensen. Partially static structures in a self-applicable partial evaluator. In
D. Bjcrner, A.P. Ershov, and N.D. Jones, editors, Partial Evaluation and Mixed
Computation, pages 325-347. Amsterdam: North-Holland, 1988.

10. T. Mogensen. Constructor specialization. In Partial Evaluation and Semantics-
Based Program Manipulation, Copenhagen , Denmark, June 1993, pages 22-32.
New York: ACM, 1993.

11. A. Salomaa. Formal languages. Computer Science Classics. Academic Press, Inc.,
1987.

12. V.F. Turchin. A supercompiler system based on the language Refal. SIGPLAN
Notices, 14(2):46-54, February 1979.

13. Pierre Weis and Xavier Leroy. Le Langaee CAML. InterEditions, 1993.

