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Abstract. Languages that integrate functional and logic programming 
with a complete operational semantics are based on narrowing, a unifica- 
tion-based goal-solving mechanism which subsumes the reduction princi- 
ple of functional languages and the resolution principle of logic languages. 
Formal methods of transformation of functional logic programs can be 
based on this well-established operational semantics. In this paper, we 
present a partial evaluation scheme for functional logic languages based 
on an automatic unfolding algorithm which builds narrowing trees. We 
study the semantic properties of the transformation and the conditions 
under which the technique terminates, is sound and complete, and is 
also generally applicable to a wide class of programs. We illustrate our 
method with several examples and discuss the relation with Supercom- 
pilation and Partial Evaluation. To the best of our knowledge, this is the 
first formal approach to partial evaluation of functional logic programs. 

1 I n t r o d u c t i o n  

Narrowing is the computation mechanism of languages that integrate functional 
and logic programming [27]. Narrowing solves equations by computing unifiers 
w.r.t, an equational theory usually described by means of a (conditional) term 
rewriting system. Function definition and evaluation are thus embedded within 
a logical framework and features such as existentially quantified variables, uni- 
fication and program inversion become available. 

Program transformation aims to derive better semantically equivalent pro- 
grams. Partial evaluation (PE) is a program transformation technique which 
consists of the specialization of a program w.r.t, parts of its input [9]. The main 
issues with automatic PE (specialization) concern the choice of the basic trans- 
formation techniques, termination of the process, preserving the semantics of the 
original program, and effectiveness of the transformation, i.e. execution speedup 
for a large class of programs. Two basic transformation techniques used in PE 
are the folding and unfolding transformations [5]. Unfolding is essentially the 
replacement of a call by its body, with appropriate substitutions. Folding is the 
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inverse transformation, the replacement of some piece of code by an equivalent 
function call. For functional programs, folding and unfolding steps involve only 
pattern matching. Because of the unification, the mechanism of PE for logic pro- 
grams is in general more powerful than for functional programs, as it is also able 
to propagate syntactic information on the partial input, such as term structure, 
and not only constant values. PE has been extensively studied both in functional 
[19, 28] and in logic programming [10, 24]. 

In this paper, we show that, in the context of languages that integrate func- 
tional and logic programming [14], specialization can be based on the unification- 
based computation mechanism of narrowing. This unified view of execution and 
transformation allows us to develop a simple and powerful framework for the 
PE of functional logic programs which improves the original program w.r.t, the 
ability of computing the set of answer substitutions. Moreover, we show that sev- 
eral optimizations are possible which are unique to the execution mechanism of 
functional logic programs (as it is the inclusion of a deterministic simplification 
process), and have the effect that functional logic programs are more efficiently 
specializable than equivalent logic programs. 

Due to its basic strategy, a PE can loop in two ways: either by unfolding 
infinitely a function call, or by creating infinitely many specialized definitions 
[22, 25]. Our PE procedure follows a structure similar to the framework developed 
for Logic Programming in [25]. Starting with the set of calls (terms) which appear 
in the initial goal, we partially evaluate them by using a finite unfolding strategy, 
and recursively specialize the terms which are introduced dynamically during this 
process. We introduce an appropriate abstract operator which ensures that this 
set is kept finite throughout the PE process (hence guaranteeing termination) 
and which also allows us to tune the specialization of the method. 

R e l a t e d  work 
Very little work has been done in the area of functional logic program special- 
ization. In the literature we found only two noteworthy exceptions. In [23], Levi 
and Sirovich defined a PE procedure for the functional programming language 
TEL that uses a unification-based symbolic execution mechanism which can be 
understood as (a form of lazy) narrowing. In [6], Darlington and Pull showed 
how unification can enable instantiation and unfolding steps to be combined to 
get the ability (of narrowing) to deal with logical variables. A partial evaluator 
for the functional language HOPE (extended with unification) was also outlined. 
No actual procedure was included and no control issues were considered. The 
problems of ensuring termination and preserving semantics were not addressed 
in any of these papers. 

The work on supercompilation [31] is, among the huge literature on program 
transformation, the closest to our work. Supercompilation (supervised compi- 
lation) is a transformation technique for functional programs which consists of 
three core constituents: driving, generalization and generation of residual pro- 
grams. Supercompilation does not specialize the original program, but constructs 
a program for the (specialization of the) initial call by driving [12]. Driving can 
be understood as a unification-based function transformation mechanism, which 
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uses some kind of evaluation machinery similar to (lazy) narrowing to build 
(possibly infinite) 'trees of states' for a program with a given term. By virtue 
of driving, the supercompiler is able to get the same amount of (unification- 
based) information propagation and program specialization as in PE of logic 
programs. Supercompilation subsumes PE and other standard transformations 
of functional programming languages [30]. For example, it is able to support 
certain forms of theorem proving, program synthesis and program inversion. 

The driving process does not always terminate, and it does not preserve the 
semantics, as it can extend the domain of functions [19, 30]. Techniques to ensure 
termination of driving are studied in [29, 32]. The idea of [32] is to supervise the 
construction of the tree and, at certain moments, loop back, i.e. fold a configura- 
tion to one of the previous states, and in this way construct a finite graph. The 
generalization operation which makes it possible to loop back the current config- 
uration is often necessary. In [29], termination is guaranteed following a method 
which is comparable to the Martens-Gallagher general approach for ensuring 
global termination of PE for logic programs [25]. 

In [12], Gliick and Scrensen focus on the correspondence between PE of logic 
programs (partial deduction) and driving, stating the similarities between driv- 
ing of a functional program and the construction of an SLD-tree for a similar 
Prolog program. The authors did not point out the close relationship between 
the driving and narrowing mechanisms. We think that exploiting this correspon- 
dence leads to a better understanding of how driving achieves its effects and 
makes it easier to answer many questions concerning correctness and termina- 
tion of the transformation. Our results can be seen as a new formulation of the 
essential principle of driving in simpler and more familiar terms to the logic 
programming community. They also liberate the language of the strong syntac- 
tic restrictions imposed in [12, 30] in order not to encumber the formulation 
of driving algorithms. Let us emphasize that our PE procedure guarantees the 
completeness of the transformed program w.r.t, a strong observable such as the 
set of computed answer substitutions of the original program. Our framework 
defines the first semantics-based PE scheme for functional logic programs. 

Plan  o f  the  p a p e r  
This paper is organized as follows. In Section 2, basic definitions are given. Sec- 
tion 3 presents a general scheme for the PE of functional logic programs based 
on narrowing, and describes its properties. Partial correctness of the method is 
proved. In Section 4, we present our solution to the PE termination problem and 
make use of a deterministic simplification process which brings up further possi- 
bilities for specialization. Section 5 concludes the paper and discusses directions 
of future research. More details and missing proofs can be found in [2]. 

2 P r e l i m i n a r i e s  

We briefly recall some known results about rewrite systems and functional logic 
programming [7, 14, 15]. Throughout this paper, V will denote a countably 
infinite set of variables and 52 denotes a set of function symbols, each with a 
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fixed arity, r(,U LI V) and r ( E )  denote the sets of terms and ground terms built 
on ,U and V, respectively. A E-equat ion  s = t is a pair  of terms s, t E r(,UU V). 
Terms are viewed as labeled trees in the usual way. C)(t) denotes the set of 
nonvariable occurrences of a te rm t. tl~ is the subterm at the occurrence u of 
t. t [ r ] .  is the term t with the subterm at the occurrence u replaced with r. 
These notions extend to equations and sequences of equations in a natural  way. 
Identi ty of syntactic objects is denoted by - .  We restrict our interest to the 
set of idempotent  substi tutions over r ( E  U V), which is denoted by Sub. The 
identity function on V is called the empty  substi tut ion and denoted e. tO denotes 
the application of 8 to the syntactic object  l. 83' denotes the composit ion of 0 and 
7. 8rw is the substitution obtained f rom 8 by restricting its domain,  Dora(8), 
to W. The equational representation of a substi tut ion 8 = {X l / t l  . . . . .  zn/ in }  
is the set of equations 0" = {zz - t z , . . . ,  z ,  = in}. We let mgu(E) denote the 
(syntactic) most general unifier of the equation set E [21]. A generalization of 
the nonempty  set of terms { t z , . . . ,  in} is a pair {t, {Sz, . . . ,  8n }) such that ,  for all 
i - 1 , . . . ,  n, tSi -- ti. The pair  (t, 8 )  is the most specific generalization (msg) 
of a set of terms S, written (t, O) = msg(S), if 1) (t, O) is a generalization of S, 
and 2) for every other generalization (t ' ,  8 '  / of S, t' is more general than t. 

An equational Horn theory t; consists of  a finite set of  equational Horn clauses 
of the form (A = p) r C. The  condition C is a sequence e z , . . . ,  e , ,  n >_ 0, of 
equations. Variables in C or p tha t  do not occur in A are called extra-variables. 
An equational goal is an equational Horn clause with no head. We let Goal 
denote the set of equational goals. We often leave out the r symbol  when we 
write goals. A Conditional Term Rewriting System (CTRS for short) is a pair 
(~ ,  7~), where T~ is a finite set of  reduction (or rewrite) rule schemes of the form 
(A---+p r C), )~,p G r ( ,UU V), A r V and Var(p) U Vat(C) C Var(~). 
If  a rewrite rule has no condition we write A --+ p. We will often omit  E.  A 
Horn equational theory ~: which satisfies the above assumptions can be viewed 
as a CTRS 7~, where the rules are the heads (implicitly oriented from left to 
right) and the conditions are the respective bodies. The equational theory s is 
said to be canonical, if the binary one-step rewriting relation --+~ defined by 
T~ is noetherian and confluent. For CTRS 7~, r ~: 7~ denotes tha t  r is a new 
variant of a rule in T~ such tha t  r contains no variable previously met  during 
computa t ion  (standardised apart) .  

Functional logic languages are extensions of functional languages with princi- 
ples derived from logic programming.  The  computa t ion  mechanism of functional 
logic languages is based on narrowing, an evaluation mechanism tha t  uses uni- 
fication for parameter  passing [27]. Narrowing solves equations by computing 
unifiers with respect to a given CTRS (which is called the 'p rogram' ) .  Given a 
CTRS ~ ,  an equational goal g conditionally narrows into a goal clause g' (in 

[~,r,s] [.~1 g, ~+e g,), if there exists an occurrence symbols  g -.-* 9', # or s imply g 
u e 0 (g ) ,  a standardised apar t  variant r =_ (A -+ p r C) ~: 7~ and a sub- 
st i tution 8 such that  8 = mgu({glu = A}) and g' = (C,  {g[p]u})8. s is called 
a (narrowing) redez iff there exists a new variant (A --+ p r C) ,r T~ and 
a substi tution a such that  sa =_ Aa. A narrowing derivation for g in 7~ is de- 

0 .  gl Ot an gl 
fined by g ",-* iff 3 0 t , . . . , 0 , .  g . . . . .  and 0 = Oz.. .On. I f n  = O, 
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then 0 = e. In order to treat syntactical unification as a narrowing step, we 
add the rule (z = z ~ true), z E V, to the CTRST~. Then s = t- ,~ true 
holds iff ~r = mgu({s = t}). The extension of a CTRS 7~ with the rewrite rule 
(z = x ~ true) is denoted by 7~+. We use T as a generic notation for sequences 
of the form t rue , . . . ,  true. A successful derivation for g in 7~+ is a narrowing 

0 .  
derivation 9 -.~ T, and 8rvar(g ) is called a computed answer substitution for g 
in 7~. The success set operational semantics of an equational goal g in the pro- 

A" gram 7~ is O~(g) = {0rwr(g ) [ 9 T}. The set of narrowing derivations can 
be represented by a (possibly infinite) finitely branching tree. Following [24], in 
this paper we adopt the convention that any derivation is potentially incomplete 
(a branch thus can be failed, incomplete, successful or infinite). A failing leaf is 
a goal which is not T and which cannot be further narrowed. 

Each equational Horn theory g generates a smallest congruence relation =e 
called S-equality on the set of terms r(SU V) (the least equational theory which 
contains all logic consequences of s under the entailment relation ~ obeying 
the axioms of equality for s g is a presentation or axiomatization of =e.  In 
abuse of notation, we sometimes speak of the equational theory g to denote 
the theory axiomatized by g. Given two terms s and t, we say that  they axe 
g-unifiable iff there exists a substitution a such that s~r =e  ta,  i.e. such that 
s ~ sa = tcr. The substitution a is called an g-unifier of s and t. By abuse of 
notation, it is often called solution, g-unification is semidecidable. Given a set of 
variables W C_ V, g-equality is extended to substitutions in the standard way, 
by a =e 8[ W] iff xa  =e x0 Vx E W. We say ~r is an g-instance of a ~ and ~r' is 
more general than a on W, in symbols ~' _<r o[ W] iff (3p) ~ =r a'p[ W]. 

A set S of g-unifiers of the equation set E is complete iff every g-unifier 
of E factors into a =e 07 for some substitutions 0 E S and 7. A complete set 
of g-unifiers of a system of equations may be infinite. A narrowing algorithm 
is complete if it generates a complete set of g-unifiers for all input equation 
systems. Conditional narrowing has been shown to he a complete E-unification 
algorithm for canonical theories satisfying different restrictions [14, 15, 26]. 

Since unrestricted narrowing has quite a large search space, several strategies 
to control the selection of redexes have been devised to improve the efficiency 
of narrowing by getting rid of some useless derivations. A narrowing strategy is 
any well-defined criterion which obtains a smaller search space by permitting 
narrowing to reduce only some chosen positions, e.g. basic [16], innermost [8], 
innermost basic [15] or lazy narrowing [27]. Formally, a narrowing strategy 
is a mapping that  assigns to every goal 9 (different from T) a subset ~(g) of 
O(g) such that  for all u E ~(g) the goal g is narrowable at occurrence u. A 
survey of results about the completeness of narrowing strategies can be found in 
[14]. In the case of a confluent and decreasing CTRS 7~, we can further improve 
narrowing without losing completeness by normalizing the goal between narrow- 
ing steps [15, 17]. A normalizing conditional narrowing step w.r.t. 7~, g ~ g'l 
is given by a narrowing step g .~a g~ followed by a normalization g~ --.~r g~. 
The idea of exploiting deterministic computations by including normalization 
has been applied to almost all narrowing strategies, e.g. basic [15], innermost 
[8], innermost basic [15], and lazy narrowing [13]. 
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3 P a r t i a l  E v a l u a t i o n  o f  F u n c t i o n a l  L o g i c  P r o g r a m s  

In this section, we present a generic procedure for the PE of functional logic 
programs and show its correctness. Our construction is formalized within the 
theoretical framework established in [24, 25] for the partial deduction of logic 
programs. 

In logic programming, the idea of PE is basically the following [24]. Let us 
consider a program P and an atomic goal G. Then construct a (finite) SLD- 
tree for P U {G} containing at least one nonroot  node. From this tree the set 
of  clauses { GOi *-- Gi} ,  called resultants, is obtained by collecting the goal Gs 
and the corresponding /9i, from each nonfailed leaf. Intuitively, resultants are 
conditional answers for the initial goal. 

When considering functional programs with narrowing semantics, it is not 
immediate what a resultant should be. We formalize the resultant of  a derivation 
from a term s in a canonical program T~ as follows. 

D e f i n i t i o n  1. Let s be a term and 7~ a canonical program. Consider the equa- 

tion s = y, with the variable y r Var(s) .  Let D - [(s = y) .~0, g,e] be 
a conditional narrowing derivation for the goal s = y in the program ~ +  = 
T~ U { z  = z ---, true}.  Let e = mgu(e) .  Then the resultant of the derivation is: 
((s y)e 

The definition above looks a bit more involved than the one for logic pro- 
gramming. Let us show the intuition behind the computat ion of a through a few 
simple examples. 

Ezample  I. Let the rule ( f (z)  ~ z r a = z, b = z) be in 7~. The resultant of: 
{~/l(z)} {~/ICz)} 1) the derivation f ( f ( z ) )  = y -,~ a = f ( z ) ,  b = f ( z ) , f ( z )  = y -,~ 

a -- f ( z ) ,  b = f ( z ) ,  true is: f ( f ( z ) )  --* f ( z )  r  a -- f ( z ) ,  b -- f ( z ) .  

2) the derivation f ( z )  = y {z/~} a = x , b  = x , x  : y 

is: f ( y ) - - + y C = a = y , b = y .  
Note that,  without applying the mgu ~ = {z /y}  (or = {y /z} )  of the last equation 
x = y, we would have obtained the rule: f (x )  ---, y r a = z, b = x, x = y, which 
contains an extra-variable y. 

3) the derivation f ( z )  = y {~/.~} a = z ,  b = z ,  x = y {~l~a} true,  b = a, a = y is: 
f ( a )  --, a ~ true, b = a. 

The PE of a goal is defined by constructing incomplete search trees for the 
goal and extracting the specialized definition - the resultants - associated with 
the leaves of the trees. A resultant is trivial if it has the form s ~ s. 

D e f i n i t i o n 2 .  Let ~ be a program, s a term and y r Var(s)  a variable. Let r be 
a finite (possibly incomplete) narrowing tree for the goal s = y in the extended 
program 7~+ containing at least one nonroot  node. Let {gi I i = I , . . . ,  k} be 
the nonfailing leaves of 7" and {r, I i = 1 . . . .  , k - 1} the nontrivial resultants 

associated with the derivations {(s = y) ~ + g, I i = 1 . . . . .  k}. Then, the set 
{ri I i = 1, . . . , k  - 1} is called a partial evaluation o r s  in Tr (using 7"). 
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If S is a finite set of terms (modulo variants), then a partial evaluation of S in 
7E (or partial evaluation of 'R w.r.t. S) is the union of the partial evaluations in T~ 
of  the elements of S. A partial evaluation of an equational goal sl = t l , . . . ,  s,, = 
tn in 7~ is the partial evaluation in 7~ of the set { s l , . . . ,  Sn, t l , . . . ,  tn}. 

The assumption that  the initial goal is atomic simplifies the formal devel- 
opment  of our framework and this requirement guarantees that ,  at each step 
of  a derivation, the associated resultant is indeed a program rule, that  is, the 
produced resultants do not contain extra-variables. Also, due to the form of the 
initial query s = y, we need not care about how the new rule should be oriented 
one way or another in the case when ~ is terminating (by using a suitable order- 
ing), since the rules (s ---, y)0a which are the heads of the produced resultants 
can be proven terminating, as we state in the following proposition. 

P r o p o s i t i o n 3 .  The program obtained as the PE of a term in a noetherian 
program is noetherian. 

Following [24], we introduce a closedness condition under which our transfor- 
mat ion is sound and complete w.r.t, the operational semantics of functional logic 
programs. Roughly speaking, the notion of closedness guarantees tha t  all calls 
which might occur during the execution of the resulting program are covered by 
some program rule. 

The following definitions are necessary for our notion of closedness. A func- 
tion symbol f G Z: is irreducible iff there is no rule (,~ ---* p r C) G ~ such 
tha t  f occurs as the outermost function symbol in ~, otherwise it is a defined 
function symbol. In theories where the above distinction is made, the signature 
S is partitioned as S = C ~J ~', where C is the set of irreducible function sym- 
bols (constructors) and 2" is the set of defined function symbols. A substi tut ion 
cr is (ground) constructor, if xtr is (ground) constructor for all x e Dom(~r). 
An expression can be a single rule/equation or a set of rules/equations. We let 
terms(O) denote the function which extracts the terms appearing in the expres- 
sion O. 

D e f i n i t i o n  4. Let S and T be two finite set of terms. We say that  T is S-closed 
if closed(S, T) ,  where the predicate closed is defined inductively as follows: I true i f O _ = O o r  O - x E  V 

closed(S, h) A .. .  ^ closed(S, tn) if O -= {h . . . . .  tn} 
closed(S, O) r closed(S, { h , . . . ,  tn}) if O - c(tl . . . .  , tn), c E C 

(3s E S. sO = O) ^ closed(S, terms(O)) if O = ](tl . . . . .  tn), ] E F 

We say that  a term t is S-closed if closed(S, t), and we say that  a program 77. is 
S-closed if closed(S, terms(Tl)). 

The following example illustrates the need for the recursive inspection of 
subterms in the definition of closedness. 

Ezample2.  Consider the following program: ~ = {h(z) ~ z, f (0)  --~ 0, 
f ( c ( z ) )  ~ h(f(z))} ,  and the initial goal f ( c ( z ) )  = y. A P E  of 7?. w.r.t. S = 
{ f (c (z ) ) ,  h(z)} is the specialized program 7 ~ ' =  {h(x) ~ z, f ( c ( z ) )  ---, h(f(x))}.  
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Although each term appearing in R '  is an instance of some term in S, the pro- 
gram "g' should not be considered dosed w.r.t. S since the call f ( z )  occurring 
in the term h(f(z))  (which appears in the rhs of the second rule of g ' )  is not 
covered sufficiently by the rules of 7U. Actually, the goal f(c(0))  = 0, which is 
closed w.r.t. S, succeeds in 7~ with c.a.s, e whereas it fails in g ' .  

The PE theorem is formulated using the closedness condition. 

T h e o r e m 5 .  Let Tr be a canonical program, g a goal, S a finite set of terms, 
and 7U a partial evaluation of g w.r.t. S. Then, 

I. (SOUNDNESS) 0 E On,(g) ==~ 37 e On(g) s.t. 7 ~_z 0 [Var(g)] s. 
~. (COMPLETENESS) On(g) C_ On'(g), i f ~ '  U {g} is S-closed. 

Now we introduce an independence condition that allows us to obtain a 
stronger version of the theorem as follows. 

Def in i t i on  6 Over lap .  A term s overlaps a term t if there is a nonvariable 
subterm Sl~ of s such that Sl, and t unify. If s = t we require that t is unifiable 
with a proper nonvariable subterm of s. 

Def in i t ion  7 I n d e p e n d e n c e .  A set of terms S is independent if there are no 
terms s and t in S such that s overlaps t. 

T h e o r e m  8. Let 7~ be a canonical program, g a goal, and S a finite set of terms. 
Let Tr ~ be a partial evaluation ofT~ w.r.t. S such that 7UU{g} is S-closed. Then, 

I.  (STRONG SOUNDNESS) On,(g) C_ On(g),  if S is independent. 
e. (COMPLETENESS) On'(g) _~ On(g). 

Roughly speaking, the condition of independence guarantees that the de- 
rived program 7U does not produce additional answers. The following example 
illustrates that the independence condition cannot be dropped. 

Example 3. Consider the following program: 7~ = {f(0) --* 0}, and the set 
S = {f( f (z)) , f (O)}.  A P E  of ~ w.r.t. S is 7U -- {f(f(0))  -* f(0),  f(f(O)) -* 
0, y(0) --* 0}. Then 7U U { / i f (x ) )  = y} is S-closed and has a refutation with 
computed  answer 0 = V = y} does not have a 
refutation with computed answer 0. Note that the specialized program 7"s ~ is 
confluent. 

Theorem 5 and Theorem 8 do not address the question of how the set S of 
terms should be computed to satisfy the required closedness (and independence) 
condition(s), or how PE should actually be performed. For simplicity, in this 
paper we do not consider the problem of the independence of the set of (to 
be) partially evaluated terms S, which should be obtained through some proper 
post-processing renaming transformation similar to that in [4, 11]. 

Let us think of a simple PE method for functional logic programs which 
proceeds as follows. For a given goal g and program T~, a PE for S in T~ is 

3 In this result we consider ~ as the theory axiomatized by ~.  
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computed, with S initialized to the set of terms appearing in g. Then this process 
is repeated for any term occurring in the rhs and in the body of the resulting 
rules which is not closed w.r.t, the set of terms already evaluated. Assuming that 
it terminates, the procedure computes a set of partially evaluated terms S J and 
a set of rules 7~ ~ (the PE of S ~ in T~) such that each term in S is closed w.r.t. S ~ 
and the closedness condition for 7~ ~ t3 {g} is satisfied. 

As for termination, the PE procedure outlined above involves the two classical 
termination problems mentioned in Section 1. The first problem - the so-called 
"local termination" problem - is the termination of unfolding, or how to control 
and keep finite the expansion of the narrowing trees which provide partial eval- 
uations for individual calls. The global level of control concerns the termination 
of recursive unfolding, or how to stop recursively constructing narrowing trees 
while still guaranteeing that the desired amount of specialization is retained 
and that  the closedness condition is reached. As we mentioned before, the set of 
terms S appearing in the goal with which the specialization is performed usually 
needs to be augmented in order to fulfill the closedness condition. This brings 
up the problem of how to keep this set finite throughout the PE process by 
means of some appropriate abstraction operator which guarantees termination. 
In the following, we establish a clear distinction between local and global con- 
trol. This contrasts with [12, 29, 31], where these two issues are not (explicitly) 
distinguished, as only one-step unfolding is performed, and a large evaluation 
structure is built which comprises something similar to both our local narrowing 
trees and the global configurations of [25]. 

The approach we follow originates from the framework for ensuring global 
termination of partial deduction given in [25]. The extension of this method 
to a functional framework is nontrivial. In the following, we formalize a gen- 
eral algorithm for PE of functional logic programs based on narrowing which is 
proven to terminate (for appropriate instances) while ensuring that the closed- 
hess condition is satisfied, and still provides the right amount of polyvariance 
(the possibility of producing a number of independent specializations for a given 
call using different data [19]) which allows us not to lose too much precision. 
Our algorithm is generic w.r.t. 1) the narrotoing relation that  constructs search 
trees, 2) the unfolding rule which determines when and how to terminate the 
construction of the trees, and 3) the abstract operator used to guarantee that  
the set of terms obtained during PE is finite. 

We let - ~  denote a generic (possibly normalizing) narrowing relation which 
uses the narrowing strategy ~. All notions concerning narrowing introduced so 
far can be extended to a narrower with strategy ~ by replacing -,-* with -,-%, in the 
corresponding definition. In the following, we formalize the notion of a generic 
unfolding strategy U.,~ (that we simply denote by U~ when no confusion can 
arise) which constructs a (possibly incomplete) finite -~ -na r rowing  tree and 
then extracts the resultants of the derivations of the tree. 

Def in i t ion  9. An unfolding rule U~ is a function which, when given a program 
T~, a term s and a narrowing transition relation - ~ ,  returns a finite set of 
resultants U~(s, T~) that is a partial evaluation of s in T~ using - ~ .  

If S is a finite set of terms and ~ is a program, then the set of resultants 
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obtained by applying U, to the term s, for each s E S, is called a partial 
evaluation of S in R using g~, (in symbols, U,(S, re)). 

We formulate our method to compute a PE of a program R w.r.t, a finite 
set of terms S using U,, by means of a transition system (State,i ,,,) whose 
transition relation ~----*~, C_ State x State formalizes the computation steps. The 
set State of PE configurations is a parameter of the definition. The notion of state 
has to be instantiated in the specialization process. We let c[S] E State denote 
a generic configuration whose structure is left unspecified as it depends on the 
specific PE algorithm, but which includes at least the set of partially evaluated 
terms S. When S is clear from the context, c[S] will simply be denoted by c. 

D e f i n l t i o n 1 0  P E  t r a n s i t i o n  r e l a t i on  ~ ,p. We define the PE relation ~ ,,, 
as the smallest relation satisfying 

re'= u (s,re) 
c[S], ,p abstract(c[S], terms(re')) 

where the function abstract(c, T) extends the current configuration c with the 
set of terms T giving a new PE configuration. 

Roughly speaking, at each computation step, the set of partially evaluated 
terms S (recorded in c) is evaluated (using g~). Then the terms appearing in 
the residual program re' which are not closed w.r.t. S are (properly) added to c, 
as they are to be partially evaluated in the next iteration of the algorithm. To 
ensure termination, this combination is performed by applying an abstraction 
operator, which guarantees the finiteness of the set of terms for which partial 
evaluations a re  produced. Similarly to [25], applying abstract in every iteration 
allows us to tune the control of polyvariance as much as needed. 

D e f i n i t i o n l l  I n i t i a l  P E  conf igura t ion .  Let g be a goal and co the "empty" 
PE state. The initial PE configuration is: abstract(co, terms(g)). 

Def in i t i on  12 B e h a v i o r  of  t he  ~---+~, calculus .  Let us define the function: 
P(re ,  g) = S if abstract(co, terms(g)), ,~, c[S] and c[S] ~---+~ c[S]. 

The procedure in Definition 12 computes the set of partially evaluated terms 
S which unambiguously determines its associated partial evaluation re' in re 
(using U~). The following theorem establishes the correctness of the PE method. 

T h e o r e m  13 P a r t i a l  co r rec tness  of  7 ). Let abstract be any abstraction op- 
erator satisfying that, if abstract(ca[&], S') = c2[S2], then(S1 U S') is &-ctosed. 
l f  P(re, g) terminates computing the set of terms S, then re' LI {g} is S-closed, 
where the specialized program re' = U~(S, re). 

Definition 12 incorporates only the scheme of a complete method for PE. The 
resulting partial evaluations might be further optimized by eliminating redun- 
dant functors and unnecessary repetition of variables, trying to adapt  standard 
techniques presented in [4, 10, 11]. This is an interesting open problem in our 
setting, where functions appearing as arguments of calls are by no way "dead" 
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structures, but can also generate new calls to function definitions. The resulting 
mechanism should serve, among other purposes, to remove any remaining lack 
of independence. We consider this issue as a task for further research. 

In the following section we present our solution to the termination problem. 

4 E n s u r i n g  T e r m i n a t i o n  

4.1 Loca l  T e r m i n a t i o n  

In Section 3, the problem of obtaining (sensibly expanded) finite narrowing trees 
was shifted to that of defining sensible unfolding strategies that somehow ensure 
that  infinite unfolding is not performed. In this section, we introduce an un- 
folding rule which tries to maximize unfolding while retaining termination. Our 
strategy is simple but less crude than imposing an ad-hoc depth-bound, and still 
guarantees finite unfolding in all cases. The inspiration for our method comes 
from [29]. The next definition extends the homeomorphic embedding ("syntac- 
tically simpler") relation [7] to nonground terms. 

Def in i t ion  14 E m b e d d i n g  re la t ion .  [29] The homeomorphic embedding re- 
lation _~ on terms in r ( E  U V) is defined as the smallest relation satisfying: 
z _~ y for all z , y  E V, and s - f ( s l , . . . , s ~ n )  _~ g ( t l , . . . , t n )  -- t, if and only if: 
1) f -- g (and m - n) and si _<1 ti for all i -- 1 , . . . ,  n, or 2) s _<1 ts, for some j ,  
l < _ j < _ n .  

Roughly speaking, s _~ t if s may be obtained from t by deletion of operators. 
For example, x/x/(u x (u + v)) ~ (w x x/gg((x/u_ + g u ) x ( g u + g _ v ) ) ) .  The 
following result is a consequence of Kruskal's Tree Theorem. 

T h e o r e m  15. Any infinite sequence of terms tl, t2,. . ,  with a finite number of 
operators is self-embedding, i.e., there are numbers j ,  k with j < k and tj <1 tk. 

The embedding relation ~ will be used in Section 4.2 to define an abstraction 
operator that  guarantees global termination of the selected instance of the PE 
method. Now we use _~ to give a sufficient condition for local termination, that 
is, a condition which guarantees that narrowing trees are not expanded infinitely 
in depth. In order to avoid an infinite sequence of "diverging" calls, we compare 
each narrowing redex of the current goal with the selected redexes in the ancestor 
goals of the same derivation, and expand the narrowing tree under the constraints 
imposed by the comparison. When the compared calls are in the embedding 
relation, we stop the derivation. We say that the terms s and t are comparable, 
in symbols comparable(s, t), iffthe outermost function symbol of s and t coincide. 
We also need the following notation. 

Def in i t ion  16 A d m i s s i b l e  de r iva t ion .  Let D be a narrowing derivation for 
go in 7~. We say that D is admissible iff it does not contain a pair of comparable 
redexes included in the embedding relation _~. Formally, 

admissible(go [uo,0o].,.~ . . .  [un-~,0no~].,..~ gn) r 
Vi = 1 , . . . ,  n, Vu E ~o(gi), Vj = O , . . . , i -  1. 
( c~ , g'l.) ~ gJl~ ~ gq~)" 
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To formulate the unfolding strategy, we also introduce the following prepara- 
tory definition. 

Def in i t ion  17 N o n e m b e d d i n g  na r rowing  t r e e  r~ .  
[Uo,0o] [Un-l,en-d [Un ,en] 

~'g(go, ~ )  = {go "'~' . . . .  ~ g" "'~, g"+' I 
admissible(go [Uo,eol.,...~, ... [un-l,en-=],..~ gn ) A 

(gn§ = T V gn+ais a .failing leaf V 
(3u E ~(gn+a), 3i E {1 . . . . .  n}. comparable(gilu i, gn+llu) ^ gilui <3 gn+llu))}. 

Hence, derivations are stopped when they either fail, succeed or the consid- 
ered redexes satisfy the embedding ordering. Before illustrating Definition 17 by 
means of a simple example, we state the following. 

T h e o r e m  18 Local  t e r m i n a t i o n .  For a program T~ and goal g, r~ (g ,R)  is a 
f in i te  (possibly incomple te )  narrowing tree f o r  T~ U {g} using .,~,~. 

Example  4. Consider the well-known program append/2 

append(ni l ,  Ys) ~ Ys 
append(x  : xs,  ys) ---, x : append(xs ,  ys) 

with initial query append(1 : 2 : xs, Ys) = Y. There exists the following infinite 
branch in the (unrestricted) narrowing tree (at each step, we underline the redex 
selected for narrowing): 

append(1 : 2 :  Xs, ys) = y ~ 1 :  append(2: Xs, ys) = y ~ 1 :  2: append(xs, ys) = y 

{=,/='.-=J } {=J/~:=~' } ",.* 1 : 2 : x I : append(x~, ys) = y . . .  

According to Definition 17, the development of this branch is stopped at the 

fourth goal, since the derivation append(1 : 2 : xs, ys) = y ~ 1 : append(2 : 

Xs,Ys) = y ~ 1 : 2 : append(xs , y s )  = y is admissible, and the step 1 : 2 : 

txs/x':=;} x '  append(x~,,Ys) = Y fulfills the ordering, append(xs ,  ys) = y "~ 1 : 2 : : 
because append(x , ,  y , )  <3 append(x j ,  y , ) .  

Now we introduce the unfolding strategy induced by our notion of nonem- 
bedding narrowing tree. 

Def in i t ion  19 N o n e m b e d d i n g  unfo ld ing  ru le  U~. 
We define U~(s ,Tr  as the PE of s in R using r~(s  = y ,R) ,  y q[ Vat (s ) .  

Nontermination of the PE procedure can be caused not only by the creation 
of an infinite narrowing tree but also by never reaching the closedness condition. 

4.2 Globa l  T e r m i n a t i o n  

In this section, we show how the abstract operator which is a parameter of 
the generic algorithm in Definition 12 can be defined using a simple kind of 
structure consisting of sequences of terms, that we manipulate in such a way that 
termination of the specialized algorithm is guaranteed. For a more sophisticated 
and more expensive kind of tree-like structure which could improve the amount 
of specialization in some cases, see [25]. 



57 

D e f i n i t i o n 2 0  PE*  c o n f i g u r a t i o n .  Let State* = r ( L  ~ U V)* be the s tandard  
free monoid over the set of terms, with the empty  sequence of terms denoted by 
nil  and the concatenation operation denoted by ",". A PE* configuration is a 
sequence of te rms ( t l , . . . ,  tn) E State*.  The empty  PE* configuration is nil .  

Upon each iteration, the current configuration q - ( t l , . . . ,  tn) is t ransformed 
in order to 'cover '  the terms which result from the PE of q in 7~, tha t  is, 
te rms(  U ~ ( { t l , . . . ,  tn}, 7~)). This t ransformation is done using the following ab- 
s tract ion operat ion abstract*( q, T ) .  

D e f i n i t i o n  21. Let q be a PE* configuration and T be an expression. We define 
abstract* inductively as follows: abstract*(q, T )  = 

if T - O o r  T - - x E  V 
qbstract*(. . ,  abstract*(q, h)  . . . .  , tn) if T - {h  . . . . .  tn}, n > 1 
abstract*( q, { h . . . . .  tn } ) if T -- c( tl, . . . , tn ), c E C, n > 0 
abs_cali(q, T) if T = ] ( t l , . . . ,  tn), / E ~ ,  n > 0 

where, given a term T, the function abs_call(nil ,  T )  is T, and abs_call(q, T )  
(q ~ nil) is defined as follows: abs_call((ql,..., q,), T) = 

(ql . . . .  , qn, T) if ~ i  ~ {1 . . . . .  n}. (comparable(qi, T) and qi _<1 T) 
abstract*((ql . . . . .  qn), T')  if i = max (comparable(qj, T)) ,  

j f f i l  , . . .  , n  

qs _<3 T, 3B. qs0 = T, and T'  = tetras(O) 
abstract*(q', Z ' )  if i = max (comparable(q3, Z)) ,  

j f f i l , . . . , r l  

T is not an instance of qi, 
msg({qi, T}) = (w, {a~, 02}), 
q' ---- (ql . . . . .  qi-1, qiA+l, V." qn)), and 
T' = {w} u t e ~ s ( 0 ,  u02)  

The  loss of precision caused by the use of  the generalization operator  msg is 
quite reasonable and is compensated by the simplicity of the resulting method.  
The  following example illustrates how our method achieves both,  te rminat ion  
and specialization. The positive supercompiler of [12, 30] does not te rmina te  
on this example,  due to the infinite generation of "fresh" calls which, because 
of the growing accumulat ing parameter ,  are not an instance of any call tha t  
was obtained before. The  partial  deduction procedure of [4] results in the same 
nonterminat ion pat tern for a logic programming version of this program.  The  
methods  in [25, 29] would instead terminate  on this example.  

Example  5. Consider the following program, which checks whether a sequence is a 
palindrome by using a reversing function with ax:cumulating parameter: 

palindrome(z)  --* true r reverse(z) = x 
reverse(z)  .-.* rev(x, nil) 

rev( nil, ys ) --* ys 
rev(x : x, ,  ~ ,)  --. rev(x , ,x  : V,) 

and consider the goal palindreme(1 : 2 : x)  = y. Using the nonembedding unfolding 
rule U~ of Definition 19 to stop the (normalizing conditional) narrowing derivations, 
and the abstract* operator of Definition 21 to ensure total correctness, the specialized 
program 7~ I resulting from the PE of ~ w.r.t, the set of terms 
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s '  = {patindrome(l:  2 :  x~),  r ~ ( x , ,  U , ) )  is: 

7U = { pal indrome(l  : 2 : x : xs) --. true r rev (xs , x  : 2 : l : n i l ) =  l : 2 : x : xs 
rev(ni l ,x l  : x~ : x3 : Us) -" xa : x2 : x3 : Us 

~ v ( ~  : x , , x l  : ~ : x3 : u , )  -~  ~ , ( x , , x  : ~1 : ~ : xs : u , )  } 

where we have saved some infeasible branches which end with fail  at specialization time. 
Note that all computations on the partially static structure have been performed. In 
the new partially evaluated program, the known elements of the list in the argument 
of palindrome are "passed on" to the list in the second argument of rev. Note that the 
resulting set of terms S' is independent. 

The following theorems establish the correctness of the resulting algorithm. 

L e m m a 2 2  P a r t i a l  c o r r e c t n e s s .  I f  abstract*(  q, S )  = q~, then  t e r m s ( q )  U S is 
closed w.r . t ,  t e r m s ( q ' ) .  

T h e o r e m  23 T e r m i n a t i o n .  The  a lgor i thm in De f in i t i on  12 t e r m i n a t e s  f o r  the 
d o m a i n  State* o f  PE* conf igurat ions  and the abs trac t ion  opera tor  abstract*.  

The last example illustrates that  our method can also eliminate intermediate 
data  structures and turn mult iple-pass programs into one-pass programs, as the 
deforestation method and the positive supercompiler of [30] do. 

E x a m p l e  6. Consider again the program append/2 of Example 4 with initial query 
append(append(xs,  ys), Zs) = U. This goal appends three lists by appending the two 
first, yielding an intermediate list, and then appending the last one to that. We 
evaluate the goal by using normalizing conditional narrowing. Starting with the se- 
quence q = append(append(xs,  ys), zs), and by using the procedure described in Def- 
inition 12, we compute the trees depicted in Figure 1 for the sequence of terms q' = 
append(append(xs,  Us), Zs), append(xs, Us). Note that "append" has been abbreviated 
to "a" in the picture. Then we get the following residual program 7~': 

append(append(nil ,  ys ), zs ) ~ append( u~, z, ) 
append(append(x:  xs, Us), Zs ) ---, x :  append( append( xs, ys ), zs ) 

append(nil ,  Zs ) ---* zs 
append(u : Us, zs) ---, U : append(us, zs) 

which is able to append the three lists by passing over its input only once. This effect 
has been obtained in our method by virtue of normalization. Without the normalization 
step, the ordering would have been satisfied too early in the rightmost branch of the 
top tree of Figure 1. Note that we did not adopt any specific strategy (like the call-by- 
name or the call-by-value ones) for executing the goal. Thus a lazy evaluation strategy 
does not seem essential in this example, contradicting a conjecture posed in [30]. The 
resulting set of terms {append(append(xs,  Us), Zs), append(xs,  Us)} in q' is not indepen- 
dent. This example illustrates the need for an extra renaming phase able to produce 
an independent set of terms such as {append(append' (x , ,  y , ) ,  z , ) ,  append"(zs,  Us)} and 
associated specialized program: 

append( append'( nil, Us), zs ) --* append" ( ys, zs ) 
append( append'( ~ : xs, U, ), z~ ) --. ~ : append( append'( x , ,  Us), z,  ) 

append"(nil ,  Zs) ~ zs 
append"(U: U,, z,)  ---, y :  append"(U,, z , )  
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a(a(x,, ~,), z+) = 

t r u e  a(tl~.z.+~ = tl a f x '  : a ( x  I 
I 

�9 ':  ~(2(~ ,  y+), ~s) = 
a(us ,  z~) = y ' [ y / ~ :  yl} 

t r u e  Zs = y y '  : a(y's,  Zs) ---- y 

Fig. 1. Narrowing trees for the goals a ( a ( z s ,  y s ) , Z s )  = y and a ( x s ,  ys )  = y .  

which does have the same computed answers as the original program a p p e n d / 2  for the 
query a p p e n d ( a p p e n d ' ( x s ,  ys) ,  Zs) (modulo the renaming transformation). 

The use of efficient forms of narrowing can significantly improve the accu- 
racy of the specialization method and increase the efficiency of the resulting 
program, because some run-time optimizations (e.g. normalization steps) can be 
performed at compile time. Different (highly efficient) instances of the frame- 
work can be considered, e.g. for innermost and lazy narrowing, which resemble 
the call-by-value and call-by-name cases in functional programming. The choice 
of an innermost narrowing strategy allows us to formalize in [2] a call-by-value 
partial evaluator for functional logic programs which makes use of the simple 
mechanisms introduced so far to achieve (both local and global) termination. 
Our method passes the so-called Knuth-Morris-Pratt test [12, 30], i.e. specializ- 
ing a naive pattern matcher w.r.t, a fixed pattern obtains the efficiency of the 
Knuth, Morris and Pratt  matching algorithm [20]. 

5 C o n c l u s i o n s  a n d  F u r t h e r  R e s e a r c h  

PE is a semantics-preserving program transformation based on unfolding and 
specializing procedures. Techniques in conventional PE of functional programs 
usually rely on the reduction of expressions and constant propagation, while 
transformation techniques for logic languages exploit unification-based parame- 
ter propagation [12]. The driving approach essentially achieves the same transfor- 
mational effect for functional programs. Few attempts have been made to study 
the relationship between techniques used in logic and functional languages [12]. 
We think that  the unified treatment of the problem lays the ground for com- 
parisons and possibly generates new insights for further developments in both 
fields. Since we can use all known results about narrowing, our proofs are sim- 
pler and some of our results are stronger, particularly the notion of correctness, 
which amounts to preserving the computed answer semantics of the goal, and 
not just the ground success set semantics as in [12]. We have shown how a core 
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PE procedure whose behaviour does not depend on the eager or lazy nature of 
the narrower can be defined. In [2] we considered the case of normalizing inner- 
most narrowing which is known to be a reasonable improvement over pure logic 
SLD resolution strategy [8, 14]. It is worthwhile to investigate the instantiation 
of our framework for other strategies, such as the definition of a call-by-name 
partiM evaluator based oa lazy narrowing [13, 27]. 

Turchin's supercompiler does not just propagate positive information (by 
applying unifiers) but also propagates negative information which can restrict the 
values that  the variables can take by using environments of positive and negative 
bindings (bindings which do not hold) [30, 31]. We think that  we can strengthen 
this effect in the setting of (equational) constraint logic programming [1, 18] 
by using some kind of narrowing procedure with disunification, such as the one 
defined in [3], in order to propagate (negative) bindings which can be gathered 
during the transformation as (disequality) constraints. Automatic generation of 
such generalized specializations is the subject of further work. 
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