
Narrowing-Driven Partial Evaluation
of Functional Logic Programs*

M. Alpuente 1 and M. Falaschi 2 and G. Vidal 1

1 DSIC, Universidad Politdcnica de Valencia, Camino de Vera s/n, Apdo. 22012,
46071 Valencia, Spain. e.mail:{alpuente,gvidal}@dsic.upv.es

Dipaxtimento di Matematica e Informatica, Universitg di Udine, Via delle Scienze
206, 33100 Udine, Italy. e.maihfalaschi@dimi.uniud.it

Abstract. Languages that integrate functional and logic programming
with a complete operational semantics are based on narrowing, a unifica-
tion-based goal-solving mechanism which subsumes the reduction princi-
ple of functional languages and the resolution principle of logic languages.
Formal methods of transformation of functional logic programs can be
based on this well-established operational semantics. In this paper, we
present a partial evaluation scheme for functional logic languages based
on an automatic unfolding algorithm which builds narrowing trees. We
study the semantic properties of the transformation and the conditions
under which the technique terminates, is sound and complete, and is
also generally applicable to a wide class of programs. We illustrate our
method with several examples and discuss the relation with Supercom-
pilation and Partial Evaluation. To the best of our knowledge, this is the
first formal approach to partial evaluation of functional logic programs.

1 I n t r o d u c t i o n

Narrowing is the computation mechanism of languages that integrate functional
and logic programming [27]. Narrowing solves equations by computing unifiers
w.r.t, an equational theory usually described by means of a (conditional) term
rewriting system. Function definition and evaluation are thus embedded within
a logical framework and features such as existentially quantified variables, uni-
fication and program inversion become available.

Program transformation aims to derive better semantically equivalent pro-
grams. Partial evaluation (PE) is a program transformation technique which
consists of the specialization of a program w.r.t, parts of its input [9]. The main
issues with automatic PE (specialization) concern the choice of the basic trans-
formation techniques, termination of the process, preserving the semantics of the
original program, and effectiveness of the transformation, i.e. execution speedup
for a large class of programs. Two basic transformation techniques used in PE
are the folding and unfolding transformations [5]. Unfolding is essentially the
replacement of a call by its body, with appropriate substitutions. Folding is the

* This work has been partially supported by CICYT under grant TIC 95-0433-C03-03
and by HCM project CONSOLE.

46

inverse transformation, the replacement of some piece of code by an equivalent
function call. For functional programs, folding and unfolding steps involve only
pattern matching. Because of the unification, the mechanism of PE for logic pro-
grams is in general more powerful than for functional programs, as it is also able
to propagate syntactic information on the partial input, such as term structure,
and not only constant values. PE has been extensively studied both in functional
[19, 28] and in logic programming [10, 24].

In this paper, we show that, in the context of languages that integrate func-
tional and logic programming [14], specialization can be based on the unification-
based computation mechanism of narrowing. This unified view of execution and
transformation allows us to develop a simple and powerful framework for the
PE of functional logic programs which improves the original program w.r.t, the
ability of computing the set of answer substitutions. Moreover, we show that sev-
eral optimizations are possible which are unique to the execution mechanism of
functional logic programs (as it is the inclusion of a deterministic simplification
process), and have the effect that functional logic programs are more efficiently
specializable than equivalent logic programs.

Due to its basic strategy, a PE can loop in two ways: either by unfolding
infinitely a function call, or by creating infinitely many specialized definitions
[22, 25]. Our PE procedure follows a structure similar to the framework developed
for Logic Programming in [25]. Starting with the set of calls (terms) which appear
in the initial goal, we partially evaluate them by using a finite unfolding strategy,
and recursively specialize the terms which are introduced dynamically during this
process. We introduce an appropriate abstract operator which ensures that this
set is kept finite throughout the PE process (hence guaranteeing termination)
and which also allows us to tune the specialization of the method.

R e l a t e d work
Very little work has been done in the area of functional logic program special-
ization. In the literature we found only two noteworthy exceptions. In [23], Levi
and Sirovich defined a PE procedure for the functional programming language
TEL that uses a unification-based symbolic execution mechanism which can be
understood as (a form of lazy) narrowing. In [6], Darlington and Pull showed
how unification can enable instantiation and unfolding steps to be combined to
get the ability (of narrowing) to deal with logical variables. A partial evaluator
for the functional language HOPE (extended with unification) was also outlined.
No actual procedure was included and no control issues were considered. The
problems of ensuring termination and preserving semantics were not addressed
in any of these papers.

The work on supercompilation [31] is, among the huge literature on program
transformation, the closest to our work. Supercompilation (supervised compi-
lation) is a transformation technique for functional programs which consists of
three core constituents: driving, generalization and generation of residual pro-
grams. Supercompilation does not specialize the original program, but constructs
a program for the (specialization of the) initial call by driving [12]. Driving can
be understood as a unification-based function transformation mechanism, which

47

uses some kind of evaluation machinery similar to (lazy) narrowing to build
(possibly infinite) 'trees of states' for a program with a given term. By virtue
of driving, the supercompiler is able to get the same amount of (unification-
based) information propagation and program specialization as in PE of logic
programs. Supercompilation subsumes PE and other standard transformations
of functional programming languages [30]. For example, it is able to support
certain forms of theorem proving, program synthesis and program inversion.

The driving process does not always terminate, and it does not preserve the
semantics, as it can extend the domain of functions [19, 30]. Techniques to ensure
termination of driving are studied in [29, 32]. The idea of [32] is to supervise the
construction of the tree and, at certain moments, loop back, i.e. fold a configura-
tion to one of the previous states, and in this way construct a finite graph. The
generalization operation which makes it possible to loop back the current config-
uration is often necessary. In [29], termination is guaranteed following a method
which is comparable to the Martens-Gallagher general approach for ensuring
global termination of PE for logic programs [25].

In [12], Gliick and Scrensen focus on the correspondence between PE of logic
programs (partial deduction) and driving, stating the similarities between driv-
ing of a functional program and the construction of an SLD-tree for a similar
Prolog program. The authors did not point out the close relationship between
the driving and narrowing mechanisms. We think that exploiting this correspon-
dence leads to a better understanding of how driving achieves its effects and
makes it easier to answer many questions concerning correctness and termina-
tion of the transformation. Our results can be seen as a new formulation of the
essential principle of driving in simpler and more familiar terms to the logic
programming community. They also liberate the language of the strong syntac-
tic restrictions imposed in [12, 30] in order not to encumber the formulation
of driving algorithms. Let us emphasize that our PE procedure guarantees the
completeness of the transformed program w.r.t, a strong observable such as the
set of computed answer substitutions of the original program. Our framework
defines the first semantics-based PE scheme for functional logic programs.

Plan o f the p a p e r
This paper is organized as follows. In Section 2, basic definitions are given. Sec-
tion 3 presents a general scheme for the PE of functional logic programs based
on narrowing, and describes its properties. Partial correctness of the method is
proved. In Section 4, we present our solution to the PE termination problem and
make use of a deterministic simplification process which brings up further possi-
bilities for specialization. Section 5 concludes the paper and discusses directions
of future research. More details and missing proofs can be found in [2].

2 P r e l i m i n a r i e s

We briefly recall some known results about rewrite systems and functional logic
programming [7, 14, 15]. Throughout this paper, V will denote a countably
infinite set of variables and 52 denotes a set of function symbols, each with a

48

fixed arity, r(,U LI V) and r (E) denote the sets of terms and ground terms built
on ,U and V, respectively. A E-equat ion s = t is a pair of terms s, t E r(,UU V).
Terms are viewed as labeled trees in the usual way. C)(t) denotes the set of
nonvariable occurrences of a te rm t. tl~ is the subterm at the occurrence u of
t. t [r] . is the term t with the subterm at the occurrence u replaced with r.
These notions extend to equations and sequences of equations in a natural way.
Identi ty of syntactic objects is denoted by - . We restrict our interest to the
set of idempotent substi tutions over r (E U V), which is denoted by Sub. The
identity function on V is called the empty substi tut ion and denoted e. tO denotes
the application of 8 to the syntactic object l. 83' denotes the composit ion of 0 and
7. 8rw is the substitution obtained f rom 8 by restricting its domain, Dora(8),
to W. The equational representation of a substi tut ion 8 = {X l / t l zn/ in }
is the set of equations 0" = {zz - t z , . . . , z , = in}. We let mgu(E) denote the
(syntactic) most general unifier of the equation set E [21]. A generalization of
the nonempty set of terms { t z , . . . , in} is a pair {t, {Sz, . . . , 8n }) such that , for all
i - 1 , . . . , n, tSi -- ti. The pair (t, 8) is the most specific generalization (msg)
of a set of terms S, written (t, O) = msg(S), if 1) (t, O) is a generalization of S,
and 2) for every other generalization (t ' , 8 ' / of S, t' is more general than t.

An equational Horn theory t; consists of a finite set of equational Horn clauses
of the form (A = p) r C. The condition C is a sequence e z , . . . , e , , n >_ 0, of
equations. Variables in C or p tha t do not occur in A are called extra-variables.
An equational goal is an equational Horn clause with no head. We let Goal
denote the set of equational goals. We often leave out the r symbol when we
write goals. A Conditional Term Rewriting System (CTRS for short) is a pair
(~ , 7~), where T~ is a finite set of reduction (or rewrite) rule schemes of the form
(A---+p r C),)~,p G r (,UU V), A r V and Var(p) U Vat(C) C Var(~).
If a rewrite rule has no condition we write A --+ p. We will often omit E. A
Horn equational theory ~: which satisfies the above assumptions can be viewed
as a CTRS 7~, where the rules are the heads (implicitly oriented from left to
right) and the conditions are the respective bodies. The equational theory s is
said to be canonical, if the binary one-step rewriting relation --+~ defined by
T~ is noetherian and confluent. For CTRS 7~, r ~: 7~ denotes tha t r is a new
variant of a rule in T~ such tha t r contains no variable previously met during
computa t ion (standardised apart) .

Functional logic languages are extensions of functional languages with princi-
ples derived from logic programming. The computa t ion mechanism of functional
logic languages is based on narrowing, an evaluation mechanism tha t uses uni-
fication for parameter passing [27]. Narrowing solves equations by computing
unifiers with respect to a given CTRS (which is called the 'p rogram') . Given a
CTRS ~ , an equational goal g conditionally narrows into a goal clause g' (in

[~,r,s] [.~1 g, ~+e g,), if there exists an occurrence symbols g -.-* 9', # or s imply g
u e 0 (g) , a standardised apar t variant r =_ (A -+ p r C) ~: 7~ and a sub-
st i tution 8 such that 8 = mgu({glu = A}) and g' = (C, {g[p]u})8. s is called
a (narrowing) redez iff there exists a new variant (A --+ p r C) ,r T~ and
a substi tution a such that sa =_ Aa. A narrowing derivation for g in 7~ is de-

0 . gl Ot an gl
fined by g ",-* iff 3 0 t , . . . , 0 , . g and 0 = Oz.. .On. I f n = O,

49

then 0 = e. In order to treat syntactical unification as a narrowing step, we
add the rule (z = z ~ true), z E V, to the CTRST~. Then s = t- ,~ true
holds iff ~r = mgu({s = t}). The extension of a CTRS 7~ with the rewrite rule
(z = x ~ true) is denoted by 7~+. We use T as a generic notation for sequences
of the form t rue , . . . , true. A successful derivation for g in 7~+ is a narrowing

0 .
derivation 9 -.~ T, and 8rvar(g) is called a computed answer substitution for g
in 7~. The success set operational semantics of an equational goal g in the pro-

A" gram 7~ is O~(g) = {0rwr(g) [9 T}. The set of narrowing derivations can
be represented by a (possibly infinite) finitely branching tree. Following [24], in
this paper we adopt the convention that any derivation is potentially incomplete
(a branch thus can be failed, incomplete, successful or infinite). A failing leaf is
a goal which is not T and which cannot be further narrowed.

Each equational Horn theory g generates a smallest congruence relation =e
called S-equality on the set of terms r(SU V) (the least equational theory which
contains all logic consequences of s under the entailment relation ~ obeying
the axioms of equality for s g is a presentation or axiomatization of =e. In
abuse of notation, we sometimes speak of the equational theory g to denote
the theory axiomatized by g. Given two terms s and t, we say that they axe
g-unifiable iff there exists a substitution a such that s~r =e ta, i.e. such that
s ~ sa = tcr. The substitution a is called an g-unifier of s and t. By abuse of
notation, it is often called solution, g-unification is semidecidable. Given a set of
variables W C_ V, g-equality is extended to substitutions in the standard way,
by a =e 8[W] iff xa =e x0 Vx E W. We say ~r is an g-instance of a ~ and ~r' is
more general than a on W, in symbols ~' _<r o[W] iff (3p) ~ =r a'p[W].

A set S of g-unifiers of the equation set E is complete iff every g-unifier
of E factors into a =e 07 for some substitutions 0 E S and 7. A complete set
of g-unifiers of a system of equations may be infinite. A narrowing algorithm
is complete if it generates a complete set of g-unifiers for all input equation
systems. Conditional narrowing has been shown to he a complete E-unification
algorithm for canonical theories satisfying different restrictions [14, 15, 26].

Since unrestricted narrowing has quite a large search space, several strategies
to control the selection of redexes have been devised to improve the efficiency
of narrowing by getting rid of some useless derivations. A narrowing strategy is
any well-defined criterion which obtains a smaller search space by permitting
narrowing to reduce only some chosen positions, e.g. basic [16], innermost [8],
innermost basic [15] or lazy narrowing [27]. Formally, a narrowing strategy
is a mapping that assigns to every goal 9 (different from T) a subset ~(g) of
O(g) such that for all u E ~(g) the goal g is narrowable at occurrence u. A
survey of results about the completeness of narrowing strategies can be found in
[14]. In the case of a confluent and decreasing CTRS 7~, we can further improve
narrowing without losing completeness by normalizing the goal between narrow-
ing steps [15, 17]. A normalizing conditional narrowing step w.r.t. 7~, g ~ g'l
is given by a narrowing step g .~a g~ followed by a normalization g~ --.~r g~.
The idea of exploiting deterministic computations by including normalization
has been applied to almost all narrowing strategies, e.g. basic [15], innermost
[8], innermost basic [15], and lazy narrowing [13].

50

3 P a r t i a l E v a l u a t i o n o f F u n c t i o n a l L o g i c P r o g r a m s

In this section, we present a generic procedure for the PE of functional logic
programs and show its correctness. Our construction is formalized within the
theoretical framework established in [24, 25] for the partial deduction of logic
programs.

In logic programming, the idea of PE is basically the following [24]. Let us
consider a program P and an atomic goal G. Then construct a (finite) SLD-
tree for P U {G} containing at least one nonroot node. From this tree the set
of clauses { GOi *-- Gi} , called resultants, is obtained by collecting the goal Gs
and the corresponding /9i, from each nonfailed leaf. Intuitively, resultants are
conditional answers for the initial goal.

When considering functional programs with narrowing semantics, it is not
immediate what a resultant should be. We formalize the resultant of a derivation
from a term s in a canonical program T~ as follows.

D e f i n i t i o n 1. Let s be a term and 7~ a canonical program. Consider the equa-

tion s = y, with the variable y r Var(s) . Let D - [(s = y) .~0, g,e] be
a conditional narrowing derivation for the goal s = y in the program ~ + =
T~ U { z = z ---, true}. Let e = mgu(e) . Then the resultant of the derivation is:
((s y)e

The definition above looks a bit more involved than the one for logic pro-
gramming. Let us show the intuition behind the computat ion of a through a few
simple examples.

Ezample I. Let the rule (f (z) ~ z r a = z, b = z) be in 7~. The resultant of:
{~/l(z)} {~/ICz)} 1) the derivation f (f (z)) = y -,~ a = f (z) , b = f (z) , f (z) = y -,~

a -- f (z) , b = f (z) , true is: f (f (z)) --* f (z) r a -- f (z) , b -- f (z) .

2) the derivation f (z) = y {z/~} a = x , b = x , x : y

is: f (y) - - + y C = a = y , b = y .
Note that, without applying the mgu ~ = {z /y} (or = {y /z}) of the last equation
x = y, we would have obtained the rule: f (x) ---, y r a = z, b = x, x = y, which
contains an extra-variable y.

3) the derivation f (z) = y {~/.~} a = z , b = z , x = y {~l~a} true, b = a, a = y is:
f (a) --, a ~ true, b = a.

The PE of a goal is defined by constructing incomplete search trees for the
goal and extracting the specialized definition - the resultants - associated with
the leaves of the trees. A resultant is trivial if it has the form s ~ s.

D e f i n i t i o n 2 . Let ~ be a program, s a term and y r Var(s) a variable. Let r be
a finite (possibly incomplete) narrowing tree for the goal s = y in the extended
program 7~+ containing at least one nonroot node. Let {gi I i = I , . . . , k} be
the nonfailing leaves of 7" and {r, I i = 1 , k - 1} the nontrivial resultants

associated with the derivations {(s = y) ~ + g, I i = 1 k}. Then, the set
{ri I i = 1, . . . , k - 1} is called a partial evaluation o r s in Tr (using 7").

51

If S is a finite set of terms (modulo variants), then a partial evaluation of S in
7E (or partial evaluation of 'R w.r.t. S) is the union of the partial evaluations in T~
of the elements of S. A partial evaluation of an equational goal sl = t l , . . . , s,, =
tn in 7~ is the partial evaluation in 7~ of the set { s l , . . . , Sn, t l , . . . , tn}.

The assumption that the initial goal is atomic simplifies the formal devel-
opment of our framework and this requirement guarantees that , at each step
of a derivation, the associated resultant is indeed a program rule, that is, the
produced resultants do not contain extra-variables. Also, due to the form of the
initial query s = y, we need not care about how the new rule should be oriented
one way or another in the case when ~ is terminating (by using a suitable order-
ing), since the rules (s ---, y)0a which are the heads of the produced resultants
can be proven terminating, as we state in the following proposition.

P r o p o s i t i o n 3 . The program obtained as the PE of a term in a noetherian
program is noetherian.

Following [24], we introduce a closedness condition under which our transfor-
mat ion is sound and complete w.r.t, the operational semantics of functional logic
programs. Roughly speaking, the notion of closedness guarantees tha t all calls
which might occur during the execution of the resulting program are covered by
some program rule.

The following definitions are necessary for our notion of closedness. A func-
tion symbol f G Z: is irreducible iff there is no rule (,~ ---* p r C) G ~ such
tha t f occurs as the outermost function symbol in ~, otherwise it is a defined
function symbol. In theories where the above distinction is made, the signature
S is partitioned as S = C ~J ~', where C is the set of irreducible function sym-
bols (constructors) and 2" is the set of defined function symbols. A substi tut ion
cr is (ground) constructor, if xtr is (ground) constructor for all x e Dom(~r).
An expression can be a single rule/equation or a set of rules/equations. We let
terms(O) denote the function which extracts the terms appearing in the expres-
sion O.

D e f i n i t i o n 4. Let S and T be two finite set of terms. We say that T is S-closed
if closed(S, T) , where the predicate closed is defined inductively as follows: I true i f O _ = O o r O - x E V

closed(S, h) A .. . ^ closed(S, tn) if O -= {h tn}
closed(S, O) r closed(S, { h , . . . , tn}) if O - c(tl , tn), c E C

(3s E S. sO = O) ^ closed(S, terms(O)) if O =](tl tn),] E F

We say that a term t is S-closed if closed(S, t), and we say that a program 77. is
S-closed if closed(S, terms(Tl)).

The following example illustrates the need for the recursive inspection of
subterms in the definition of closedness.

Ezample2. Consider the following program: ~ = {h(z) ~ z, f (0) --~ 0,
f (c (z)) ~ h(f(z))} , and the initial goal f (c (z)) = y. A P E of 7?. w.r.t. S =
{ f (c (z)) , h(z)} is the specialized program 7 ~ ' = {h(x) ~ z, f (c (z)) ---, h(f(x))}.

52

Although each term appearing in R ' is an instance of some term in S, the pro-
gram "g' should not be considered dosed w.r.t. S since the call f (z) occurring
in the term h(f(z)) (which appears in the rhs of the second rule of g ') is not
covered sufficiently by the rules of 7U. Actually, the goal f(c(0)) = 0, which is
closed w.r.t. S, succeeds in 7~ with c.a.s, e whereas it fails in g ' .

The PE theorem is formulated using the closedness condition.

T h e o r e m 5 . Let Tr be a canonical program, g a goal, S a finite set of terms,
and 7U a partial evaluation of g w.r.t. S. Then,

I. (SOUNDNESS) 0 E On,(g) ==~ 37 e On(g) s.t. 7 ~_z 0 [Var(g)] s.
~. (COMPLETENESS) On(g) C_ On'(g), i f ~ ' U {g} is S-closed.

Now we introduce an independence condition that allows us to obtain a
stronger version of the theorem as follows.

Def in i t i on 6 Over lap . A term s overlaps a term t if there is a nonvariable
subterm Sl~ of s such that Sl, and t unify. If s = t we require that t is unifiable
with a proper nonvariable subterm of s.

Def in i t ion 7 I n d e p e n d e n c e . A set of terms S is independent if there are no
terms s and t in S such that s overlaps t.

T h e o r e m 8. Let 7~ be a canonical program, g a goal, and S a finite set of terms.
Let Tr ~ be a partial evaluation ofT~ w.r.t. S such that 7UU{g} is S-closed. Then,

I. (STRONG SOUNDNESS) On,(g) C_ On(g), if S is independent.
e. (COMPLETENESS) On'(g) _~ On(g).

Roughly speaking, the condition of independence guarantees that the de-
rived program 7U does not produce additional answers. The following example
illustrates that the independence condition cannot be dropped.

Example 3. Consider the following program: 7~ = {f(0) --* 0}, and the set
S = {f(f (z)) , f (O)}. A P E of ~ w.r.t. S is 7U -- {f(f(0)) -* f(0), f(f(O)) -*
0, y(0) --* 0}. Then 7U U { / i f (x)) = y} is S-closed and has a refutation with
computed answer 0 = V = y} does not have a
refutation with computed answer 0. Note that the specialized program 7"s ~ is
confluent.

Theorem 5 and Theorem 8 do not address the question of how the set S of
terms should be computed to satisfy the required closedness (and independence)
condition(s), or how PE should actually be performed. For simplicity, in this
paper we do not consider the problem of the independence of the set of (to
be) partially evaluated terms S, which should be obtained through some proper
post-processing renaming transformation similar to that in [4, 11].

Let us think of a simple PE method for functional logic programs which
proceeds as follows. For a given goal g and program T~, a PE for S in T~ is

3 In this result we consider ~ as the theory axiomatized by ~.

53

computed, with S initialized to the set of terms appearing in g. Then this process
is repeated for any term occurring in the rhs and in the body of the resulting
rules which is not closed w.r.t, the set of terms already evaluated. Assuming that
it terminates, the procedure computes a set of partially evaluated terms S J and
a set of rules 7~ ~ (the PE of S ~ in T~) such that each term in S is closed w.r.t. S ~
and the closedness condition for 7~ ~ t3 {g} is satisfied.

As for termination, the PE procedure outlined above involves the two classical
termination problems mentioned in Section 1. The first problem - the so-called
"local termination" problem - is the termination of unfolding, or how to control
and keep finite the expansion of the narrowing trees which provide partial eval-
uations for individual calls. The global level of control concerns the termination
of recursive unfolding, or how to stop recursively constructing narrowing trees
while still guaranteeing that the desired amount of specialization is retained
and that the closedness condition is reached. As we mentioned before, the set of
terms S appearing in the goal with which the specialization is performed usually
needs to be augmented in order to fulfill the closedness condition. This brings
up the problem of how to keep this set finite throughout the PE process by
means of some appropriate abstraction operator which guarantees termination.
In the following, we establish a clear distinction between local and global con-
trol. This contrasts with [12, 29, 31], where these two issues are not (explicitly)
distinguished, as only one-step unfolding is performed, and a large evaluation
structure is built which comprises something similar to both our local narrowing
trees and the global configurations of [25].

The approach we follow originates from the framework for ensuring global
termination of partial deduction given in [25]. The extension of this method
to a functional framework is nontrivial. In the following, we formalize a gen-
eral algorithm for PE of functional logic programs based on narrowing which is
proven to terminate (for appropriate instances) while ensuring that the closed-
hess condition is satisfied, and still provides the right amount of polyvariance
(the possibility of producing a number of independent specializations for a given
call using different data [19]) which allows us not to lose too much precision.
Our algorithm is generic w.r.t. 1) the narrotoing relation that constructs search
trees, 2) the unfolding rule which determines when and how to terminate the
construction of the trees, and 3) the abstract operator used to guarantee that
the set of terms obtained during PE is finite.

We let - ~ denote a generic (possibly normalizing) narrowing relation which
uses the narrowing strategy ~. All notions concerning narrowing introduced so
far can be extended to a narrower with strategy ~ by replacing -,-* with -,-%, in the
corresponding definition. In the following, we formalize the notion of a generic
unfolding strategy U.,~ (that we simply denote by U~ when no confusion can
arise) which constructs a (possibly incomplete) finite -~ -na r rowing tree and
then extracts the resultants of the derivations of the tree.

Def in i t ion 9. An unfolding rule U~ is a function which, when given a program
T~, a term s and a narrowing transition relation - ~ , returns a finite set of
resultants U~(s, T~) that is a partial evaluation of s in T~ using - ~ .

If S is a finite set of terms and ~ is a program, then the set of resultants

54

obtained by applying U, to the term s, for each s E S, is called a partial
evaluation of S in R using g~, (in symbols, U,(S, re)).

We formulate our method to compute a PE of a program R w.r.t, a finite
set of terms S using U,, by means of a transition system (State,i ,,,) whose
transition relation ~----*~, C_ State x State formalizes the computation steps. The
set State of PE configurations is a parameter of the definition. The notion of state
has to be instantiated in the specialization process. We let c[S] E State denote
a generic configuration whose structure is left unspecified as it depends on the
specific PE algorithm, but which includes at least the set of partially evaluated
terms S. When S is clear from the context, c[S] will simply be denoted by c.

D e f i n l t i o n 1 0 P E t r a n s i t i o n r e l a t i on ~ ,p. We define the PE relation ~ ,,,
as the smallest relation satisfying

re'= u (s,re)
c[S], ,p abstract(c[S], terms(re'))

where the function abstract(c, T) extends the current configuration c with the
set of terms T giving a new PE configuration.

Roughly speaking, at each computation step, the set of partially evaluated
terms S (recorded in c) is evaluated (using g~). Then the terms appearing in
the residual program re' which are not closed w.r.t. S are (properly) added to c,
as they are to be partially evaluated in the next iteration of the algorithm. To
ensure termination, this combination is performed by applying an abstraction
operator, which guarantees the finiteness of the set of terms for which partial
evaluations a re produced. Similarly to [25], applying abstract in every iteration
allows us to tune the control of polyvariance as much as needed.

D e f i n i t i o n l l I n i t i a l P E conf igura t ion . Let g be a goal and co the "empty"
PE state. The initial PE configuration is: abstract(co, terms(g)).

Def in i t i on 12 B e h a v i o r of t he ~---+~, calculus . Let us define the function:
P(re , g) = S if abstract(co, terms(g)), ,~, c[S] and c[S] ~---+~ c[S].

The procedure in Definition 12 computes the set of partially evaluated terms
S which unambiguously determines its associated partial evaluation re' in re
(using U~). The following theorem establishes the correctness of the PE method.

T h e o r e m 13 P a r t i a l co r rec tness of 7). Let abstract be any abstraction op-
erator satisfying that, if abstract(ca[&], S') = c2[S2], then(S1 U S') is &-ctosed.
l f P(re, g) terminates computing the set of terms S, then re' LI {g} is S-closed,
where the specialized program re' = U~(S, re).

Definition 12 incorporates only the scheme of a complete method for PE. The
resulting partial evaluations might be further optimized by eliminating redun-
dant functors and unnecessary repetition of variables, trying to adapt standard
techniques presented in [4, 10, 11]. This is an interesting open problem in our
setting, where functions appearing as arguments of calls are by no way "dead"

55

structures, but can also generate new calls to function definitions. The resulting
mechanism should serve, among other purposes, to remove any remaining lack
of independence. We consider this issue as a task for further research.

In the following section we present our solution to the termination problem.

4 E n s u r i n g T e r m i n a t i o n

4.1 Loca l T e r m i n a t i o n

In Section 3, the problem of obtaining (sensibly expanded) finite narrowing trees
was shifted to that of defining sensible unfolding strategies that somehow ensure
that infinite unfolding is not performed. In this section, we introduce an un-
folding rule which tries to maximize unfolding while retaining termination. Our
strategy is simple but less crude than imposing an ad-hoc depth-bound, and still
guarantees finite unfolding in all cases. The inspiration for our method comes
from [29]. The next definition extends the homeomorphic embedding ("syntac-
tically simpler") relation [7] to nonground terms.

Def in i t ion 14 E m b e d d i n g re la t ion . [29] The homeomorphic embedding re-
lation _~ on terms in r (E U V) is defined as the smallest relation satisfying:
z _~ y for all z , y E V, and s - f (s l , . . . , s ~ n) _~ g (t l , . . . , t n) -- t, if and only if:
1) f -- g (and m - n) and si _<1 ti for all i -- 1 , . . . , n, or 2) s _<1 ts, for some j ,
l < _ j < _ n .

Roughly speaking, s _~ t if s may be obtained from t by deletion of operators.
For example, x/x/(u x (u + v)) ~ (w x x/gg((x/u_ + g u) x (g u + g _ v))) . The
following result is a consequence of Kruskal's Tree Theorem.

T h e o r e m 15. Any infinite sequence of terms tl, t2,. . , with a finite number of
operators is self-embedding, i.e., there are numbers j , k with j < k and tj <1 tk.

The embedding relation ~ will be used in Section 4.2 to define an abstraction
operator that guarantees global termination of the selected instance of the PE
method. Now we use _~ to give a sufficient condition for local termination, that
is, a condition which guarantees that narrowing trees are not expanded infinitely
in depth. In order to avoid an infinite sequence of "diverging" calls, we compare
each narrowing redex of the current goal with the selected redexes in the ancestor
goals of the same derivation, and expand the narrowing tree under the constraints
imposed by the comparison. When the compared calls are in the embedding
relation, we stop the derivation. We say that the terms s and t are comparable,
in symbols comparable(s, t), iffthe outermost function symbol of s and t coincide.
We also need the following notation.

Def in i t ion 16 A d m i s s i b l e de r iva t ion . Let D be a narrowing derivation for
go in 7~. We say that D is admissible iff it does not contain a pair of comparable
redexes included in the embedding relation _~. Formally,

admissible(go [uo,0o].,.~ . . . [un-~,0no~].,..~ gn) r
Vi = 1 , . . . , n, Vu E ~o(gi), Vj = O , . . . , i - 1.
(c~ , g'l.) ~ gJl~ ~ gq~)"

56

To formulate the unfolding strategy, we also introduce the following prepara-
tory definition.

Def in i t ion 17 N o n e m b e d d i n g na r rowing t r e e r~ .
[Uo,0o] [Un-l,en-d [Un ,en]

~'g(go, ~) = {go "'~' ~ g" "'~, g"+' I
admissible(go [Uo,eol.,...~, ... [un-l,en-=],..~ gn) A

(gn§ = T V gn+ais a .failing leaf V
(3u E ~(gn+a), 3i E {1 n}. comparable(gilu i, gn+llu) ^ gilui <3 gn+llu))}.

Hence, derivations are stopped when they either fail, succeed or the consid-
ered redexes satisfy the embedding ordering. Before illustrating Definition 17 by
means of a simple example, we state the following.

T h e o r e m 18 Local t e r m i n a t i o n . For a program T~ and goal g, r~ (g ,R) is a
f in i te (possibly incomple te) narrowing tree f o r T~ U {g} using .,~,~.

Example 4. Consider the well-known program append/2

append(ni l , Ys) ~ Ys
append(x : xs, ys) ---, x : append(xs , ys)

with initial query append(1 : 2 : xs, Ys) = Y. There exists the following infinite
branch in the (unrestricted) narrowing tree (at each step, we underline the redex
selected for narrowing):

append(1 : 2 : Xs, ys) = y ~ 1 : append(2: Xs, ys) = y ~ 1 : 2: append(xs, ys) = y

{=,/='.-=J } {=J/~:=~' } ",.* 1 : 2 : x I : append(x~, ys) = y . . .

According to Definition 17, the development of this branch is stopped at the

fourth goal, since the derivation append(1 : 2 : xs, ys) = y ~ 1 : append(2 :

Xs,Ys) = y ~ 1 : 2 : append(xs , y s) = y is admissible, and the step 1 : 2 :

txs/x':=;} x ' append(x~,,Ys) = Y fulfills the ordering, append(xs , ys) = y "~ 1 : 2 : :
because append(x , , y ,) <3 append(x j , y ,) .

Now we introduce the unfolding strategy induced by our notion of nonem-
bedding narrowing tree.

Def in i t ion 19 N o n e m b e d d i n g unfo ld ing ru le U~.
We define U~(s ,Tr as the PE of s in R using r~(s = y ,R) , y q[Vat (s) .

Nontermination of the PE procedure can be caused not only by the creation
of an infinite narrowing tree but also by never reaching the closedness condition.

4.2 Globa l T e r m i n a t i o n

In this section, we show how the abstract operator which is a parameter of
the generic algorithm in Definition 12 can be defined using a simple kind of
structure consisting of sequences of terms, that we manipulate in such a way that
termination of the specialized algorithm is guaranteed. For a more sophisticated
and more expensive kind of tree-like structure which could improve the amount
of specialization in some cases, see [25].

57

D e f i n i t i o n 2 0 PE* c o n f i g u r a t i o n . Let State* = r (L ~ U V)* be the s tandard
free monoid over the set of terms, with the empty sequence of terms denoted by
nil and the concatenation operation denoted by ",". A PE* configuration is a
sequence of te rms (t l , . . . , tn) E State*. The empty PE* configuration is nil .

Upon each iteration, the current configuration q - (t l , . . . , tn) is t ransformed
in order to 'cover ' the terms which result from the PE of q in 7~, tha t is,
te rms(U ~ ({ t l , . . . , tn}, 7~)). This t ransformation is done using the following ab-
s tract ion operat ion abstract*(q, T) .

D e f i n i t i o n 21. Let q be a PE* configuration and T be an expression. We define
abstract* inductively as follows: abstract*(q, T) =

if T - O o r T - - x E V
qbstract*(. . , abstract*(q, h) , tn) if T - {h tn}, n > 1
abstract*(q, { h tn }) if T -- c(tl, . . . , tn), c E C, n > 0
abs_cali(q, T) if T =] (t l , . . . , tn), / E ~ , n > 0

where, given a term T, the function abs_call(nil , T) is T, and abs_call(q, T)
(q ~ nil) is defined as follows: abs_call((ql,..., q,), T) =

(ql , qn, T) if ~ i ~ {1 n}. (comparable(qi, T) and qi _<1 T)
abstract*((ql qn), T') if i = max (comparable(qj, T)) ,

j f f i l , . . . , n

qs _<3 T, 3B. qs0 = T, and T' = tetras(O)
abstract*(q', Z ') if i = max (comparable(q3, Z)) ,

j f f i l , . . . , r l

T is not an instance of qi,
msg({qi, T}) = (w, {a~, 02}),
q' ---- (ql qi-1, qiA+l, V." qn)), and
T' = {w} u t e ~ s (0 , u02)

The loss of precision caused by the use of the generalization operator msg is
quite reasonable and is compensated by the simplicity of the resulting method.
The following example illustrates how our method achieves both, te rminat ion
and specialization. The positive supercompiler of [12, 30] does not te rmina te
on this example, due to the infinite generation of "fresh" calls which, because
of the growing accumulat ing parameter , are not an instance of any call tha t
was obtained before. The partial deduction procedure of [4] results in the same
nonterminat ion pat tern for a logic programming version of this program. The
methods in [25, 29] would instead terminate on this example.

Example 5. Consider the following program, which checks whether a sequence is a
palindrome by using a reversing function with ax:cumulating parameter:

palindrome(z) --* true r reverse(z) = x
reverse(z) .-.* rev(x, nil)

rev(nil, ys) --* ys
rev(x : x, , ~ ,) --. rev(x , ,x : V,)

and consider the goal palindreme(1 : 2 : x) = y. Using the nonembedding unfolding
rule U~ of Definition 19 to stop the (normalizing conditional) narrowing derivations,
and the abstract* operator of Definition 21 to ensure total correctness, the specialized
program 7~ I resulting from the PE of ~ w.r.t, the set of terms

58

s ' = {patindrome(l: 2 : x~), r ~ (x , , U ,)) is:

7U = { pal indrome(l : 2 : x : xs) --. true r rev (xs , x : 2 : l : n i l) = l : 2 : x : xs
rev(ni l ,x l : x~ : x3 : Us) -" xa : x2 : x3 : Us

~ v (~ : x , , x l : ~ : x3 : u ,) -~ ~ , (x , , x : ~1 : ~ : xs : u ,) }

where we have saved some infeasible branches which end with fail at specialization time.
Note that all computations on the partially static structure have been performed. In
the new partially evaluated program, the known elements of the list in the argument
of palindrome are "passed on" to the list in the second argument of rev. Note that the
resulting set of terms S' is independent.

The following theorems establish the correctness of the resulting algorithm.

L e m m a 2 2 P a r t i a l c o r r e c t n e s s . I f abstract*(q, S) = q~, then t e r m s (q) U S is
closed w.r . t , t e r m s (q ') .

T h e o r e m 23 T e r m i n a t i o n . The a lgor i thm in De f in i t i on 12 t e r m i n a t e s f o r the
d o m a i n State* o f PE* conf igurat ions and the abs trac t ion opera tor abstract*.

The last example illustrates that our method can also eliminate intermediate
data structures and turn mult iple-pass programs into one-pass programs, as the
deforestation method and the positive supercompiler of [30] do.

E x a m p l e 6. Consider again the program append/2 of Example 4 with initial query
append(append(xs, ys), Zs) = U. This goal appends three lists by appending the two
first, yielding an intermediate list, and then appending the last one to that. We
evaluate the goal by using normalizing conditional narrowing. Starting with the se-
quence q = append(append(xs, ys), zs), and by using the procedure described in Def-
inition 12, we compute the trees depicted in Figure 1 for the sequence of terms q' =
append(append(xs, Us), Zs), append(xs, Us). Note that "append" has been abbreviated
to "a" in the picture. Then we get the following residual program 7~':

append(append(nil , ys), zs) ~ append(u~, z,)
append(append(x: xs, Us), Zs) ---, x : append(append(xs, ys), zs)

append(nil , Zs) ---* zs
append(u : Us, zs) ---, U : append(us, zs)

which is able to append the three lists by passing over its input only once. This effect
has been obtained in our method by virtue of normalization. Without the normalization
step, the ordering would have been satisfied too early in the rightmost branch of the
top tree of Figure 1. Note that we did not adopt any specific strategy (like the call-by-
name or the call-by-value ones) for executing the goal. Thus a lazy evaluation strategy
does not seem essential in this example, contradicting a conjecture posed in [30]. The
resulting set of terms {append(append(xs, Us), Zs), append(xs, Us)} in q' is not indepen-
dent. This example illustrates the need for an extra renaming phase able to produce
an independent set of terms such as {append(append' (x , , y ,) , z ,) , append"(zs, Us)} and
associated specialized program:

append(append'(nil, Us), zs) --* append" (ys, zs)
append(append'(~ : xs, U,), z~) --. ~ : append(append'(x , , Us), z,)

append"(nil , Zs) ~ zs
append"(U: U,, z,) ---, y : append"(U,, z ,)

59

a(a(x,, ~,), z+) =

t r u e a(tl~.z.+~ = tl a f x ' : a (x I
I

�9 ': ~(2(~ , y+), ~s) =
a(us , z~) = y ' [y / ~ : yl}

t r u e Zs = y y ' : a(y's, Zs) ---- y

Fig. 1. Narrowing trees for the goals a (a (z s , y s) , Z s) = y and a (x s , ys) = y .

which does have the same computed answers as the original program a p p e n d / 2 for the
query a p p e n d (a p p e n d ' (x s , ys) , Zs) (modulo the renaming transformation).

The use of efficient forms of narrowing can significantly improve the accu-
racy of the specialization method and increase the efficiency of the resulting
program, because some run-time optimizations (e.g. normalization steps) can be
performed at compile time. Different (highly efficient) instances of the frame-
work can be considered, e.g. for innermost and lazy narrowing, which resemble
the call-by-value and call-by-name cases in functional programming. The choice
of an innermost narrowing strategy allows us to formalize in [2] a call-by-value
partial evaluator for functional logic programs which makes use of the simple
mechanisms introduced so far to achieve (both local and global) termination.
Our method passes the so-called Knuth-Morris-Pratt test [12, 30], i.e. specializ-
ing a naive pattern matcher w.r.t, a fixed pattern obtains the efficiency of the
Knuth, Morris and Pratt matching algorithm [20].

5 C o n c l u s i o n s a n d F u r t h e r R e s e a r c h

PE is a semantics-preserving program transformation based on unfolding and
specializing procedures. Techniques in conventional PE of functional programs
usually rely on the reduction of expressions and constant propagation, while
transformation techniques for logic languages exploit unification-based parame-
ter propagation [12]. The driving approach essentially achieves the same transfor-
mational effect for functional programs. Few attempts have been made to study
the relationship between techniques used in logic and functional languages [12].
We think that the unified treatment of the problem lays the ground for com-
parisons and possibly generates new insights for further developments in both
fields. Since we can use all known results about narrowing, our proofs are sim-
pler and some of our results are stronger, particularly the notion of correctness,
which amounts to preserving the computed answer semantics of the goal, and
not just the ground success set semantics as in [12]. We have shown how a core

60

PE procedure whose behaviour does not depend on the eager or lazy nature of
the narrower can be defined. In [2] we considered the case of normalizing inner-
most narrowing which is known to be a reasonable improvement over pure logic
SLD resolution strategy [8, 14]. It is worthwhile to investigate the instantiation
of our framework for other strategies, such as the definition of a call-by-name
partiM evaluator based oa lazy narrowing [13, 27].

Turchin's supercompiler does not just propagate positive information (by
applying unifiers) but also propagates negative information which can restrict the
values that the variables can take by using environments of positive and negative
bindings (bindings which do not hold) [30, 31]. We think that we can strengthen
this effect in the setting of (equational) constraint logic programming [1, 18]
by using some kind of narrowing procedure with disunification, such as the one
defined in [3], in order to propagate (negative) bindings which can be gathered
during the transformation as (disequality) constraints. Automatic generation of
such generalized specializations is the subject of further work.

References

1. M. Alpuente, M. Falaschi, and G. Levi. Incremental Constra~int Satisfaction for
Equational Logic Programming. Theoretical Computer Science, 142:27-57, 1995.

2. M. Alpuente, M. Falaschi, and G. Vidal. Narrowing-driven specialization of Func-
tional Logic Programs. Technical Report DSIC-II/27/95, UPV, 1995.

3. P. Arenas, A. Gil, and F. LSpez. Combining Lazy Narrowing with Disequality
Constraints. In Proc. o] PLILP'94, pages 385-399. Springer LNCS 844, 1994.

4. K. Benkerimi and P.M. Hill. Supporting Transformations for the Partial Evalua-
tion of Logic Programs. Journal of Logic and Computation, 3(5):469-486, 1993.

5. R.M. Burstall and J. Darlington. A Transformation System for Developing Recur-
sire Programs. Journal of the ACM, 24(1):44-67, 1977.

6. J. Darlington and H. Pull. A Program Development Methodology Based on a
Unified Approach to Execution and Transformation. In D. Bjerner, A.P. Ershov,
and N.D. Jones, editors, Proc. o] the]nt'l Workshop on Partial Evaluation and
Mixed Computation, pages 117-131. North-Holland, Amsterdam, 1988.

7. N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, ed-
itor, Handbook of Theoretical Computer Science, volume B: Formal Models and
Semantics, pages 243-320. Elsevier, Amsterdam, 1990.

8. L. Fribourg. SLOG: a logic programming language interpreter based on clausal
superposition and rewriting. In Proc. o] Second IEEE Int'l Syrup. on Logic Pro-
gramming, pages 172-185. IEEE, New York, 1985.

9. Y. Futamura. Partial Evaluation of Computation Process - An Approach to a
Compiler-Compiler. Systems, Computers, Controls, 2(5):45-50, 1971.

10. J. Gallagher. Tutorial on Specialisation of Logic Programs. In Proc. of PEPM'93,
pages 88-98. ACM, New York, 1993.

11. J. Gallagher and M. Bruynooghe. Some Low-Level Source Transformations for
Logic Programs. In M. Bruynooghe, editor, Prec. o] ~nd Workshop on Meta-
Programming in Logic, pages 229-246. Department of Computer Science, KU Leu-
yen, Belgium, 1990.

12. R. Glfick and M.H. Serensen. Partial Deduction and Driving are Equivalent. In
Proc. of PLILP'9.~, pages 165-181. Springer LNCS 844, 1994.

6]

13. M. Hanus. Combining Lazy Narrowing with Simphflcation. In Proc. o] PLILP'9~,
pages 370-384. Springer LNCS 844, 1994.

14. M. Hanus. The Integration of Functions into Logic Programming: From Theory
to Practice. Journal o] Logic Programming, 19&20:583-628, 1994.

15. S. Hflldobler. Foundations of Equational Logic Programming. Springer LNAI 353,
1989.

16. J.M. Hullot. Canonical Forms and Unification. In Proc o] 5th Int'l Con]. on
Automated Deduction, pages 318-334. Springer LNCS 87, 1980.

17. H. Hussmann. Unification in Conditional-Equational Theories. In Proc. of EU-
ROCAL'85, pages 543-553. Springer LNCS 204, 1985.

18. J. Jaffar and J.-L. Lassez. Constraint Logic Programming. In Proc. o] 14th Annual
A CM Symp. on Principles of Programming Languages, pages 111-119. ACM, 1987.

19. N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Pro-
gram Generation. Prentice-Hall, Englewood Cliffs, N J, 1993.

20. D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast Pattern Matching in Strings. SlAM
Journal of Computation, 6(2):323-350, 1977.

21. J.-L. Lassez, M. J. Maher, and K. Marriott. Unification Revisited. In J. Minker,
editor, Foundations of Deductive Databases and Logic Programming, pages 587-
625. Morgan Kaufmann, Los Altos, Ca., 1988.

22. M. Leuschel and D. De Schreye. An Almost Perfect Abstraction Operator for
Partial Deduction. Technical Report CW-199, Department of Computer Science,
K.U. Leuven, Belgium, December 1994.

23. G. Levi and F. Sirovich. Proving Program Properties, Symbolic Evaluation and
Logical Procedural Semantics. In Proc. o] MFCS'75, pages 294-301. Springer
LNCS 32, 1975.

24. J.W. Lloyd and J.C. Shepherdson. Partial Evaluation in Logic Programming.
Journal of Logic Programming, 11:217-242, 1991.

25. B. Martens and J. Gailagher. Ensuring Global Termination of Partial Deduction
while Allowing Flexible Polyvariance. In K. Furukawa and K. Ueda, editors, Proc.
o] 1CLP'95, pages 597-611, 1995.

26. A. Middeldorp and E. Hamoen. Completeness Results for Basic Narrowing. Ap-
plicable Algebra in Engineering, Communication and Computing, 5:213-253, 1994.

27. U.S. Reddy. Narrowing as the Operational Semantics of Functional Languages. In
Proc. of Second 1EEE Int'l Syrup. on Logic Programming, pages 138-151. IEEE,
New York, 1985.

28. P. Sestoft and H. Scndergaard. A bibliography on partial evaluation. Sigplan
Notices, 23(2):19-27, Feb 1988.

29. M.H. S0rensen and R. GlSck. Generalization in Positive Supercompilation. In
J.W. Lloyd, editor, Proc. of 1LPS'95, 1995.

30. M.H. Scrensen, R. Gl~ck, and N.D. Jones. Towards Unifying Partial Evalua-
tion, Deforestation, Supercompilation, and GPC. In D. Sannella, editor, Proc.
o.f ESOP'94, pages 485-500. Springer LNCS 788, 1994.

31. V.F. Turchin. The Concept of a Supercompiler. ACM Transactions on Program-
ming Languages and Systems, 8(3):292-325, July 1986.

32. V.F. Turchin. The Algorithm of Generalization in the Supercompiler. In
D. Bjcrner, A.P. Ershov, and N.D. Jones, editors, Proc. of the Int'l Workshop on
Partial Evaluation and Mixed Computation, pages 531-549. North-Holland, Ams-
terdam, 1988.

