
A Faster Earley Parser 

Philippe McLean & R. Nigel Horspool 

Dept. of Computer Science, University of Victoria 
Victoria, BC, Canada V8W 3P6 

E-mml: pmclean@csc .uvic. ca, nigelh@csc .uvic. ca 

Abstract. We present a parsing technique which is a hybrid of Earley's 
method and the LR(k) methods. The new method retains the ability of 
Earley's method to parse using arbitrary context-free grammars. How- 
ever, by using precomputed LR(k) sets of items, we obtain much faster 
recognition speeds while also reducing memory requirements. 

1 I n t r o d u c t i o n  

The parsing method invented by Earley [2,4] is a highly practical parsing technique for 
general context-free grammars (CFGs). If n is the length of the input to be recognized, 
the parser requires time proportional to n 3 to recognize arbitrary context-free lan- 
guages, n 2 for unambiguous languages, and n for a large class of languages. 

The amount of processing performed while recognizing an input string is large 
compared to table-driven techniques such as the LR parser family, which includes the 
LR(0), SLR(1), LALR(1) and LR(1) methods. These LR methods, however, cannot 
accept arbitrary CFGs. They are limited to subsets of unambiguous grammars. In gen- 
eral, the LR parsing table constructed for an arbitrary CFG will contain conflicts. That 
is, one or more states will provide a choice of actions to perform for some inputs. 

A parsing method due to Tomita [6,4] overcomes the limitations of the LR meth- 
otis. It uses LR tables that may coDmin conflicts. Whenever the parser encounters a 
choice of parsing actions, it in effect clones new copies of itself to track each of the 
conflicting actions simultaneously. Some copies of the parser may subsequently reach 
a state where parsing cannot proceed (i.e. the input symbol is invalid for that state) and 
these copies of the parsers simply terminate execution. In practice, the Tomita parser 
simulates parallel execution of multiple copies of a LR parser, and it uses a DAG data 
structure to reduce the storage needed by all the parse stacks. A Tomita parser is partic- 
ularly efficient when few conflicts are encountered in the LR states. 

If all we need to do is recognize the input, a Tomita parser would likely be the 
method of choice. However, we will usually wish to execute semantic actions while 
precisely one of the parses is being performed. This is not so easy for a Tomita parser 
because many parses are being performed in parallel. One possible solution is for each 
copy of the LR parser to construct a parse tree. At the end of the input, we can traverse 
one of these parse trees to perform the desired semantic actions. We consider that the 



282 

computational work of building the parse trees negates the advantage of Tomita's 
method. 

The Farley parser builds a data structure, a threaded sequence of states, which rep- 
resents all possible parses of the input. After the input has been processed, it is 
straightforward to traverse the sequence of states to build a parse tree for one possible 
parse of the input, or to execute semantic actions for just the one parse. 

We have developed a variation on Earley's method which, like Tomita's method, 
uses LR parse tables for efficiency, while retaining the advantage of permitting seman- 
tic actions to be easily associated with the grammar. The LR tables, in effect, capture 
precomputations of all the run-time actions performed by an Farley parser. Our parsing 
method, which we call LRE(k), uses information from the LR tables and therefore 
avoids recomputing this information at run-time. The name LRE(k) reflects the fact 
that our method can be viewed as a combination of LR(k) parsing with Earley parsing. 

2 Terminology and Notation 

2.1 Context-Free Grammars 

A context free grammar G is a four-tuple ( V1; V N, P, Start ) where V T is a set of termi- 
nal symbols, V N is a set of nonterminal symbols, V N c~ V T --- 9 ,  P is a set of produc- 
tions, and Start ~ V1r is the start symbol or goal symbol of the grammar. The 
vocabulary V = VN u V~. 

An augmented grammar G' is  formed from G by adding a special goal rule 
G" = ( Vr  u { q }, VN U { S" }, P u { Start" ~ ~- Start -t }, Start" ). 

where the tokens I- and -t are delimiters that represent the beginning and end of input. 
Lower-case letters near the front of the alphabet (i.e. a, b, e ...) represent elements 

of V T, upper-case letters near the front of the alphabet (i.e. A, B, C ...) represent ele- 
merits of V N, and upper-case letters near the end of  the alphabet (i.e. X, Y, Z) represent 
elements of V. A superscript represents repetitions of  a symbol so that, for example, a 3 
represents the string aaa. Greek letters ~ [3 . . . .  represent sequences of zero or more 
vocabulary symbols. 

2.2 LR(R) Recognizers 

An item is a production which contains a marker, written as a dot, to indicate how 
much of the fight-hand side (RHS) has been recognized. Associated with each item is a 
string of k symbols (k _ 0). The string represents lookahead or right context for the 
production. For example, if k is 2, a possible item is [ A --4 a b �9 B e, dd ]. This item 
indicates that we have matched the first two symbols on the right-hand side of the rule 
A -+ a b B e. If the complete RHS is successfully matched, then the next two symbols 
in the input should be dd for this production to be valid in a parse of the input at this 
point. 

We use S to denote the set of LR(k) sets of items for the augmented grammar G ' .  
Each element of S corresponds to a state in the LR(k) recognizer for G ' .  The recog- 
nizer has an initial state 



283 

Iinitial = { [ Start" ~ �9 t- Start q, .~k ] } e S, 

and it has an accept state 

Iaeeept = { [ Start" ~ ~- Start q o, qk ] } e S. 

The transition function between the recognizer's states is 
g o t o  : S • V --~ S u { ~} 

The function goto(l,  x)  is defined as the set of all items [ A ~ a x �9 13, t 1 ... t k ] such 
that [A ~ a �9 x 13, tl ... tk ] e I. If the set goto(l ,x)  is an empty set, the transition is file- 
gal. (I.e., the string x 11 ... t k cannot follow the symbols that have been accepted so far 
in a syntactically valid input.) 

The closure of an itemset I is defined as the least set J such that I ~ J, and 
[ A ~ a �9 B 13, tl ... t k ] e J implies that VTi (11 e firstk(13, t I ... tk)): { [ B ~ �9 7, rl] I 
B---~y~ P } c J .  

The function firstk(13, 7) ---def { prefixk(c) I 137 ~ *  C, ~ e VT* }, where prefixk(~) 
is the k-symbol prefix of o. 

The set of items for each state may be partitioned into kernel items and non-kernel 
items. The former are those items which are not added to a state by closure, while the 
latter (also called completion items) are those which are added to a state by closure. 

3 C o n v e n t i o n a l  E a r l e y  R e c o g n i z e r s  

A conventional Earley recognizer has two inputs: a context-free grammar G and a 
token string x 1 x 2 ... x n, and determines if the string may be derived by G. For simplic- 
ity, lookahead will not be considered in this discussion (k = 0). 

The recognizer constructs a sequence El, E2 .... En+ 1, of sets of tuples. Each tuple 
has the form <i, p> where i is an item [A --~ ~ �9 13 ] andp is an integer referring to the 
parent Earley set Ep where the tuple containing the item with the marker at the begin- 
ning of the RHS was introduced. The k-th set is formed as a result of recognizing the 
first k-1 input tokens. 

Tuples in a state may be partitioned into active and predicted tuples. Active tuples 
may be introduced in two ways: by a S C A N N E R  operation, and by a C O M P L E T E R  
operation. The SCANNER operation introduces tuples from the previous state where 
the marker appears before the current input token; the marker is advanced past that 
token in the new item. This is the process of matching terminal tokens in a produc- 
tion's RHS, and corresponds to a shift operation in an LR parser. The COMPLETER 
operation identifies each tuple where an item's marker is at the end of a R.HS, and 
moves the marker past the LHS in items in the tuple's parent state. This operation iden- 
tities the derivation of a non-terminal, in the recognition of some RHS; an LR parser 
would perform a reduction in exactly this case. 

The COMPLETER operation introduces new tuples for every item where the 
marker appears before a non-terminal. This operation begins the recognition of possi- 
ble derivations for a non-terminal; it is the closure of a set of items. Closure is per- 
formed at parse time in a conventional Earley parser. However these closure items are 
implicit in the LR(k) recognizer. 



284 

Earley's doctoral dissertation [3] contains a proof of correctness for a conventional 
Earle), recognizer, and an analysis of its algorithmic complexity. Parse frees may be 
enumerated for all derivations of the input string by examining the sets E i, 1 < i < n+ 1. 

The conventional recognizer affords a simple implementation. However, observa- 
tion of the parser's actions reveals that the parser spends much of its time inlroducing 
new items during the completion operation. Many prediction items may not be used 
during the parse. The computation of item-set closures, a grammar-dependent opera- 
tion, is performed at parse time. It is natural to wonder whether the Earley items can be 
grouped in a manner that exploits pre-computed properties of the grammar. Our solu- 
tion is to group items into sets in exactly the same way as in the states of a determinis- 
tic (and possibly inadequate) LR(k) finite-state automaton. 

4 L R E -  A F a s t e r  E a r l e y  R e c o g n i z e r  

The new parsing method is named LRE(k); this represents the hybrid nature of the 
algorithm as a composition of the LR(k) and Earley parsing methods. 

In the following description, we use  x 1 x 2 ... x n to represent the input to the recog- 
nizer. So that lookahead sets are properly defined, we assume that the input is termi- 
nated by k end-of-file delimiters. I.e., xmq = -t, for 1 < i < k. 

Our algorithm is based on a conventional Earley parser and its correct operation 
may be established by comparing its actions to an Earley parser's actions. A conven- 
tional Earley parser uses items of the form [ A --~ cx �9 [3, I1 ... tk, P ], where A -o o~ �9 13 is 
a marked production, t 1 ... t k is the lookahead for the item, and p is a reference back to 
the state where recognition of the role A -~ cz ~ commenced. Our algorithm takes 
advantage of the fact that the first two components of  the Earley item represent an item 
in one or more states of the LR(k) recognizer. We therefore implement states in our 
LRE parser in terms of states in the LR(k) recognizer. The advantages of our represen- 
tation are (1) we can use the LR(k) recognizer's tables to determine actions for the Ear- 
Icy parser, (2) the lookahead strings are not computed dynamically, and (3) the new 
representation can be implemented in a manner which uses much less storage. 

A state in our  L R E  r e c o g n i z e r  w i l l  b e  ca l led  an E a r l e y  s tate ,  and will be written as 
E m. State E m is reached after recognizing the token string x 1 x 2 ... Xm4. The state E m 
is represented by a set of tuples { (II, BI) , (I 2, B2) .... } where each I i e S is the number 
of some state in the LR(k) recognizer and B i is an organized collection of back-point- 
ers to Earley states. In programming terms, each B i could be implemented as an array 
of lists of LRE state numbers, where elements in the array are in one-to-one correspon- 
dence with items in LR(k) state I i. In more formal terms, we can represent B i as a list 
of list of integers [ Fo i I l ,  bi 1 2,  bi 1 3 - " ] ,  [bi 2 1, bi 2 2 . . . .  ] . . . .  [])l n 1, bi - 2 .... ] ] where 
each b i x y is an integer in the range 0 to k inclusive, and LR(k) state I has n items. 

As an example, suppose that LRE state F_. 3 has the following representation: 
{ (17, [ [1,2], [3], [3] ] ), (23, [ [2] ] ) } 

This would mean that state E 3 represents a mixture of the same items as found in the 
LR(k) states numbered 17 and 23. State 17 must have three items (the length of the list 
that completes the tuple with state number 17) - let us suppose that these items are: 



285 

A - > A  �9 B C  a] 

X ---> a A  �9 D 0% 

A--> . b  o b 

where we have written the lookahead strings as r t, a 2 and a3 respectively. Similarly, 
LR(k) state 23 must have just one item and let us suppose that this item is 

C--> a b �9 b ~] 

Now, our LRE state represents an Earlcy state which contains exactly these items: 
{ (A~A. BC, Ctl, l), (A--->A �9 BC, cq, 2), (X~aA. D, a2,3), 

(A~ �9 b, or3, 3),(C---~ ab �9 b, ~],2) } 

The first tuple in E 3 represents two copies of the first item of LR state 17, where one 
copy is associated with a pointer back to state I and the other with a pointer back to 
state 2. And similarly for the other items in LR states 17 and 23. 

Our parsing algorithm is based on Earle/s, but it has been modified to work with 
the different state representation. It has two main functions named SCAN and REC- 
OGNIZER. 

Given a LRE state Es, the function SCAN( E s, X, t ) constructs a new LRE state 
which represents Earley items where the marker has been past the token X in all appli- 
cable Earlcy items represented in set Es. 

The procedure RECOGNITF~R( X 1 ..... X n ..... Xn+ k ) determines whether the token 
string x I ... x n is in the language generated by G. Note that each of the symbols xn+ I, 
xn.2 ... Xn+k is the Symbol -I. These extra k symbols are needed to provide right context 
for the final reductions in the parse. RECOGNIZI~R constructs a sequence of Earley 
states, from which a set of valid parse trees may be enumerated. Code for the SCAN 
function is shown in Figure I, while code for the RECOGNIZER is given in Figure 2. 

The code uses the data structures and tables explained below. The tables may bc 
created during the LR(k) parser construction algorithm. 
�9 Each LRE state is represented by a set whose elements are structures with two 

fields. One field is named State and holds a state number for the LR(k) recog- 
nizer. The other field is named BackPtrs and is an array of lists of integers. An 
element BackPtrs [ • ] holds the state numbers that should be associated with the 
i-th item of LR(k) state with number St at e. 

�9 TbearrayNumberOfltems[s givcs the number of items in LR(k) statc i. 
�9 The array SHIFT [ s, x] holds the shift actions for the LR(k) recognizer. If the 

current LR(k) state is numbered s, then SHIFT [ s, x ] gives the number of the des- 
tination state to shift on symbol x. If a valid shift action is not defined for symbol x, 
SHIFT [ s, x] holds -l. 

�9 The array Dest ItemPosit ion [m, i ] gives the correspondence between items 
in one LR(k) state and those in another LR(k) state. In particular, if  item i in the 
LR(k) state numbered m is A ~ ct �9 X I], then a shift on the symbol X will lead to a 
unique destination LR(k) state that contains the item A --~ ct X �9 13. The number 
held in Dest ItemPos it ion [m, i ] is the number of this item in the destination 
state. If item i in state m does not have the specified form (i.e. the marker is at the 
end of the right-hand side), we assume that DestItemPosition Ira, i ] holds 
the value -1. 



286 

function SCAN(E s, X, t) 

begin 

result := O; 

for origin := each tuple in E s do 

begin 
dest := Shift[origin. State,X]; 

if dest k 0 then 

begin 

newTuple := < dest, emptyBackPtrArray >; 

(* process kernel items of new state *) 

for i := 1 to NumberOfItems[origin] do 
begin 

j := DestItemPosition[origin, i]; 

if j k 0 then 
newTuple. BackPtrs[j]:= origin. BackPtrs[i] 

end; 

(* process non-kernel items of new state *) 

for j := 1 to NumberOfItems[dest] do 
begin 

if newTuple.BackPtrs[j] = empty then 

newTuple. BackPtrs[j] := It] 

end; 

result := MERGEl(result, newTuple) 

end 
end; 

return result 
end SCAN; 

(* MERGE1 is an auxiliary function called by SCAN *) 
function MERGE1( L, T ) 

begin 

for elem := each element of L do 

if elem. State= T.State then 

begin 

for i := each index of elem. BackPtrs do 

elem. BackPtrs[i] := elem. BackPtrs[i] U 

return L; 

end; 

return L U { T }; 

end MERGE1; 

T.BackPtrs[i]; 

Fig. 1. The SCAN Function 



287 

function RECOGNIZER( x I ... Xn+ k ) 

begin 

E 0 := { < Iinitia I, [ [0]] > }; 

E I := SCAN(E 0, F, I); 

for i = 1 to n do 

begin 

Ei. I := SCAN(E i, x i, i+l) ; 

repeat 

for LS := each element in El+ 1 do 

begin 

(* process reduce items *) 

rs := ReduceIte~List(LS.State, Xi+iXi+2...Xi+k); 

for i := each element in rs do 

be~in 

lhs := LeftHandSymbol[LS.State, i]; 

for j := each element in 

LS.BackPtrs[i] do 

El+ 1 := MERGE(El+I, SCAN(Ej,lhs,i+I)); 

end 

end 

until Ei§ I does not change; 

if El+ 1 = ~ then return failure; 

end 

if En+ 1 = { < Iaccept, [[0]] > } then 

return success 

else 

return failure 

end RECOGNIZER; 

(* MERGE is an auxiliary function used above *) 

functlon MERGE( El, E2 ) 

begin 

result := El; 

for elem := each element in E2 do 

result := MERGEl(result, elem); 

return result; 

end MERGE; 

Fig. 2. The RECOGNIZER Function 



288 

�9 The array ReduceItemList [m, ct] is a list of the positions of all items in LR(k) 
state m where the marker is at the end of the right-hand side and where the looka- 
head string for these items is a.  

�9 The array LeftHandSymbol [ra, i ] gives the symbol which appears on the left- 
hand side of the i-th item in LR(k) state m. 

5 An Example of Operation 

To illustrate the operation of the LRE(k) parsing method, we use the ambiguous gram- 
mar" 

1. E ~ E + E  
2. E - - ~ n  

This grammar is augmented by the extra rule 
O. S --> F E-I 

For simplicity, we choose k = 0. From this grammar, we can derive the LR(0) rec- 
ognizer which has the states and actions shown below in Table 1. Each shift action is 
preceded by the symbol which selects that shift action. Because a LR(0) parser does 
not use lookahead, a reduce action is performed no matter what the next symbol is. The 
word any represents the fact that any symbol selects the specified reduce action. The 
table contains conflicts, in particular note that state 7 implicitly contains two different 
actions for the case when the lookahead symbol is +. 

Table 1: LR(0) Recognizer for the Example Grammar 

Item 
State Item Parse Actions 

NO. 

1 1 [ S - ~  �9 t- E-t ] F Shift 2 

I [ s ~  ~.Eq] 
E Shift 3 

2 2 [E~ *E+E] 
n Shift 4 

i i  

3 

6 

7 

3 [ E ~  .n] 

1 [ S ~  t- E . q ]  + Shift 6 

2 [ E - ~  E . + E ]  -I Shift 5 

1 [ E ~  n*] any Reduce2 

1 [ S --~ ~- E -~ * ] any Reduce 0 

1 [E-> E + - E ]  
E Shift 7 

2 [E-~ . E + E ]  
n Shift 4 

3 [ E ~  .n]  

1 [ E ~  E + E . ]  + Shift 6 

2 [ E ---> E * + E] any Reduce 1 



289 

From that LR(0) table we derive the tables shown below in Figure 3. Only the signifi- 
cant entries in the two rectangular arrays, DestltemPosition and 
LeftHandSymbol arc shown (the missing elements in these arrays should never be 
accessed). S~mflariy, only the significant envies in the S h i f t  array are shown; if any 
Other element is accessed the result should be -1. 

Fig. 3. Tables Used In Parser Example 

Item 
State 

No. 

1 1 

2 1 

2 2 

2 3 

3 1 

3 2 

4 1 

5 1 

6 1 

6 2 

6 3 

7 1 

7 2 

DestItem LeftHand 

Position Symbol 

I S 

I S 

2 E 

1 E 

1 S 

1 E 

-1 E 

-1 S 

1 E 

2 E 

1 E 

-1 E 

1 E 

State 

1 

2 

3 

4 

5 

6 

7 

Reduce- 
ItemList 

t 

[] 

[] 

[] 

[l] 

[l] 

[] 

[1] 

i 

Number 

Of 
Items 

1 

3 

2 

1 

1 

3 

2 

Symbol 
i 

F 

E 

n 

+ 

4 

E 

n 

+ 

State shi ft 

1 2 

2 3 

2 4 

3 6 

3 5 

6 7 

6 4 

7 6 

We now trace the states of the LRE(0) parser on the input string n+n+n. The REC- 
OGNIZER function begins by initializing the set E 0 with the initial LRE state 
{ ( 1,[0] )}. It represents item 1 of state 1 in the LR(0) recognizer - indicating that the 
RHS of the rule S--+ F E 4 is to be recognized. 

Each numbered step in our trace corresponds to the processing of one input sym- 
bol, and begins by showing the LRE state that is computed after seeing that input sym- 
bol. An explanation of the state's derivation is provided for the first few steps only. 

= =  The start of input symbol I- is processed =--- 
I. E l = { ( 2,[ [0], [I], [I] ] ) }. RECOGNIZER called SCAN(E o, F, I), which looked 



290 

up the action for LR(0) state 1 when the input is k. Thus it created the LRE item 
( 2,[ [], 9, D ] ) and then it failed in the back pointers. The list [0] was copied from 
the origin item, while the two lists containing [1] correspond to completion items. 

=---~ The first input symbol n is now processed ~---= 
2. E 2 = { ( 4, [ [1] ] ), ( 3, [ [0], [1] ] ) }. RECOGNIZER called SCAN(E l, n, 2). The 

( 4, [ [1] ] ) element is created because of the LR(0) action for state 2 when the 
lookahead symbol is n. The other items are created by RECOGNIZER because 
item 1 in LR(0) state 4 is a reduce item, and the reduce action is triggered by the 
next input symbol which is +. The LHS symbol for that item is E, and RECOG- 
NIZER called SCAN(El, E, 1) to ere, ate the two extra items. 

= ~  The second input symbol + is processed =~--- 

3. E 3 = { ( 6 , [ [ 1 ] , [ 3 ] , [ 3 ] ] ) } .  

= ~  The input symbol n is processed =m.~. 

4. E4= { (4, [ [3] ] ), (7, [ [1], [3] ]), (3, [ [0], [1] ] ) }. 

=~-~- The input symbol + is processed = ~  

5. E 5= { (6, [ [1,3], [5], [5] ] )  }. 

= ~  The input symbol n is processed =re.N_ 

6. E6 = { (4, [ [5] ] ), (7, [ [1,3], [3,5] ] ), ( 3, [ [0], [1] ] ) }. 

= ~  The end-of-input symbol q is processed = ~  

7, E 7 = { ( 5 , [ 0 ] ) } .  

6 An Additional Enhancement 

The algorithm presented above can be further improved. The implementation used in 
our experiments does not immediately record non-kernel items in a LRE state (except 
when handling productions with an empty RHS). Their proeessing is deferred until 
scanning to the next state occurs. By recording the number of kernel items in each 
LR(k) state, and by consulting the D e s t  I t e r n P o s i t i o n  table, it can be detemfined 
whether or not a particular item in a destination state came from a kernel item in the 
source state. If it did, the B a c k P t r  list is copied from the previous state. If it did not, 
the list [ t-1 ] is supplied, where t is the number of the current LRE state. 

The additional improvement achieves significant space and time savings, because 
many predictions items in an Earley parser are fruitless 

7 Experimental Results 

Lookahead significantly affects the speed of an Earley parser. In general, it is used to 
eliminate items from the sets of items maintained by the parser. Fewer items imply that 
fewer fruitless parsing possibilities are explored. On the other hand, a conventional 



291 

Farley parser computes the lookahead contexts for items at run-time, and choosing a 
large value for the lookahead k will waste execution time. In Figure 4, we compare the 
speed of a conventional Farley parser and our LRE parsing method for k=0 and k=l. 

t~ 

18 

16 

14 

12 

i0 

8 

6 

Farley with k : 0 

Farley with k = I § 
LEE with LR(0) states Q 

IRE with LALR(I} states x 

2 

0 - w 

0 

+ o + 

�9 * 
o 
+ 

o 
+ 

1000 2000 

o 
+ 

�9 e 

+ § 

+ 
+ 

o 

+ �9 

§ 

.+ 

| 

e 

+ + 

I I I I 

3000 4000 5000 6000 

Strina Lenath (tokens) 

Fig. 4. Effect of Lookahead on Parsing Speed 

7000 

Figure 4 already demonstrates that LRE(k) is a much faster parsing method than 
the conventional Earley parsing method. In Figure 5, we show an additional compari- 
son against a parser generated by the freely distributed parser generator bison [1]. 
(Other measurements, not displayed here, reveal that a parser generated by yacc [5] 
yields very similar results.) Our grammar for these experiments was Roskind's ANSI 
C grammar. The grammar contains one ambiguity, namely the dangling else problem. 
This ambiguity is automatically eliminated from the generated parser when yacc and 
bison are used; it is retained by the Earley parsers. 

For an unambiguous grammar (or when the ambiguities have been eliminated, such 
as with the bison's interpretation of the Roskind C grammar), recognition time is pro- 
portional to the length of the input. For an ambiguous grammar, the recognition time 
may increase as the cube of the length of the input. Figure 6 shows timing measure- 
ments when parsing with the ambiguous grammar:. 

S ~ S S  I a, 



292 

18 

16 

14 

12 

10 

B 

6 

4 

2 

0 
0 

I I 

Earley with k = I �9 
IRE with LALR{I) states + 

Bison 13 

0 

O ~  

0 

O 
0 

O 

O 

O 

0 

+ + + 
�9 o + + +  

o �9 + + +  § + + + 

m I I 

1000 2000 3000 4000 5000 6000 
Strinu Lenath (tokens) 

Fig. 5. Parser Speed for Roskind C Grammar 

7000 

.= 

-4  
t~  

l b 0  

140 

120 

1 0 0  

80 

r i i i i | i 

Farley with k = I o 
LRE with LALR(1) states + 

60 

4 0  

2 0  

0 
1 0 0  

O 

e 

0 

0 

0 

+ 
O § + 

�9 § 
0 O + + 

+ + + I" + ~ , , , , 

120 140 160 180 200 220 240 260 
Strina hen~h (tokens) 

Fig. 6. Parser Speed with an Ambiguous Grammar 



293 

8 Conclusions 

We have modified Earley's parsing method so that it can take advantage of precom- 
puted LR(k) sets of items. The result is a hybrid parsing method, LRE(k), which can 
still handle general context-free grammars but which is comparable in speed to a yacc- 
generated or bison-generated parser. However, yacc and bison can, of course, only rec- 
ognize unambiguous languages that are based on LALR(1) grammars with conflict 
elimination in the generated parser. The LRE(k) parsing method is 10 to 15 times faster 
than a conventional Earley parser, while requiring less than half the storage. 

Acknowledgements 

Funding for this research was provided by the Natural Sciences and Engineering 
Research Council of Canada in the form of a summer fellowship for the first author 
and a research grant for the second author. The initial motivation for working on this 
problem is due to Gordon Cormack. 

References 

1. Donnelly, C., and Stallman, R. BISON: Reference Manual. Free Software Founda- 
tion, Cambridge, MA, 1992. 

2. Earley, J. An Efficient Context-Free Parsing Algorithm. Comm. ACM 13, 2 (Feb. 
1970), 94-102. 

3. Earley, J. An Efficient Context-Free Parsing Algorithm. Ph.D. Thesis, Carnegie- 
Mellon University, 1968. 

4. Grune, D., and Jacob, C.J.H. Parsing Techniques: a practical guide. Ellis Hor- 
wood, Chichester, 1990. 

5. Johnson, S.C. YACC: Yet Another Compiler-Compiler. UNIX Programmer's Sup- 
plementary Documents, vol 1, 1986. 

6. Tomita, M. Efficient Parsing for Natural Language. Kluwer Academic Publishers, 
Boston, 1986. 


