
Probabilistic Duration Automata

for Analyzing Real-Time Systems

Louise E. Moser*

P. M. Mell iar-Smith*

A B S T R A C T 1 We present a novel methodology and tools for analyzing
real-time systems that use probability density functions (pdfs) to represent
the durations of operations within the system. We introduce the concept
of a probabilistic duration automaton in which clocks are defined by pdfs
rather than by explicit times. A state of a probabilistic duration automaton
is a set of active clocks, and a transition is triggered by the expiration of one
or more of these clocks. We present an algorithm for determining the prob-
ability that a clock in a state expires, the residual pdfs for the unexpired
clocks, the probability of each transition, the probability of each state, and
the duration of each state represented as a pdf. The algorithm also calcu-
lates the pdfs for durations of intervals between pairs of states within the
automaton. These pdfs are used to determine whether a real-time system
can meet its probabilistic timing constraints. An example application illus-
t rates the use of this methodology in analyzing the real-time behavior of a
four-phase handshaldng protocol used in input /output systems.

1 Introduction

Trad i t i ona l ly , r ea l - t ime sys tems have been defined by abso lu te r equ i remen t s
t h a t cer ta in events, t yp ica l ly i npu t or o u t p u t opera t ions , mus t occur at or
before precisely defined m o m e n t s in t ime . To es tabl ish t ha t such deadl ines
are me t , ex is t ing me thodo log ies and tools use worst-case uppe r bounds on
the du ra t i ons of ope ra t ions wi th in the sys t em [8, 13, 14, 15].

C o m p l e x r ea l - t ime sys tems, however, involve unre l iab le c o m m u n i c a t i o n
be tween d i s t r i bu t ed processors, a synchronous opera t ions , unp re d i c t a b l e
heur i s t ic a lgor i thms , a n d / o r recovery f rom faults; fu r the rmore , m o d e r n
mic roprocessors explo i t mechan i sms such as caching and cycle s tea l ing by

*Department of Electrical and Computer Engineering, University of California, Santa
Barbara, CA 93106.

1This work was supported in part by ARPA Grant Nos. N0O174-93-K-0097 and
N00174-95-K-0083.

370

high-speed inpu t /ou tpu t devices. These characteristics introduce signifi-
cant variations in the t ime required to produce the results. The worst-case
upper bound for the duration of an operation may be substantially worse
than the mean duration, but the worst-case upper bound may be realized
only very infrequently.

A design based on the worst-case upper bound for the duration of ev-
ery operation may be unnecessarily conservative, since it must allow for
the possibility that each of these rare occurrences coincide. Thus, the per-
formance calculated for the real-time system may be much worse than the
performance that the system can actually provide. However, i f the real-time
system is designed using mean durations, occasionally the system may fail
to meet a deadline. Such a failure to meet a deadline may be acceptable,
provided that its probability is small enough and can be estimated reason-
ably accurately.

We describe a novel methodology and tools for analyzing real-time sys-
tems that represent the durations of operations by probability density func-
tions (pdfs), rather than by upper and lower bounds. For some real-world
applications in which real-time performance is critical, such as the Aegis
air defense system, these pdfs are indeed known. The types of questions
that our probabilistic analysis methodology can answer are

�9 What is the duration of the interval between two events, expressed
as a probability density function?

�9 What is the probability of reaching a transient state, and what is the
probability of being in a particular state in equilibrium?

�9 What is the probability that the duration of an operation exceeds the
deadline for the operation?

As the basis for this methodology, we introduce the concept of a proba-
bilistic duration automaton in which a clock is a probability density func-
tion. In each state of the automaton, several clocks may be active. A transi-
t ion from one state to another state occurs when one or more active clocks
expire; this may result in some of the expired clocks being reset.

We present an algorithm for evaluating such a probabilistic duration
automaton. The algorithm determines the probabilities of the transitions
out of a state, the rates of flow into a state, and the probability of being
in a state. It also determines the probability that an active clock in a state
expires, as well as the residual values of the clocks that do not expire,
expressed as pdfs. The algorithm calculates the pdfs for the durations of
the states and the pdfs for durations of intervals between pairs of states
within the automaton. These pdfs are used to estimate the probability
that a system can meet its real-time deadlines. Much of the interest of
the analysis derives from the care required to ensure that two pdfs are
convolved or combined only if they are independent.

371

As an application of this methodology, we consider the probabilistic t im-
ing constraints of a four-phase handshaking protocol used in inpu t /ou tpu t
systems. This example demonstrates that manual analysis of these proper-
ties is difficult and that mechanical tools are essential.

2 The Clocks

In our methodology, a clock c is defined by a probabili ty density function
tha t gives the probabilities for the possible durations of an interval between
two events. The domain of the pdf, i.e., the set of durations, is a finite set
of positive rationals. Multiplication by the least common multiple of the
denominators of these rationals yields a set of positive integers. Thus, with-
out loss of generality, we assume tha t the durations are positive integers.
We assume further tha t all of the pdfs have the same domain {1, 2 , . . . , m}
for some integer m > 2. The range of a pdf is a set of non-negative rationals
between 0 and 1 such tha t the sum of these rationals is equal to 1. Thus,
a clock c is defined by a pdf

m

5: { 1 , 2 , . . . , m } --~ [0, 1], where ~ 5 (x) -- 1
X=I

For each duration x, ~(x) is the probabil i ty that the interval from the t ime
at which c was last set until it expires has duration exactly x.

Our methodology exploits the three operations of convolution, residue,
and disjunction of pdfs. Convolution gives the pdf for the duration of an
interval tha t is the sequential composition of two intervals, while residue
gives the remainder of clock cl, contingent on clock c2 expiring before Cl,
expressed as a pdf. Some intervals can be formed in several independent
ways, each with a probabil i ty of occurrence and with its own pdf. Disjunc-
t ion gives the pdf for the duration of an interval as the sum of these pdfs,
weighted by their corresponding probabilities. These three operations are
well-known and, thus, we do not define them here. When we employ these
operations in our analysis, we must however ensure that the pdfs for the
clocks being combined are indeed independent.

3 The Probabilistic Duration Automaton

A state of a probabilistic duration au tomaton is a set of active clocks. A
transit ion from one state to another state in the au tomaton corresponds to
the expiration of one or more active clocks. More specifically, we have the
following definition.

372

A probabilistic duration automaton is defined by

�9 A finite set S = {s~l l < i < N} of states, a set T C C_ S • S of
transitions between states in S, and a set C = {el [1 < i < M} of
clock names

�9 An initial s tate in S and a set C = {~i [1 < i < M} of initial clock
values (pdfs), one per clock name

�9 For each state si E S, a set A~ C C of clocks tha t are active in
state sl

�9 For each transit ion (s i , s j) E T, a set Es,,sj C_ As~ of clocks whose
expiration in state s~ triggers that transition.

All of the clocks in E~,s~ expire at the same moment ; none of the clocks
in Ra~,s, = As, - Es~,8, expires either before or at that moment . The clocks
in Rs,,aj have residual values on the transition (si, sj), and remain active
in state sj , i.e., Rs,,s~ C_ As~. When a clock c is set or reset in any of

the states, it is set to the initial clock value ~ E C for tha t clock. A clock
must expire before it can be reset. The clocks that are set or reset on the
transition (si, s j) are the clocks in Asj - Rs~,sj.

Following the s tandard theory of Markov models, we consider two types
of automata: equilibrium au tomata and transient au tomata . An equilibrium
automaton is irreducible (every state can be reached from every other state)
and aperiodic (there is no fixed period of returning to any state). The theory
of Markov models tells us that, if any initial clock has two or more coprime
durations with non-zero probabilities, then the au tomaton is aperiodic and
the equilibrium probabilities of the states are t ime independent. A transient
automaton has a single initial state, is reducible, and contains no irreducible
subautomata . The probabilities of the states of a transient au tomaton are
t ime dependent.

4 The Algorithm

A specification of a real-time system determines the set S of states and the
set T of transitions of a probabilistic duration automaton, the set As~ of
clocks tha t are active in state sl, the set Es,,si of clocks whose expiration

cause the transition (sl, sj), and the set C of pdfs that are the initial values
of the clocks when they are set or reset.

Our algorithm determines the duration of each state or, equivalently,
the t ime between the transitions into and out of tha t state, expressed as
a pdf. I t also determines the duration of the interval between each pair
of states, from the t ime of the transitions into the first s tate to the t ime
of the transitions into the second state, expressed as a pdf. To determine

373

these pdfs, the algorithm calculates the probabilities of the transitions out
of each state, the rates of flow into each state, the probabili ty of being in
a state, and related pdfs. The steps of the algorithm are presented below.
Further explanation of the algorithm is given in Section 5.

4.1 Elaboration of the Automaton

The input to the algorithm is a probabilistic duration au tomaton obtained
f rom the user 's specification. If this au tomaton is reducible but contains
an irreducible subautomaton, then the algorithm separates out that sub-
au tomaton and analyzes it separately. Such subautomata are replaced by
absorbing states in the remaining automaton. Thus, the algorithm parti-
tions the au tomaton into zero or more equilibrium au toma ta and zero or
more transient au tomata . If the analysis subsequently finds that some of
the transit ion probabilities are zero, then it may be possible to part i t ion
the au tomaton further into simpler equilibrium au tomata and transient
au tomata .

The algori thm must also eliminate correlations between pdfs before con-
volving or combining them. We define a state to be disjunctive if each of
its in-edges has at most one unexpired clock and all of its in-edges have
no unexpired clock or the same unexpired clock; otherwise, the state is
non-disjunctive. A state that is disjunctive has the desirable property that
the residual pdfs on its in-edges can be combined. The algorithm splits
non-disjunctive states into disjunctive states as outlined below.

1. Until each state with more than one in-edge is a disjunctive state, for
each non-disjunctive state with more than one in-edge and for each
such in-edge,

a. Split tha t state by creating an additional state with

i. The same set of active clocks as the given non-disjunctive
state

ii. A set of out-edges to the same destinations as the set of
out-edges from the state being split, with corresponding in-
edges having the same set of expiring clocks

b. Change the destination of one of the in-edges to be the newly
created state.

2. Part i t ion the au tomaton into zero or more transient au toma ta and
zero or more equilibrium automata .

3. Set est imated rates of flow into each state and estimated residual pdfs
for each unexpired clock.

Note that , after such elaboration, the automaton may still contain non-
disjunctive states having one in-edge and two or more unexpired clocks on
tha t in-edge.

374

4 . 2 C a lc u la t i on f o r I n d i v i d u a l S t a t e s

For each state of a probabilistic duration automaton, the algorithm de-
termines, the probabil i ty of taking a transit ion out of tha t state, the con-
ditional pdfs for the duration of the state, the conditional pdfs for the
unexpired clocks in the next state, and the rate of flow into the given state
(Steps 1-3 below). From these quantities, the algorithm then derives the
probabil i ty that a clock expires in the state, the pdf for the duration of the
state, the pdf for each unexpired clock in the next state, and the probabil i ty
of being in the given state (Steps 4-7 below).

For each automaton, until convergence is achieved,

. For each disjunctive state si, calculate the residual pdf for the un-
expired clock in state si from the residual pdfs for that clock on its
in-edges, weighted by the rates of flow along those in-edges.

. For each state si (disjunctive or not), trace backwards through the
automaton, s tart ing with si, until a disjunctive state is found. Denote
this sequence of states by a l , �9 �9 a,,, where trl -= Sh is the disjunctive
state with the single unexpired clock ch and a,~ = sl. Note that this
sequence is unique, tha t a~ is non-disjunctive for 1 < k < n and that ,
if si is itself disjunctive, then the sequence contains the single state
si. In the formulas below, we consider each set of possible durations
xl , �9 �9 xn of the states a l , . . . , an in this sequence.

For each clock c that is active in some state of this sequence, let ic
be the lowest index in the sequence for which c is active and uc the
highest or upper index. For each clock c that is not active in any
s tate of the sequence, set both lc and uc to 0. If a clock is reset at any
point in the sequence and is active both before and after that point,
regard tha t clock as two distinct clocks, one before the reset and one
after. If c is the unexpired clock in the disjunctive state Sh, let ~ be
the residual pdf for c in that state; otherwise, let ~ be the initial pdf
corresponding to clock c when it is set or reset. If lc = uc = 0, extend
the domain of ~ to include x0 -- 0 and set ~(x0) = 1. If x is outside
the domain of ~, set ~(x) = 0. As usual, interpret an empty sum to
be 0 and an empty product to be 1. Set 6(p) = 1 if the predicate p is
true and 5(p) = 0 otherwise.

3. For each edge (si, sj) out of state si, calculate the following:

a. The probabili ty of taking the edge (si, sj) out of state si

375

psi,s t =

$1...grr cEC si,s j lc<_k<_uc cER, I , . j ~c>0 lc<k<_Uc

= 1 ;" " : :o ' - x c e " i lr176 c e A , i lo<_k<u~

b. The probability of taking the edge (s~, sj) out of state si, contingent
on the duration of the unexpired clock Ch at the start of state Sh
being Zh ,

Ps,,s~lzh =

~, . .= . ro~_<k_<~o~ \~eB~ lo_<k_<~o \~ER.,,.S ~>0 Zo<_k<_,,~]]

=:~.~0-, \ to,_<k_<,o, \ ~eB~ lo_<k_<,.,o/ ve.a,,~,>o lo<k<,,o//

Here B n = (C - R , , . ~) - {ch} and BA = (C - A , ,) - {ch}.

c. The pdf for the duration of state or, = si, contingent on the edge
(si, s j) being taken,

d, , i , , , , , (z) =

= > 0 l~<_k<_u~]

=~..,=, cEC , , ,~ l~<_k<_u~ \ c E ",, 'J =>0 l~<_k<_Uc

d. The pdf for the unexpired clock a E Rs,,sj in state s j , contingent on
the edge (s i , s j) being taken,

a, j l , , , , i (z) =

=,...=,\ t.<k_<~,. \~ec-n. , , . i zo_<~<,,o / \~en.,,. j-{a}=>o lo_<k_<~,o / /

E
=>0 G<_k<_ur]

376

e. From the probabilities ps,,sj of the edges (si, sj), calculate the rate
fs, of flow into each state si by solving a system of linear flow-balance
equations, in the usual manner.

4. From the probabilities Ps~,si of the edges (si, sj), calculate the prob-
ability that a clock c expires in state si by summing the probabilities
of the edges on which c expires.

5. From the probabilities P~i,~j of the edges (si, sj) and the pdf d~ils~,,J
for the duration of state s~, contingent on the edge (si,sj) being
taken, calculate the (unconditional) pdf ds~ for the duration of state
si as a weighted sum.

6. From the probabilities Ps~,s~ of the edges (s~, sj) and the pdf a~ls~,s,
for the unexpired clock a in state sj, contingent on the edge (si, sj)
being taken, calculate the (unconditional) pdf &~, for the unexpired
clock a in state sj as a weighted sum.

7. From the rate fs~ of flow into each state si and the mean duration d~,
of state si, calculate the probability of being in state si by multiplying
fsi by d~, and then normalizing this product over all states.

Note that the equilibrium automata and the transient automata are han-
dled differently in Step 3e, which involves the solution of the system of
flow-balance equations, and in Step 7, which as given applies only to the
equilibrium automata. For the transient automata, the probability of each
non-absorbing state is 0 and the probability of each absorbing state is de-
termined solely by the rate of flow into that state.

3.3 Calculation fo r Intervals between Pairs of States

The algorithm also determines the residual pdfs for the clocks and the
conditional pdfs for the durations of paths and intervals between pairs of
states (Steps 1-5 below). From these pdfs, the algorithm then derives the
(unconditional) pdfs for the durations of the intervals between pairs of
states (Step 6 below).

For each automaton, until convergence is achieved,

1. First consider a single sequence of states a l , . . . , ~ , , crn+l, where al ----
Sh, an = Si and a , + l = sj. Here, the states Sh and sj are disjunctive
and the states c~k, 1 < k < n + 1, are non-disjunctive: In Step 3
below, we calculate the pdf for the duration of this path. In Step 5,
we calculate the pdf in the more general case, where there are multiple
paths between Sh and sj and the intermediate states of those paths
may be either disjunctive or non-disjunctive. This can be generalized
further to the case where Sh and sj are not necessarily disjunctive.

377

Let the unexpired clocks in states Sh and sj be c h and cj , respectively.
We assume here that Ch and cj are different clocks, i .e., Ch is not the
residual clock on the edge (s i , s j) .

2. For each edge (s i , s j) out of state si, calculate the rate of flow on the
edge (s i , s j) , contingent on the residual duration of clock ch at the
s tar t of state Sh being Zh and on the residual duration of clock cj at
the s tar t of state sj being z j ,

xl . . .xn lch ~_k~_ua h lej ~_k~_uej cEC--{Ch,Cj} la<k~_uc

xl . . .xn,x lch <k<_ur Icj <k<u~j cEC-{cu,cj] lc<k<uc

3. For a single pa th between states Sh and s j , calculate the pdf for the
duration of that pa th from the start of Sh to the start of s j , contingent
on the residual duration of clock Ch at the start of Sh being Zh and
on the residual duration of clock cj at the start of sj being z j ,

d , ~ , , j l ~ , z j (y) =

x~...x~\ l<k<n l~ <_l:<_u~ h l~ <_k<u~ i cEC-{c~,ci} l~<_k<_u~

~:a...~, l~h <k<_u~ h l~<_k<_u~j cEC-{c~,c~} l~<l~<_u~]

4. Calculate the pdf for the unexpired clock cj in state s j , contingent
on the edge (si, s j) being taken and on the residual duration of clock
Ch at the start of state Sh being Zh,

Z ((zh = Zx)
x l . . . ~ lc h <_k<u~ h

• H
Icj _<k<u~j cE6"--{Ch,Cj} l~<k_<u~

xl...x~,x l~ /r ceC--{ch,cj} l~<_k<_ur

378

5. For the interval (aggregate of paths) between states Sh and st, cal-
culate the pdf for the duration of the interval from the start of sh to
the start of st , contingent on the residual duration of clock ch at the
s tar t of sh being zh and on the residual duration of clock c t at the
s tar t of s t being zj,

$! pYl ~Y$

$1

Here one state st is chosen for each pa th from Sh to s j .

6. For the interval (aggregate of paths) between states Sh and sj, cal-
culate the pdf for the duration of the interval f rom the start of Sh to
the start of sj as the weighted sum

=) • h(zh) •
g ~ Z j

5 D i s c u s s i o n

We now provide further explanation of the algorithm, with examples to
illustrate the problems tha t can arise if correlated pdfs are not handled
properly.

5 .1 E l i m i n a t i n g C o r r e l a t i o n s

The main intricacies of the algorithm arise from the need to eliminate
correlations between pdfs that are being combined. For example, consider
a state s with two in-edges, where two independent clocks cl and c2 were
active in both of the prior states and did not expire, as shown in Fig. 1.
Along one edge the residual pdf for cl is non-zero for 3 to 5 and the residual
pdf for c2 is non-zero for 7 to 9, while along the other edge the residual
pdf for el is non-zero for 10 to 12 and the residual pdf for c2 is non-zero
for 14 to 16. Naively combining the two residual pdfs for cl f rom the two
in-edges into a single pdf, and similarly for e2, would lead to an erroneous
conclusion such as tha t eg. expires before el or that when el expires the
residual pdf for e2 is non-zero for 2 to 13. This example demonstrates the
need to split non-disjunctive states with two or more in-edges, each of which
has two or more unexpired clocks, because there is a dependence between
the unexpired clocks on those in-edges.

Next consider the example shown in Fig. 2. Here, clocks Cl and cz are
active in the initial s ta te sl . If c2 expires before el, the transit ion is taken to
state sg. whereas, if cl expires before c9., the transition is taken to state sa.

379

FIGURE 1. An example showing the need to split a non-disjunctive state. In this
example, clock c2 cannot expire before clock cl in state s. To ensure this, the
state is split, avoiding a disjunction of correlated pdfs.

If cl and c2 expire simultaneously, the transition is taken to state s6. Clock
c3 becomes active in states s2 and s3. If Cl expires before c3 in s2, the
transition is taken to s3 and c2 becomes active. If c2 expires before c3 in
s3, the transition is taken back to s2 and cl becomes active again. If c3
expires before or simultaneously with Cl in s2, the transition is taken to s4.
Similarly, if c3 expires before or simultaneously with c2 in s3, the transition
is taken to ss. Fig. 3 shows the automaton of Fig. 2 after state splitting. It
shows the probability of each transition, the probabilities of reaching states
s4, s5 and s6, and the pdfs for the durations until those states are reached
from 81.

Now consider the example shown in Fig. 4. Here we have a state Sl in
which three clocks become active: cl is non-zero for 2 to 4, c2 is non-zero
for 6 to 10, and c3 is also non-zero for 6 to 10. When clock Cl expires, the
transition to state s2 is taken and, when clock c2 expires, the transition
to state s3 is taken. The residual pdf for c2 in s2 is non-zero for 2 to 8,
as is the residual pdf in s2 for c3. It is incorrect to combine these pdfs
and to conclude that the residual pdf for c3 in s3 is non-zero for 1 to 6,
because they are both obtained from the pdf for Cl in sl. This example
demonstrates the need to trace backwards through the automaton until a
disjunctive state is found, because states with more than one unexpired
clock on their in-edges may introduce dependencies between those clocks.

Finally, consider the example in Fig. 5, which illustrates the problem of
determining the pdf for the duration of an interval by convolving together
the pdfs for the durations of its component states. Here, since Cl necessarily
expires before c2, the pdf for the duration of state sl is non-zero for 1 to 5.
Consequently, the pdf for the duration of state s2, being the residual pdf
of c2 after Cl has expired, is non-zero for 1 to 9. Simple convolution of the
pdfs for the durations of sl and s2 would lead to the incorrect conclusion
that the pdf for the duration of the interval consisting of those two states is
non-zero for 2 to 14 whereas, in fact, the pdf for that duration is non-zero
for 6 to 10.

380

Initial Clock Values

I.O00 I.O00 1.250 1.500

I I.o:o1.=1.=1. :o1
I c, Jo~o]oL J,~o I,~o I,~o I,~o I,~o I.,~ J,~o l, '~ I:~o I.::o I

~,~C 1 and C 2 A

o

C~or I Io~or
Cland C31 I C2and Ca expire (~ ~xp i re

FIGUI~E 2. A simple probabilistic duration automaton involving six states
and three clocks. The initial values of the clocks are also shown.

~ C 1 end C2 expire ~

C2 expire8

C3or . _~k 10.565 0.386l / C3or - |
Is, to s, 1.3~7 Jo:o 1o:o I~o [o~o Jo:> 1o:, I0~, J,,~o I1:, 1.1; ~ ,.o,31" I.::o J:4 J::, I.::, I
IS, to Ss 1.3731.o'oo1.:ojo:o1.o:o ~ 6 I ' 8 [, ,0 . 112 I.:: I .::9 15 (16 �9 050 .163 |.146 ,080 | .030 ,027 ,058 |.108 .062 1,007

.o~ i.ooo i.~oo

FIGURE 3. The automaton of Fig. 2 after state splitting. For each of the tran-
sitions, the probability of that transition is shown. For each of the states s4, s5
and se, the probability of reaching that state and the pdf for the duration until
that state is reached from sl are also shown.

381

Ctl.o1.~1.,I.~1.ol.ol.ol.ol.ol.o
I112131,1slslTlal,llo C2 1~12131,1sl617181

I c , i.o i.o i.o i.o i.o 1.21.21.21.21.2 I.~l.0ol.,,I.20t20t20t.,,t.0~ I
ic.I:kl:,.,~,0,.,.,0.,o~ ,.,~,~...o..,.,., o,,,~.~...

.o,o,, ,~,..~ .,. I c. ,00.0.0H..H,0101 I~" I.oH,o,01
Clexpires = = / ~ C2 expires j ~

V F

F I G U R E 4. Clock cl expires in s tate s l . Because the residual pdfs for clocks
c2 and c3 in s tate s2 are correlated, it is incorrect to derive the residual pdf
for clock c3 in s ta te s3 from the residual pdfs for c2 and c3 in s tate s2.

]c l ~ l ~ l ~ l , l s l ~ l , l s l , l , o l
1.2 t.~ I.~ I.~ I.~ I.o I.o I.o I.o I.o

c , l : lo lo lo lo l~ l~ l~ l~

I I

6 7181911o} I
I s , I; : :1: :1o ~o i o i o i o j

1 1 1 2 1 3 1 , s 6 7 8 ~ lo
~= .o4 .os .121.~s 20.16 .~2 .os .o4 .oo

C 1 e x p i r e s ~ C2expim

I

FIGURE 5. The pdfs for the durations of states sl and s2 are correlated. It is
incorrect to de~ive the pdf for the duration of the interval consisting of these two
states by convolving the pdfs for their individual durations.

382

5.2 Disjunctive States

For a disjunctive state, such correlation problems do not arise. We can
combine the residual pdfs for the unexpired clock on each of its in-edges
into a single pdf, weighting the contribution of the residue on each in-edge
by the relative flow of that in-edge.

We are investigating an extension of the algorithm that would allow a
disjunctive state to have multiple in-edges and multiple unexpired clocks
on those in-edges, provided that all of its in-edges have the same set of
unexpired clocks and, for each such clock, the residual pdfs on the in-edges
for that clock are equal, with the required or available degree of precision.

Disjunctive states have the advantage over pure state splitting that they
substantially reduce the size of the automaton. Unlike the state splitting
used in real-time temporal logic decision procedures [14], we can combine
states when the pdf for an unexpired clock is a disjunctive composition,
whereas such a decision procedure must continue to split states.

5.3 Calculating the Probabilities

As the above examples indicate, we must be careful in calculating the
probability Pa~,sj that the edge (si, sj) is taken when the clocks in Es,,s~
expire. The analysis must commence with the values determined for those
clocks in a disjunctive state or assigned when the clocks were set or reset
in a subsequent state, and then consider the effect of the durations of the
states since the clocks were determined or set. Fortunately, for each non-
disjunctive state, we need only consider a single sequence of prior states
since, after state splitting, states with two or more in-edges are disjunctive.

In the numerator for p,~.,~, we sum over all of the possible durations
xl , �9 �9 cn of the states in the sequence of prior states, as illustrated by the
example in Fig. 6 where (si, sj) = (s3, s4), Sl is the disjunctive state, and
Cl is the unexpired clock on entering that state. Within this summation are
two products. The first represents the probability that the expiring clocks
(cl, c2 and ca in Fig. 6) expire at the ends of the states in which they
are presumed to expire. Note that a clock c tha t is set in state ~lo of the
sequence and that expires in state c% c has been running for a duration
that is the sum of the durations x lo , . . . , z~o, as represented by the inner
summation. The probability that clock c expires at exactly this moment is
determined by the pdf determined for c in the disjunctive state or assigned
to c when it was set. The second product provides the probability that the
non-expiring clocks (c4 and c5 in Fig. 6) do not expire, and is obtained by
summing over all larger durations. The denominator for p,~,,~ represents
the probabili ty of reaching state si !s3 in Fig. 6).

The probability density function d,~l,~,, j for the duration of state si, con-
tingent on the edge (si, sj) being taken, is a variation of the formula for
the probability p,, . , j of that edge. To determine this pdf, we consider sepa-

383

AclJve Clocks
c~ c2cs c2c~c4cs c3c4% c4%

~,C~or C,~or ~ or C40r G=or ~C40r G~or
C~and'(C20r C3) C2 .and(C3o~C40r C 5) C~qnd~'C4or C 5)
expire expire expire

Duration
X 1

I I C I (X l)

I

I

X 2 X 3

I C2(Xl + X2)

I C,3(x l+ x2+ x 3)

I I 04(x2+ x 3)
I - C s (x 2 + x 3 * x)

FIGURE 6. An example of a sequence of states preceding the transition (s3, s4).
State sl is a disjunctive state. The figure shows the clocks that are active in each
state, the clocks that expire on each transition, and the duration of each state.

rately each possible duration z = xn for state si = crn. Consequently, xn is
excluded from the outer summat ion in this formula and instead appears as
the duration z on the left of the equality. Similarly, the residual pdf a~jls,,sj
for clock a in state s j , contingent on the edge (s~, s j) being taken, is ob-
tained by excluding clock a from the last product and instead considering
explicitly, as the first factor in the outer product, the probabil i ty tha t clock
a survives for an additional duration z.

To calculate the pdfs for the durations of longer intervals, we combine
together the durations of shorter intervals, typically the pdfs for the dura-
tions f rom one disjunctive state to the next. Unfortunately, as illustrated in
Fig. 5, simple convolution of these pdfs may be incorrect because they may
be dependent. Consider the composition of the interval from Sh to sl and
the interval from sz to s j , where there is only one unexpired clock cl on the
transit ion into sl. We can convolve the pdf for the duration of the interval
f rom Sh to sl, contingent on ct having residual duration zt at the start of
st, and the pdf for the duration of the interval from st to s j , contingent
on ct having the same residual duration zt at the start of st, since their
dependency is fully constrained by that contingency.

Thus, for two disjunctive states Sh and sj with unexpired clocks ch and

cj , respectively, we define 0~s~,8~lzh,zj to be the pdf for the duration of the
interval from Sh to s j , contingent on Ch having residual duration Zh at
the s tar t of Sh and on cj having residual duration zj at the start of s j .
We make this pdf contingent on the residual durations of the unexpired

384

clocks in both the initial and final states so that we can convolve the pdf
for the duration of this interval with the pdf for the duration of either the
preceding interval or of the following interval without risk of incorrectness.
If more than one path exists from Sh to sj, the pdfs for the durations of
those paths are weighted by the rates of flow along those paths. We then
calculate the (uncontingent) pdf d,h,,~ for the duration of the interval from
sh to sj from the contingent pdfs for that duration and the residual pdfs
for the unexpired clocks in the states sh and sj.

5. 4 T e r m i n a t i o n

The termination of the state splitting procedure may depend on an ap-
proximation, justified by the limited precision of the representation of real
numbers in the computer and the uncertainty o f the exact values of pdfs in
the real world. We are investigating the possibility of not splitting a state
if, for each unexpired clock, the differences in the residual pdfs for that
clock on the in-edges to that state are sufficiently small. If the analysis
shows that we have erred in our estimate of the states that do not need
to be split and that for some unexpired clock the pdfs on the in-edges to
some state differ significantly, the automaton is enlarged and the analysis
is repeated.

6 An Example Application
As an example application, we consider the probabilistic timing constraints
of the classical four-phase handshaking protocol used in input /output sys-
tems. In its simplest form, the protocol involves two agents, a requester
(the processor) and a responder (the device).

The requester sets

�9 addr:, a predicate representing the presence of address information on
the address bus

�9 req: a boolean control signal indicating to the responder that the
requester has placed address information on the address bus.

The responder sets

�9 data: a predicate representing the presence of data on the data bus

� 9 a boolean control signal indicating that the responder has re-
ceived the requester's address information and that the responder has
placed information on the data bus for the requester.

Initially, all four of these signals are false.

addr

mq

data

385

new_transfer new_transfer
J ~ r - - . . - -

a / ~ a

c,d

b

resp
g , h

FIGURE 7. The timing diagram for the four-phase handshaklng protocol, labeled
with clocks. The clocks are pdfs that represent the durations of the indicated
intervals.

Duration
Clocks

a,e .5 .5 .0 .0 .0 .0 .0 .0 .0 .0
c,d,g,hj,1 .0 .0 .0 .0 .0 .0 .0 .0 .5 .5
b,f,i,k .0 .2 .4 .2 .1 .05 .02 .01 .01 .01

TABLE .1. The initial values of the clocks, given as pdfs.

The protocol operates in four phases:

1. The requester places information on the address bus and, after a short
delay, sets req to true.

2. The responder detects that req has become true and reads the ad-
dress information on the address bus. It then places the requested
information on the data bus and, after a short delay, sets resp to
true.

3. The requester detects that resp has become true and reads the infor-
mation on the data bus. At this point, it knows that the responder
has detected that req has become t~ue and has read the information
on the address bus. The requester then sets addr and req to false.

4. The responder detects that req has become false and knows that the
requester has read the information on the data bus. The responder
then sets data and resp to false.

Once the requester has detected that resp has become false, the requester
can restart the cycle by placing further information on the address bus.

The timing diagram is shown in Fig. 7. Each thick time line corresponds
to one of the four predicates. The thinner lines with arrowheads are labeled

386

new transfor

FIGURE 8. The probabilistic duration automaton for the four-pha~e handshaking
protocol. The states are labeled with the active clocks, and the edges with the
expiring clocks.

with clocks that define the durations between the indicated transitions. The
initial values of the clocks are given in Table 1 as pdfs.

Clock c specifies a lower bound on the duration of the indicated interval;
clock d, which is started when clock c expires, imposes an upper bound.
When clocks c and f expire, d becomes inactive and, when clocks c and d
expire, f becomes inactive. Similarly, when clocks g and h expire, i becomes
inactive and, when clocks g and i expire, h becomes inactive.

Clocks j and 1 specify the lower bounds on the durations for which the
signals addr and data are false, respectively, and impose no upper bounds
on these durations. The signal addr becomes true when both clocks j and
k expire and, in addition, the external predicate new_transfer is true. Sim-
ilarly, the signal data becomes true when both clocks b and l expire.

The probabilistic duration automaton for the four-phase handshaking
protocol is shown in Fig. 8. The states of the automaton are labeled with
the active clocks, and the edges with the expiring clocks. The two states at
the bot tom right of the diagram are the same as the two states at the top
left and, thus, the automaton is an equilibrium automaton.

387

1.0 "4

10"1 i
10-2.~

.~ 10 -3.
~ 10 "4.

.,~ m -s-

"i -6 i 10 -
10-7_

10-8.

10"9.

10 -10
0

ero 0

e ~ 1 4 9 a

; o . �9

"O
0

q

' 1 G ' ' 3 G ' '

Duration of Handshake

FIGURE 9. The calculated pdf for the duration of the handshake from all four
signals being false until all four signals are again false. Note the logarithmic scale
on the vertical axis.

The au tomaton shown in Fig. 8 is a simplification of the full au tomaton
in tha t the edges tha t represent simultaneous expiration of clocks are not
shown and state splitting has not been performed. After s tate splitting, the
au tomaton had grown to 262 states and 1162 edges. The calculated pdf for
the duration of the handshake is shown in Fig. 9.

Other tools are able to predict the m a x i m u m duration of 42, but we
are aware of no other tool that can predict the probabili ty of a particular
duration for the handshake, a probabil i ty that might be of great interest to
the designers of real-time systems. The computat ion (highly unoptimized)
required 1 minute 25 seconds on a Sun SPARCstation 20. Only 31 of the
states and 81 of the edges had non-zero rates of flow.

7 Related Work

Much work has been done on establishing that reM-time systems can meet
their deadlines using worst-case analysis with upper and lower bounds, for
example [8, 15]. This work diverges from that view, and is more closely
related to the work of [1, 3], which develops verification techniques for
probabilistic real-t ime systems. I t derives from our work on reM-time in-
terval t empora l logic [13, 14], and we extend the Biichi au toma ta [2, 16]
upon which a decision procedure for such a temporal logic is based. Unlike
prior researchers, we introduce the notion of a clock as a pdf, and use pdfs

388

to represent the durations of states, as well as the durations of intervals
between pairs of states within the automaton.

Various researchers have developed methodologies for reasoning about
probabilistic programs and randomized algorithms. Feldman [4] and Kozen
[10] have defined propositional probabilistic dynamic logics, where events
occur according to a probability distribution. Courcoubetis and Yannakakis
[3] have investigated probabilistic linear-time temporal logics, where prob-
abilistic programs are modeled using Markov chains, and have devised
a model-checking algorithm to determine whether a program satisfies its
specification in the logic. Hansson and Jonsson [5] have extended the CTL
branching-time logic with time and probabilities, and have also provided
a model-checking algorithm to determine whether a given Markov chain
satisfies a formula of the logic.

Liu, Ravn, Sorensen and Zhou [11] have developed a probabilistic dura-
tion calculus for reasoning about, and calculating whether, a given require-
ment of a real-time system holds with a sufficiently high probability for
given failure probabilities of the system. Their calculus is a real-time inter-
val temporal logic in which the user specifies requirements of the system
and defines satisfaction probabilities for formulas of the logic. The system
model is a finite automaton with fixed transition probabilities; discrete
Markov processes are the basis of the calculus.

Jonsson and Larsen [9] have investigated probabilistic transition systems
for describing and analyzing reliability aspects of concurrent distributed
systems. In [7] Huang, Lee and Hsu have presented a similar extended state
transition model, Timed Communicating State Machines, for protocol ver-
ification. Ho-Stuart, Zedan and Fang [6] have also described a tool, called
the CoS-Workbench, for analyzing and manipulating formal specifications
of real-time processes, interpreted as labeled transition systems.

In [12] Lynch, Saias and Segala defined probabilistic timed automata as
an extension to I/O automata, which address such questions as whether an
algorithm will terminate within time t with probability p. Wu, Smolka and
Stark [18] have also introduced probabilistic I/O automata for specifying
and reasoning about asynchronous probabilistic systems. However, none of
the above approaches uses pdfs to represent clocks, as we do here.

In [1] Alur, Courcoubetis and Dill presented a model-checking algorithm
for a probabilistic real-time system modeled as a generalized semi-Markov
process, where a specification of the system is given as a deterministic timed
automaton. They associate a pdf with each delay and, thus, their approach
is similar to ours; however, they assume the existence of a generalized
semi-Markov process, whereas we construct it from a given set of pdfs. The
completed probabilistic duration automaton constructed by our algorithm
can be used as input to their model-checking algorithm. Much closer to our
work is the work of Whitt [17], who has investigated the convergence of the
construction of generalized semi-Markov processes.

389

8 Conclusion

We have described a novel methodology and tools for analyzing proba-
bilistic t iming properties of real-time systems. In our methodology, clocks
are defined as probability density functions, and probabilistic duration au-
tomata are defined in terms of the pdfs to which the clocks are set, the
clocks that are active in each state, and the clocks that expire on each
transition.

The algorithm, which we have implemented, takes as input a probabilistic
duration automaton. The probabilistic duration automaton may itself be
the user's specification of the real-time system or may be obtained from
a temporal logic specification. The algorithm determines the probabilities
that clocks in a state expire, the residual pdfs for the other clocks, the
probabilities of the transitions, the probabilities of the states, and the pdfs
for the durations of the states. The algorithm also determines the pdfs
for durations of intervals between pairs of states within the automaton.
These pdfs are used to determine whether a real-time system can meet its
probabilistic timing constraints.

We plan to integrate this algorithm with a decision procedure for satisfia-
bility checking of interval temporal logic formulas in which the durations of
intervals are expressed as pdfs. The decision procedure for this interval ten>
poral logic will construct the automaton from the interval temporal logic
formula in the usual manner. Our algorithm will complete this automaton
by finding the residual pdfs for the clocks, and the related probabilities and
pdfs for the durations. We also plan to extend this methodology to handle
continuous pdfs, but different techniques will be required.

9 REFERENCES

[1] R. Alur, C. Courcoubetis and D. Dill, "Verifying automata specifications
of probabilistic reM-time systems," Proceedings of the REX Workshop on
Real-Time: Theory in Practice, Mook, The Netherlands (June 1991), Lecture
Notes in Computer Science 600, Springer-Verlag, pp. 28-44.

[2] R. Alur and D. Dill, "Automata for modelling real-time systems," Proceed-
ings of the 17th International Colloquium on Automata, Languages, and
Programming, Warwick, England (July 1990), Lecture Notes in Computer
Science 443, Springer-Verlag, pp. 322-335.

[3] C. Courcoubetis and M. Yannakakis, "The complexity of probabilistic veri-
fication," Journal of the Association for Computing Machinery 42, 4 (July
1995), pp. 857-907.

[4] Y. A. Feldman, "A decidable propositional dynamic logic with explicit prob-
abilities," Information and Control 63 (1984), pp. 11-38.

[5] H. Hansson and B. Jonsson, "A logic for reasoning about time and rehabil-
ity," Formal Aspects of Computing 6, 5 (1994), pp. 512-535.

390

[6] C. Ho-Stuaxt, H. Zedan and M. Fang, "Automated support for the for-
real specification and design of real-time systems," Proceedings of the Nine-
teenth EUROMICRO Symposium on Microprocessing and Microprogram-
ruing, Barcelona, Spain (September 1993), pp. 79-86.

[7] C. M. Huang, S. W. Lee and J. M. Hsu, "Probabilistic timed protocol ver-
ification for the extended state transition model," Proceedings of the 1994
International Conference on Parallel and Distributed Systems, Hsinchu, Tai-
wan (December 1994), pp. 432-437.

[8] S. Jahanian and A. K. Mok, "Modechart: A specification language for real-
time systems," IEEE Transactions on Software Engineering20, 11 (Novem-
ber 1994), pp. 933-947.

[9] B. Jonsson and K. G. Laxsen, "Specification and refinement of probabilistic
processes," Proceedings of the 6th IEEE Annual Symposium on Logic in
Computer Science, Amsterdam, The Netherlands (July 1991), pp. 266-277.

[10] D. Kozen, "Probabilistic PDL," Journal of Computer and System Sciences
30 (1985), pp. 162-178.

[11] Z. Liu, A. P. Ravn, E. V. Sorensen and C. Zhou, "A probabilistic duration
calculus," Proceedings of the Second International Workshop on Responsive
Computer Systems, Saitama, Japan (October 1992), pp. 14-27.

[12] N. Lynch, I. Saias and R. Segala, "Proving time bounds for randomized
distributed algorithms," Proceedings of the Thirteenth Annual A CM Sym-
posium on Principles of Distributed Computing, Los Angeles, CA (August
1994), pp. 314-323.

[13] L. E. Moser, Y. S. Ramakrishna, G. Kutty, P. M. MeUiar-Smith and
L. K. Dillon, "A graphical environment for design of concurrent real-time
systems," Technical Report 95-18, Department of Electrical and Computer
Engineering, University of California, Santa Barbara.

[14] Y. S. Raanakrishna, L. K. Dillon, L. E. Moser, P. M. Melliar-Smith and
G. Kutty, "A real-time interval logic and its decision procedure," Proceed-
ings of the Thirteenth Conference on Foundations of Software Technology
and Theoretical Computer Science, Bombay, India (December 1993), Lec-
ture Notes in Computer Science 761, Springer-Verlag, pp. 173-192.

[15] A. C. Shaw, "Communicating real-time state machines," 1EEE Transactions
on Software Engineering 18, 9 (September 1992), pp. 805-816.

[16] M. Y. Vaxdi and P. Wolper, "An automata-theoretic approach to automatic
program verification," Proceedings of the Symposium on Logic in Computer
Science," Cambridge, England (June 1986), pp. 322-331.

[17] W. Whitt, "Continuity of generalized semi-Markov processes," Mathematics
of Operations Research 5, 4 (November 1980), pp. 494-501.

[18] S. H. Wu, S. A. Smolka and E. W. Stark, "Composition and behaviors of
probabilistic I /O automata," Proceedings of the 5th International Conference
on Concurrency Theory, Uppsala, Sweden (August 1994), pp. 513-528.

