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A B S T R A C T  1 We present a novel methodology and tools for analyzing 
real-time systems that  use probability density functions (pdfs) to represent 
the durations of operations within the system. We introduce the concept 
of a probabilistic duration automaton in which clocks are defined by pdfs 
rather than by explicit times. A state of a probabilistic duration automaton 
is a set of active clocks, and a transition is triggered by the expiration of one 
or more of these clocks. We present an algorithm for determining the prob- 
ability that  a clock in a state expires, the residual pdfs for the unexpired 
clocks, the probability of each transition, the probability of each state, and 
the duration of each state represented as a pdf. The algorithm also calcu- 
lates the pdfs for durations of intervals between pairs of states within the 
automaton. These pdfs are used to determine whether a real-time system 
can meet its probabilistic timing constraints. An example application illus- 
t rates  the use of this methodology in analyzing the real-time behavior of a 
four-phase handshaldng protocol used in input /output  systems. 

1 Introduction 

Trad i t i ona l ly ,  r ea l - t ime  sys tems  have been defined by abso lu te  r equ i remen t s  
t h a t  cer ta in  events,  t yp ica l ly  i npu t  or o u t p u t  opera t ions ,  mus t  occur at  or 
before  precisely  defined m o m e n t s  in t ime .  To es tabl ish  t ha t  such deadl ines  
are  me t ,  ex is t ing  me thodo log ies  and tools  use worst-case uppe r  bounds  on 
the  du ra t i ons  of ope ra t ions  wi th in  the  sys t em [8, 13, 14, 15]. 

C o m p l e x  r ea l - t ime  sys tems,  however,  involve unre l iab le  c o m m u n i c a t i o n  
be tween  d i s t r i bu t ed  processors,  a synchronous  opera t ions ,  unp re d i c t a b l e  
heur i s t ic  a lgor i thms ,  a n d / o r  recovery f rom faults;  fu r the rmore ,  m o d e r n  
mic roprocessors  explo i t  mechan i sms  such as caching and cycle s tea l ing  by  
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high-speed inpu t /ou tpu t  devices. These characteristics introduce signifi- 
cant variations in the t ime required to produce the results. The worst-case 
upper bound for the duration of an operation may be substantially worse 
than the mean duration, but  the worst-case upper bound may be realized 
only very infrequently. 

A design based on the worst-case upper bound for the duration of ev- 
ery operation may be unnecessarily conservative, since it must allow for 
the possibility that  each of these rare occurrences coincide. Thus, the per- 
formance calculated for the real-time system may be much worse than the 
performance that  the system can actually provide. However, i f  the real-time 
system is designed using mean durations, occasionally the system may fail 
to meet a deadline. Such a failure to meet a deadline may be acceptable, 
provided that  its probability is small enough and can be estimated reason- 
ably accurately. 

We describe a novel methodology and tools for analyzing real-time sys- 
tems that  represent the durations of operations by probability density func- 
tions (pdfs), rather than by upper and lower bounds. For some real-world 
applications in which real-time performance is critical, such as the Aegis 
air defense system, these pdfs are indeed known. The types of questions 
that  our probabilistic analysis methodology can answer are 

�9 What  is the duration of the interval between two events, expressed 
as a probability density function? 

�9 What  is the probability of reaching a transient state, and what is the 
probability of being in a particular state in equilibrium? 

�9 What  is the probability that  the duration of an operation exceeds the 
deadline for the operation? 

As the basis for this methodology, we introduce the concept of a proba- 
bilistic duration automaton in which a clock is a probability density func- 
tion. In each state of the automaton, several clocks may be active. A transi- 
t ion from one state to another state occurs when one or more active clocks 
expire; this may result in some of the expired clocks being reset. 

We present an algorithm for evaluating such a probabilistic duration 
automaton.  The algorithm determines the probabilities of the transitions 
out of a state, the rates of flow into a state, and the probability of being 
in a state. It also determines the probability that  an active clock in a state 
expires, as well as the residual values of the clocks that  do not expire, 
expressed as pdfs. The algorithm calculates the pdfs for the durations of 
the states and the pdfs for durations of intervals between pairs of states 
within the automaton.  These pdfs are used to estimate the probability 
that  a system can meet its real-time deadlines. Much of the interest of 
the analysis derives from the care required to ensure that  two pdfs are 
convolved or combined only if they are independent. 
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As an application of this methodology, we consider the probabilistic t im- 
ing constraints of a four-phase handshaking protocol used in inpu t /ou tpu t  
systems. This example demonstrates  that  manual  analysis of these proper- 
ties is difficult and that  mechanical tools are essential. 

2 The Clocks 

In our methodology, a clock c is defined by a probabili ty density function 
tha t  gives the probabilities for the possible durations of an interval between 
two events. The domain of the pdf, i.e., the set of durations, is a finite set 
of positive rationals. Multiplication by the least common multiple of the 
denominators  of these rationals yields a set of positive integers. Thus,  with- 
out loss of generality, we assume tha t  the durations are positive integers. 
We assume further tha t  all of the pdfs have the same domain {1, 2 , . . . ,  m} 
for some integer m > 2. The range of a pdf  is a set of non-negative rationals 
between 0 and 1 such tha t  the sum of these rationals is equal to 1. Thus, 
a clock c is defined by a pdf  

m 

5: { 1 , 2 , . . . , m }  --~ [0, 1], where ~ 5 ( x )  -- 1 
X=I 

For each duration x, ~(x) is the probabil i ty that  the interval from the t ime 
at which c was last set until it expires has duration exactly x. 

Our methodology exploits the three operations of convolution, residue, 
and disjunction of pdfs. Convolution gives the pdf  for the duration of an 
interval tha t  is the sequential composition of two intervals, while residue 
gives the remainder of clock cl, contingent on clock c2 expiring before Cl, 
expressed as a pdf. Some intervals can be formed in several independent 
ways, each with a probabil i ty of occurrence and with its own pdf. Disjunc- 
t ion gives the pdf  for the duration of an interval as the sum of these pdfs, 
weighted by their corresponding probabilities. These three operations are 
well-known and, thus, we do not define them here. When we employ these 
operations in our analysis, we must  however ensure that  the pdfs for the 
clocks being combined are indeed independent. 

3 The Probabilistic Duration Automaton 

A state  of a probabilistic duration au tomaton  is a set of active clocks. A 
transit ion from one state to another state in the au tomaton  corresponds to 
the expiration of one or more active clocks. More specifically, we have the 
following definition. 
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A probabilistic duration automaton is defined by 

�9 A finite set S = {s~l l  < i < N} of states, a set T C C_ S • S of 
transitions between states in S, and a set C = {el [1 < i < M} of 
clock names 

�9 An initial s tate in S and a set C = {~i [ 1 < i < M} of initial clock 
values (pdfs), one per clock name 

�9 For each state si E S, a set A~ C C of clocks tha t  are active in 
state sl 

�9 For each transit ion (s i , s j )  E T, a set Es,,sj C_ As~ of clocks whose 
expiration in state s~ triggers that  transition. 

All of the clocks in E~,s~ expire at the same moment ;  none of the clocks 
in Ra~,s, = As, - Es~,8, expires either before or at that  moment .  The clocks 
in Rs,,aj have residual values on the transition (si, sj),  and remain active 
in state sj ,  i.e., Rs,,s~ C_ As~. When a clock c is set or reset in any of 

the states, it is set to the initial clock value ~ E C for tha t  clock. A clock 
must  expire before it can be reset. The clocks that  are set or reset on the 
transition (si, s j )  are the clocks in Asj - Rs~,sj. 

Following the s tandard theory of Markov models, we consider two types 
of automata:  equilibrium au tomata  and transient au tomata .  An equilibrium 
automaton is irreducible (every state can be reached from every other state) 
and aperiodic (there is no fixed period of returning to any state). The theory 
of Markov models tells us that,  if any initial clock has two or more coprime 
durations with non-zero probabilities, then the au tomaton  is aperiodic and 
the equilibrium probabilities of the states are t ime independent. A transient 
automaton has a single initial state, is reducible, and contains no irreducible 
subautomata .  The probabilities of the states of a transient au tomaton  are 
t ime dependent. 

4 The Algorithm 

A specification of a real-time system determines the set S of states and the 
set T of transitions of a probabilistic duration automaton,  the set As~ of 
clocks tha t  are active in state sl, the set Es,,si of clocks whose expiration 

cause the transition (sl, sj),  and the set C of pdfs that  are the initial values 
of the clocks when they are set or reset. 

Our algorithm determines the duration of each state or, equivalently, 
the t ime between the transitions into and out of tha t  state, expressed as 
a pdf. I t  also determines the duration of the interval between each pair 
of states, from the t ime of the transitions into the first s tate to the t ime 
of the transitions into the second state, expressed as a pdf. To determine 
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these pdfs, the algorithm calculates the probabilities of the transitions out 
of each state, the rates of flow into each state, the probabili ty of being in 
a state,  and related pdfs. The steps of the algorithm are presented below. 
Further explanation of the algorithm is given in Section 5. 

4.1 Elaboration of the Automaton 

The input to the algorithm is a probabilistic duration au tomaton  obtained 
f rom the user 's specification. If this au tomaton  is reducible but contains 
an irreducible subautomaton,  then the algorithm separates out that  sub- 
au tomaton  and analyzes it separately. Such subautomata  are replaced by 
absorbing states in the remaining automaton.  Thus, the algorithm parti- 
tions the au tomaton  into zero or more equilibrium au toma ta  and zero or 
more transient au tomata .  If  the analysis subsequently finds that  some of 
the transit ion probabilities are zero, then it may  be possible to part i t ion 
the au tomaton  further into simpler equilibrium au tomata  and transient 
au tomata .  

The  algori thm must  also eliminate correlations between pdfs before con- 
volving or combining them. We define a state to be disjunctive if each of 
its in-edges has at most  one unexpired clock and all of its in-edges have 
no unexpired clock or the same unexpired clock; otherwise, the state is 
non-disjunctive. A state that  is disjunctive has the desirable property that  
the residual pdfs on its in-edges can be combined. The algorithm splits 
non-disjunctive states into disjunctive states as outlined below. 

1. Until each state with more than one in-edge is a disjunctive state, for 
each non-disjunctive state with more than one in-edge and for each 
such in-edge, 

a. Split tha t  state by creating an additional state with 

i. The same set of active clocks as the given non-disjunctive 
state 

ii. A set of out-edges to the same destinations as the set of 
out-edges from the state being split, with corresponding in- 
edges having the same set of expiring clocks 

b. Change the destination of one of the in-edges to be the newly 
created state. 

2. Part i t ion the au tomaton  into zero or more transient au toma ta  and 
zero or more equilibrium automata .  

3. Set est imated rates of flow into each state and estimated residual pdfs 
for each unexpired clock. 

Note that ,  after such elaboration, the automaton may still contain non- 
disjunctive states having one in-edge and two or more unexpired clocks on 
tha t  in-edge. 
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4 . 2  C a lc u la t i on  f o r  I n d i v i d u a l  S t a t e s  

For each state of a probabilistic duration automaton,  the algorithm de- 
termines, the probabil i ty of taking a transit ion out of tha t  state, the con- 
ditional pdfs for the duration of the state, the conditional pdfs for the 
unexpired clocks in the next state, and the rate of flow into the given state 
(Steps 1-3 below). From these quantities, the algorithm then derives the 
probabil i ty that  a clock expires in the state, the pdf  for the duration of the 
state, the pdf  for each unexpired clock in the next state, and the probabil i ty 
of being in the given state (Steps 4-7 below). 

For each automaton,  until convergence is achieved, 

. For each disjunctive state si, calculate the residual pdf  for the un- 
expired clock in state si from the residual pdfs for that  clock on its 
in-edges, weighted by the rates of flow along those in-edges. 

. For each state si (disjunctive or not), trace backwards through the 
automaton,  s tart ing with si, until a disjunctive state is found. Denote 
this sequence of states by a l ,  �9 �9 a,,, where trl -= Sh is the disjunctive 
state with the single unexpired clock ch and a,~ = sl. Note that  this 
sequence is unique, tha t  a~ is non-disjunctive for 1 < k < n and that ,  
if si is itself disjunctive, then the sequence contains the single state 
si. In the formulas below, we consider each set of possible durations 
xl ,  �9 �9 xn of the states a l , . . . ,  an in this sequence. 

For each clock c that  is active in some state of this sequence, let ic 
be the lowest index in the sequence for which c is active and uc the 
highest or upper index. For each clock c that  is not active in any 
s tate  of the sequence, set both  lc and uc to 0. If  a clock is reset at any 
point in the sequence and is active both before and after that  point, 
regard tha t  clock as two distinct clocks, one before the reset and one 
after. If  c is the unexpired clock in the disjunctive state Sh, let ~ be 
the residual pdf  for c in that  state; otherwise, let ~ be the initial pdf  
corresponding to clock c when it is set or reset. If  lc = uc = 0, extend 
the domain of ~ to include x0 -- 0 and set ~(x0) = 1. If  x is outside 
the domain of ~, set ~(x) = 0. As usual, interpret an empty  sum to 
be 0 and an empty  product  to be 1. Set 6(p) = 1 if the predicate p is 
true and 5(p) = 0 otherwise. 

3. For each edge (si, sj) out of state si, calculate the following: 

a. The  probabili ty of taking the edge (si, sj)  out of state si 
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psi,s  t = 

$1...grr cEC si,s j lc<_k<_uc cER, I , . j  ~c>0 lc<k<_Uc 

= 1 ;" " : :o ' -  x c e  " i  lr176 c e A ,  i lo<_k<u~ 

b. The probability of taking the edge (s~, sj) out of state si, contingent 
on the duration of the unexpired clock Ch at the start of state Sh 
being Zh , 

Ps,,s~lzh = 

~, . .= .  ro~_<k_<~o~ \~eB~  lo_<k_<~o \~ER.,,.S ~>0 Zo<_k<_,,~ ] ]  

=:~.~0-, \ to,_<k_<,o, \ ~eB~  lo_<k_<,.,o/ ve.a,,~,>o lo<k<,,o//  

Here B n  = (C - R , , . ~ )  - {ch} and BA = (C - A , , )  - {ch}. 

c. The pdf  for the duration of state or, = si, contingent on the edge 
(si, s j )  being taken, 

d, , i , , , , , (z)  = 

= > 0  l~<_k<_u~ ] 

=~..,=, cEC , , ,~  l~<_k<_u~ \ c E  ",, 'J =>0 l~<_k<_Uc 

d. The pdf  for the unexpired clock a E Rs,,sj in state s j ,  contingent on 
the edge (s i ,  s j )  being taken, 

a, j l , , , , i (z)  = 

=,...=,\ t.<k_<~,. \~ec-n. , , .  i zo_<~<,,o / \~en.,,. j-{a}=>o lo_<k_<~,o / /  

E 
=>0 G<_k<_ur ] 
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e. From the probabilities ps,,sj of the edges (si, sj), calculate the rate 
fs, of flow into each state si by solving a system of linear flow-balance 
equations, in the usual manner. 

4. From the probabilities Ps~,si of the edges (si, sj), calculate the prob- 
ability that  a clock c expires in state si by summing the probabilities 
of the edges on which c expires. 

5. From the probabilities P~i,~j of the edges (si, sj) and the pdf d~ils~,,J 
for the duration of state s~, contingent on the edge (si,sj) being 
taken, calculate the (unconditional) pdf ds~ for the duration of state 
si as a weighted sum. 

6. From the probabilities Ps~,s~ of the edges (s~, sj) and the pdf  a~ls~,s, 
for the unexpired clock a in state sj, contingent on the edge (si, sj) 
being taken, calculate the (unconditional) pdf &~, for the unexpired 
clock a in state sj as a weighted sum. 

7. From the rate fs~ of flow into each state si and the mean duration d~, 
of state si, calculate the probability of being in state si by multiplying 
fsi by d~, and then normalizing this product over all states. 

Note that  the equilibrium automata and the transient automata are han- 
dled differently in Step 3e, which involves the solution of the system of 
flow-balance equations, and in Step 7, which as given applies only to the 
equilibrium automata.  For the transient automata,  the probability of each 
non-absorbing state is 0 and the probability of each absorbing state is de- 
termined solely by the rate of flow into that  state. 

3.3  Calculation fo r  Intervals between Pairs  of  States 

The algorithm also determines the residual pdfs for the clocks and the 
conditional pdfs for the durations of paths and intervals between pairs of 
states (Steps 1-5 below). From these pdfs, the algorithm then derives the 
(unconditional) pdfs for the durations of the intervals between pairs of 
states (Step 6 below). 

For each automaton, until convergence is achieved, 

1. First consider a single sequence of states a l , . . . ,  ~ , ,  crn+l, where al  ---- 
Sh, an = Si and a , + l  = sj. Here, the states Sh and sj are disjunctive 
and the states c~k, 1 < k < n + 1, are non-disjunctive: In Step 3 
below, we calculate the pdf for the duration of this path. In Step 5, 
we calculate the pdf in  the more general case, where there are multiple 
paths between Sh and sj and the intermediate states of those paths 
may be either disjunctive or non-disjunctive. This can be generalized 
further to the case where Sh and sj are not necessarily disjunctive. 
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Let the unexpired clocks in states Sh and sj  be c h and cj ,  respectively. 
We assume here that  Ch and cj are different clocks, i .e.,  Ch is not the 
residual clock on the edge (s i ,  s j ) .  

2. For each edge (s i ,  s j )  out of state si, calculate the rate of flow on the 
edge (s i ,  s j ) ,  contingent on the residual duration of clock ch at the 
s tar t  of state Sh being Zh and on the residual duration of clock cj at 
the s tar t  of state sj  being z j ,  

xl . . .xn lch ~_k~_ua h lej ~_k~_uej cEC--{Ch,Cj} la<k~_uc 

xl . . .xn,x  lch <k<_ur Icj <k<u~j cEC-{cu,cj] lc<k<uc 

3. For a single pa th  between states Sh and s j ,  calculate the pdf  for the 
duration of that  pa th  from the start  of Sh to the start  of s j ,  contingent 
on the residual duration of clock Ch at the start  of Sh being Zh and 
on the residual duration of clock cj at the start  of sj  being z j ,  

d , ~ , , j l ~ , z j ( y )  = 

x~...x~\ l<k<n l~ <_l:<_u~ h l~ <_k<u~ i cEC-{c~,ci} l~<_k<_u~ 

~:a...~, l~h <k<_u~ h l~<_k<_u~j cEC-{c~,c~} l~<l~<_u~ ] 

4. Calculate the pdf  for the unexpired clock cj in state s j ,  contingent 
on the edge (si, s j )  being taken and on the residual duration of clock 
Ch at the start  of state Sh being Zh, 

Z ( (zh = Zx ) 
x l . . . ~  lc h <_k<u~ h 

• H 
Icj _<k<u~j cE6"--{Ch,Cj} l~<k_<u~ 

xl...x~,x l~ /r ceC--{ch,cj} l~<_k<_ur 
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5. For the interval (aggregate of paths) between states Sh and st,  cal- 
culate the pdf  for the duration of the interval from the start  of sh to 
the start  of st ,  contingent on the residual duration of clock ch at the 
s tar t  of sh being zh and on the residual duration of clock c t at the 
s tar t  of s t being zj, 

$! pYl ~Y$ 

$1 

Here one state st is chosen for each pa th  from Sh to s j .  

6. For the interval (aggregate of paths) between states Sh and sj,  cal- 
culate the pdf  for the duration of the interval f rom the start  of Sh to 
the start  of sj  as the weighted sum 

= ) •  h(zh) • 
g ~ Z j  

5 D i s c u s s i o n  

We now provide further explanation of the algorithm, with examples to 
illustrate the problems tha t  can arise if correlated pdfs are not handled 
properly. 

5 .1  E l i m i n a t i n g  C o r r e l a t i o n s  

The main intricacies of the algorithm arise from the need to eliminate 
correlations between pdfs that  are being combined. For example, consider 
a state s with two in-edges, where two independent clocks cl and c2 were 
active in both  of the prior states and did not expire, as shown in Fig. 1. 
Along one edge the residual pdf  for cl is non-zero for 3 to 5 and the residual 
pdf  for c2 is non-zero for 7 to 9, while along the other edge the residual 
pdf  for el is non-zero for 10 to 12 and the residual pdf  for c2 is non-zero 
for 14 to 16. Naively combining the two residual pdfs for cl f rom the two 
in-edges into a single pdf, and similarly for e2, would lead to an erroneous 
conclusion such as tha t  eg. expires before el or that  when el expires the 
residual pdf  for e2 is non-zero for 2 to 13. This example demonstrates the 
need to split non-disjunctive states with two or more in-edges, each of which 
has two or more unexpired clocks, because there is a dependence between 
the unexpired clocks on those in-edges. 

Next consider the example shown in Fig. 2. Here, clocks Cl and cz are 
active in the initial s ta te  sl .  If  c2 expires before el, the transit ion is taken to 
state sg. whereas, if cl expires before c9., the transition is taken to state sa. 
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FIGURE 1. An example showing the need to split a non-disjunctive state. In this 
example, clock c2 cannot expire before clock cl in state s. To ensure this, the 
state is split, avoiding a disjunction of correlated pdfs. 

If cl and c2 expire simultaneously, the transition is taken to state s6. Clock 
c3 becomes active in states s2 and s3. If Cl expires before c3 in s2, the 
transition is taken to s3 and c2 becomes active. If c2 expires before c3 in 
s3, the transition is taken back to s2 and cl becomes active again. If c3 
expires before or simultaneously with Cl in s2, the transition is taken to s4. 
Similarly, if c3 expires before or simultaneously with c2 in s3, the transition 
is taken to ss. Fig. 3 shows the automaton of Fig. 2 after state splitting. It 
shows the probability of each transition, the probabilities of reaching states 
s4, s5 and s6, and the pdfs for the durations until those states are reached 
from 81. 

Now consider the example shown in Fig. 4. Here we have a state Sl in 
which three clocks become active: cl is non-zero for 2 to 4, c2 is non-zero 
for 6 to 10, and c3 is also non-zero for 6 to 10. When clock Cl expires, the 
transition to state s2 is taken and, when clock c2 expires, the transition 
to state s3 is taken. The residual pdf for c2 in s2 is non-zero for 2 to 8, 
as is the residual pdf  in s2 for c3. It is incorrect to combine these pdfs 
and to conclude that the residual pdf for c3 in s3 is non-zero for 1 to 6, 
because they are both obtained from the pdf for Cl in sl. This example 
demonstrates the need to trace backwards through the automaton until a 
disjunctive state is found, because states with more than one unexpired 
clock on their in-edges may introduce dependencies between those clocks. 

Finally, consider the example in Fig. 5, which illustrates the problem of 
determining the pdf for the duration of an interval by convolving together 
the pdfs for the durations of its component states. Here, since Cl necessarily 
expires before c2, the pdf for the duration of state sl is non-zero for 1 to 5. 
Consequently, the pdf for the duration of state s2, being the residual pdf 
of c2 after Cl has expired, is non-zero for 1 to 9. Simple convolution of the 
pdfs for the durations of sl and s2 would lead to the incorrect conclusion 
that  the pdf for the duration of the interval consisting of those two states is 
non-zero for 2 to 14 whereas, in fact, the pdf for that  duration is non-zero 
for 6 to 10. 
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Initial Clock Values 

I.O00 I.O00 1.250 1.500 

I I.o:o1.=1.=1. :o1 
I c, Jo~o ]oL J,~o I,~o I,~o I,~o I,~o I.,~ J,~o l, '~ I:~o I.::o I 

~,~C 1 and C 2 A 

o 

C~or I Io~or 
Cland C31 I C2and Ca expire ( ~  ~xp i re  

FIGUI~E 2. A simple probabilistic duration automaton involving six states 
and three clocks. The initial values of the clocks are also shown. 

~ C  1 end C2 expire ~ 

C2 expire8 

C3or . _~k 10.565 0.386l / C3or - |  
Is, to s, 1.3~7 Jo:o 1o:o I~o [o~o Jo:> 1o:, I0~, J,,~o I1:, 1.1; ~ ,.o,31" I.::o J:4 J::, I.::, I 
IS, to Ss 1.3731.o'oo1.:ojo:o1.o:o ~ 6 I '  8 [ ,  ,0 . 112 I.:: I .::9 15 (16 �9 050 .163 |.146 ,080 | .030 ,027 ,058 |.108 .062 1,007 

.o~ i.ooo i.~oo 

FIGURE 3. The automaton of Fig. 2 after state splitting. For each of the tran- 
sitions, the probability of that transition is shown. For each of the states s4, s5 
and se, the probability of reaching that state and the pdf for the duration until 
that state is reached from sl are also shown. 
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Ctl.o1.~1.,I.~1.ol.ol.ol.ol.ol.o 
I112131,1slslTlal,llo C2 1~12131,1sl617181 

I c ,  i.o i.o i.o i.o i.o 1.21.21.21.21.2 I.~l.0ol.,,I.20t20t20t.,,t.0~ I 
ic.I:kl:,.,~,0,.,.,0.,o~ ,.,~,~...o..,.,., o,,,~.~... 

.o,o,, ,~,..~ .,. I c. ,00.0.0H..H,0101 I~" I.oH,o,01 
Clexpires = = / ~  C2 expires j ~  

V F 

F I G U R E  4. Clock cl expires in  s tate  s l .  Because the residual  pdfs for clocks 
c2 and  c3 in s tate  s2 are correlated, it is incorrect to derive the residual  pdf  
for clock c3 in s ta te  s3 from the residual  pdfs for c2 and c3 in s tate  s2. 

]c l ~ l ~ l ~ l , l s l ~ l , l s l , l , o l  
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C 1 e x p i r e s ~  C2expim 

I 

FIGURE 5. The pdfs for the durations of states sl and s2 are correlated. It is 
incorrect to de~ive the pdf for the duration of the interval consisting of these two 
states by convolving the pdfs for their individual durations. 
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5.2 Disjunctive States 

For a disjunctive state, such correlation problems do not arise. We can 
combine the residual pdfs for the unexpired clock on each of its in-edges 
into a single pdf, weighting the contribution of the residue on each in-edge 
by the relative flow of that  in-edge. 

We are investigating an extension of the algorithm that  would allow a 
disjunctive state to have multiple in-edges and multiple unexpired clocks 
on those in-edges, provided that  all of its in-edges have the same set of 
unexpired clocks and, for each such clock, the residual pdfs on the in-edges 
for that  clock are equal, with the required or available degree of precision. 

Disjunctive states have the advantage over pure state splitting that  they 
substantially reduce the size of the automaton. Unlike the state splitting 
used in real-time temporal  logic decision procedures [14], we can combine 
states when the pdf for an unexpired clock is a disjunctive composition, 
whereas such a decision procedure must continue to split states. 

5.3 Calculating the Probabilities 

As the above examples indicate, we must be careful in calculating the 
probability Pa~,sj that  the edge (si, sj) is taken when the clocks in Es,,s~ 
expire. The analysis must commence with the values determined for those 
clocks in a disjunctive state or assigned when the clocks were set or reset 
in a subsequent state, and then consider the effect of the durations of the 
states since the clocks were determined or set. Fortunately, for each non- 
disjunctive state, we need only consider a single sequence of prior states 
since, after state splitting, states with two or more in-edges are disjunctive. 

In the numerator for p,~.,~, we sum over all of the possible durations 
xl ,  �9 �9 cn of the states in the sequence of prior states, as illustrated by the 
example in Fig. 6 where (si, sj) = (s3, s4), Sl is the disjunctive state, and 
Cl is the unexpired clock on entering that  state. Within this summation are 
two products. The first represents the probability that  the expiring clocks 
(cl, c2 and ca in Fig. 6) expire at the ends of the states in which they 
are presumed to expire. Note that  a clock c tha t  is set in state ~lo of the 
sequence and that  expires in state c% c has been running for a duration 
that  is the sum of the durations x lo , . . . ,  z~o, as represented by the inner 
summation. The probability that clock c expires at exactly this moment is 
determined by the pdf  determined for c in the disjunctive state or assigned 
to c when it was set. The second product provides the probability that  the 
non-expiring clocks (c4 and c5 in Fig. 6) do not expire, and is obtained by 
summing over all larger durations. The denominator for p,~,,~ represents 
the probabili ty of reaching state si !s3 in Fig. 6). 

The probability density function d,~l,~,, j for the duration of state si, con- 
tingent on the edge (si, sj) being taken, is a variation of the formula for 
the probability p,, . , j  of that  edge. To determine this pdf, we consider sepa- 
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AclJve Clocks 
c~ c2cs c2c~c4cs c3c4% c4% 

~,C~or C,~or ~ or C40r G=or ~C40r G~or 
C~and'(C20r C3) C2 .and(C3o~C40r C 5) C~qnd~'C4or C 5) 
expire expire expire 

Duration 
X 1 

I I C I ( X l )  

I 

I 

X 2 X 3 

I C2( Xl + X2) 

I C,3( x l+  x2+ x 3) 

I I 04(  x2+ x 3) 
I - C s ( x 2 + x 3 * x )  

FIGURE 6. An example of a sequence of states preceding the transition (s3, s4). 
State sl is a disjunctive state. The figure shows the clocks that are active in each 
state, the clocks that expire on each transition, and the duration of each state. 

rately each possible duration z = xn for state si = crn. Consequently, xn is 
excluded from the outer summat ion  in this formula and instead appears as 
the duration z on the left of the equality. Similarly, the residual pdf  a~jls,,sj 
for clock a in state s j ,  contingent on the edge (s~, s j )  being taken, is ob- 
tained by excluding clock a from the last product and instead considering 
explicitly, as the first factor in the outer product, the probabil i ty tha t  clock 
a survives for an additional duration z. 

To calculate the pdfs for the durations of longer intervals, we combine 
together the durations of shorter intervals, typically the pdfs for the dura- 
tions f rom one disjunctive state to the next. Unfortunately, as illustrated in 
Fig. 5, simple convolution of these pdfs may  be incorrect because they may  
be dependent. Consider the composition of the interval from Sh to sl and 
the interval from sz to s j ,  where there is only one unexpired clock cl on the 
transit ion into sl. We can convolve the pdf  for the duration of the interval 
f rom Sh to sl, contingent on ct having residual duration zt at the start  of 
st, and the pdf  for the duration of the interval from st to s j ,  contingent 
on ct having the same residual duration zt at the start  of st, since their 
dependency is fully constrained by that  contingency. 

Thus,  for two disjunctive states Sh and sj with unexpired clocks ch and 

cj ,  respectively, we define 0~s~,8~lzh,zj to be the pdf  for the duration of the 
interval from Sh to s j ,  contingent on Ch having residual duration Zh at 
the s tar t  of Sh and on cj having residual duration zj  at the start  of s j .  
We make this pdf  contingent on the residual durations of the unexpired 
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clocks in both the initial and final states so that  we can convolve the pdf  
for the duration of this interval with the pdf  for the duration of either the 
preceding interval or of the following interval without risk of incorrectness. 
If more than one path exists from Sh to sj,  the pdfs for the durations of 
those paths are weighted by the rates of flow along those paths. We then 
calculate the (uncontingent) pdf  d,h,,~ for the duration of the interval from 
sh to sj from the contingent pdfs for that  duration and the residual pdfs 
for the unexpired clocks in the states sh and sj. 

5. 4 T e r m i n a t i o n  

The termination of the state splitting procedure may depend on an ap- 
proximation, justified by the limited precision of the representation of real 
numbers in the computer and the uncertainty o f  the exact values of pdfs in 
the real world. We are investigating the possibility of not splitting a state 
if, for each unexpired clock, the differences in the residual pdfs for that  
clock on the in-edges to that  state are sufficiently small. If the analysis 
shows that  we have erred in our estimate of the states that  do not need 
to be split and that  for some unexpired clock the pdfs on the in-edges to 
some state differ significantly, the automaton is enlarged and the analysis 
is repeated. 

6 An Example Application 
As an example application, we consider the probabilistic timing constraints 
of the classical four-phase handshaking protocol used in input /output  sys- 
tems. In its simplest form, the protocol involves two agents, a requester 
(the processor) and a responder (the device). 

The requester sets 

�9 addr:, a predicate representing the presence of address information on 
the address bus 

�9 req: a boolean control signal indicating to the responder that the 
requester has placed address information on the address bus. 

The responder sets 

�9 data: a predicate representing the presence of data on the data bus 

� 9  a boolean control signal indicating that  the responder has re- 
ceived the requester's address information and that  the responder has 
placed information on the data bus for the requester. 

Initially, all four of these signals are false. 
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FIGURE 7. The timing diagram for the four-phase handshaklng protocol, labeled 
with clocks. The clocks are pdfs that represent the durations of the indicated 
intervals. 

Duration 
Clocks 

a,e .5 .5 .0 .0 .0 .0 .0 .0 .0 .0 
c,d,g,hj,1 .0 .0 .0 .0 .0 .0 .0 .0 .5 .5 
b,f,i,k .0 .2 .4 .2 .1 .05 .02 .01 .01 .01 

TABLE .1. The initial values of the clocks, given as pdfs. 

The protocol operates in four phases: 

1. The requester places information on the address bus and, after a short 
delay, sets req to true. 

2. The responder detects that req has become true and reads the ad- 
dress information on the address bus. It then places the requested 
information on the data bus and, after a short delay, sets resp to 
true. 

3. The requester detects that  resp has become true and reads the infor- 
mation on the data bus. At this point, it knows that the responder 
has detected that  req has become t~ue and has read the information 
on the address bus. The requester then sets addr and req to false. 

4. The responder detects that  req has become false and knows that the 
requester has read the information on the data bus. The responder 
then sets data and resp to false. 

Once the requester has detected that resp has become false, the requester 
can restart the cycle by placing further information on the address bus. 

The timing diagram is shown in Fig. 7. Each thick time line corresponds 
to one of the four predicates. The thinner lines with arrowheads are labeled 
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new transfor 

FIGURE 8. The probabilistic duration automaton for the four-pha~e handshaking 
protocol. The states are labeled with the active clocks, and the edges with the 
expiring clocks. 

with clocks that  define the durations between the indicated transitions. The 
initial values of the clocks are given in Table 1 as pdfs. 

Clock c specifies a lower bound on the duration of the indicated interval; 
clock d, which is started when clock c expires, imposes an upper bound. 
When clocks c and f expire, d becomes inactive and, when clocks c and d 
expire, f becomes inactive. Similarly, when clocks g and h expire, i becomes 
inactive and, when clocks g and i expire, h becomes inactive. 

Clocks j and 1 specify the lower bounds on the durations for which the 
signals addr and data are false, respectively, and impose no upper bounds 
on these durations. The signal addr becomes true when both clocks j and 
k expire and, in addition, the external predicate new_transfer is true. Sim- 
ilarly, the signal data becomes true when both clocks b and l expire. 

The probabilistic duration automaton for the four-phase handshaking 
protocol is shown in Fig. 8. The states of the automaton are labeled with 
the active clocks, and the edges with the expiring clocks. The two states at 
the bot tom right of the diagram are the same as the two states at the top 
left and, thus, the automaton is an equilibrium automaton.  
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FIGURE 9. The calculated pdf for the duration of the handshake from all four 
signals being false until all four signals are again false. Note the logarithmic scale 
on the vertical axis. 

The au tomaton  shown in Fig. 8 is a simplification of the full au tomaton  
in tha t  the edges tha t  represent simultaneous expiration of clocks are not 
shown and state splitting has not been performed. After s tate splitting, the 
au tomaton  had grown to 262 states and 1162 edges. The calculated pdf  for 
the duration of the handshake is shown in Fig. 9. 

Other tools are able to predict the m a x i m u m  duration of 42, but we 
are aware of no other tool that  can predict the probabili ty of a particular 
duration for the handshake, a probabil i ty that  might be of great interest to 
the designers of real-time systems. The computat ion (highly unoptimized) 
required 1 minute  25 seconds on a Sun SPARCstation 20. Only 31 of the 
states and 81 of the edges had non-zero rates of flow. 

7 Related Work 

Much work has been done on establishing that  reM-time systems can meet 
their deadlines using worst-case analysis with upper and lower bounds, for 
example [8, 15]. This work diverges from that  view, and is more closely 
related to the work of [1, 3], which develops verification techniques for 
probabilistic real-t ime systems. I t  derives from our work on reM-time in- 
terval t empora l  logic [13, 14], and we extend the Biichi au toma ta  [2, 16] 
upon which a decision procedure for such a temporal  logic is based. Unlike 
prior researchers, we introduce the notion of a clock as a pdf, and use pdfs 



388 

to represent the durations of states, as well as the durations of intervals 
between pairs of states within the automaton. 

Various researchers have developed methodologies for reasoning about 
probabilistic programs and randomized algorithms. Feldman [4] and Kozen 
[10] have defined propositional probabilistic dynamic logics, where events 
occur according to a probability distribution. Courcoubetis and Yannakakis 
[3] have investigated probabilistic linear-time temporal logics, where prob- 
abilistic programs are modeled using Markov chains, and have devised 
a model-checking algorithm to determine whether a program satisfies its 
specification in the logic. Hansson and Jonsson [5] have extended the CTL 
branching-time logic with time and probabilities, and have also provided 
a model-checking algorithm to determine whether a given Markov chain 
satisfies a formula of the logic. 

Liu, Ravn, Sorensen and Zhou [11] have developed a probabilistic dura- 
tion calculus for reasoning about, and calculating whether, a given require- 
ment of a real-time system holds with a sufficiently high probability for 
given failure probabilities of the system. Their calculus is a real-time inter- 
val temporal logic in which the user specifies requirements of the system 
and defines satisfaction probabilities for formulas of the logic. The system 
model is a finite automaton with fixed transition probabilities; discrete 
Markov processes are the basis of the calculus. 

Jonsson and Larsen [9] have investigated probabilistic transition systems 
for describing and analyzing reliability aspects of concurrent distributed 
systems. In [7] Huang, Lee and Hsu have presented a similar extended state 
transition model, Timed Communicating State Machines, for protocol ver- 
ification. Ho-Stuart, Zedan and Fang [6] have also described a tool, called 
the CoS-Workbench, for analyzing and manipulating formal specifications 
of real-time processes, interpreted as labeled transition systems. 

In [12] Lynch, Saias and Segala defined probabilistic timed automata as 
an extension to I/O automata, which address such questions as whether an 
algorithm will terminate within time t with probability p. Wu, Smolka and 
Stark [18] have also introduced probabilistic I/O automata for specifying 
and reasoning about asynchronous probabilistic systems. However, none of 
the above approaches uses pdfs to represent clocks, as we do here. 

In [1] Alur, Courcoubetis and Dill presented a model-checking algorithm 
for a probabilistic real-time system modeled as a generalized semi-Markov 
process, where a specification of the system is given as a deterministic timed 
automaton. They associate a pdf with each delay and, thus, their approach 
is similar to ours; however, they assume the existence of a generalized 
semi-Markov process, whereas we construct it from a given set of pdfs. The 
completed probabilistic duration automaton constructed by our algorithm 
can be used as input to their model-checking algorithm. Much closer to our 
work is the work of Whitt [17], who has investigated the convergence of the 
construction of generalized semi-Markov processes. 
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8 Conclusion 

We have described a novel methodology and tools for analyzing proba- 
bilistic t iming properties of real-time systems. In our methodology, clocks 
are defined as probability density functions, and probabilistic duration au- 
tomata  are defined in terms of the pdfs to which the clocks are set, the 
clocks that  are active in each state, and the clocks that  expire on each 
transition. 

The algorithm, which we have implemented, takes as input a probabilistic 
duration automaton.  The probabilistic duration automaton may itself be 
the user's specification of the real-time system or may be obtained from 
a temporal  logic specification. The algorithm determines the probabilities 
that  clocks in a state expire, the residual pdfs for the other clocks, the 
probabilities of the transitions, the probabilities of the states, and the pdfs 
for the durations of the states. The algorithm also determines the pdfs 
for durations of intervals between pairs of states within the automaton.  
These pdfs are used to determine whether a real-time system can meet its 
probabilistic timing constraints. 

We plan to integrate this algorithm with a decision procedure for satisfia- 
bility checking of interval temporal logic formulas in which the durations of 
intervals are expressed as pdfs. The decision procedure for this interval ten> 
poral logic will construct the automaton from the interval temporal  logic 
formula in the usual manner. Our algorithm will complete this automaton 
by finding the residual pdfs for the clocks, and the related probabilities and 
pdfs for the durations. We also plan to extend this methodology to handle 
continuous pdfs, but different techniques will be required. 
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