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A B S T R A C T  
Within the framework of symmetrical systems, an extension of CCS [6], so- 
called PCCS, is described. PCCS equips CCS with the concept of pool of 
agents by means of the explicit structure of Pool expressions. The symme- 
tries whithin a Pools of agents may then be used to simplify the validation 
process of concurrent systems. 
An equivalence relation, so-called Permutability, is formally introduced : 
two PCCS expressions are permutable iff they can be obtained from each 
other by a permutat ion of expressions within a pool. Permutabili ty can 
be decided in a polynomial time w.r.t, the length of expressions. The Per- 
mutabil i ty notion allows the definition of symbolic Processes, which de- 
scribe the system behaviour when inside a pool the agent identities are 
removed . A transitional semantics is defined and behavioral verifications 
may be conducted over symbolic Processes. 
K e y  w o r d s  : Process Algebras, Symmetries, Concurrent Systems, Verification 

1 Introduction 

In concur ren t  sys tems ,  a single behav iour  m a y  be shared  by  several  pro-  
cesses, in o the r  words,  all th is  processes are ins tances  of a s ame  process  
class. F u r t h e r m o r e ,  th is  k ind  of sys tems  often exhib i t s  a rch i t ec tu ra l  sym-  
met r ies ,  e.g. two processes of the  s ame  class m a y  be s u b s t i t u t e d  one for 
each o ther  w i thou t  mod i fy ing  the  sys tem behavior .  

In  order  to  s t u d y  these s y m m e t r i c a l  sys tems,  some procedures  have ever 
been designed.  The i r  m a i n  advan t age  lies in the  s impl i f ica t ion  of  the  vali-  
d a t i o n  s tep  by  e l imina t ion  of s y m m e t r i c a l  cases in behav io ra l  s tudies .  This  
approach ,  i n i t i a t e d  by [8] wi th  HL-Trees,  fo rmal ly  consists  of three  s teps  
(cf. F igure  1) : 

1. E x t r a c t i o n  of  a g roup  of  s y m m e t r i e s  f rom the fo rmal  descr ip t ion .  Two 
s ta tes  are  s y m m e t r i c a l  iff t hey  sat isfy  a s y m m e t r y  re la t ionship .  This  
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group of symmetries defines the equivalence relation "is symmetrical 
to" among states. 
As a consequence, a quotient graph may be considered. This quo- 
tient graph may be directly built from the formal description, that 
is on line. Such a construction algorithm is easily derived from any 
standard enumeration algorithm, by replacing the syntactical equal- 
ity among states by the relation "is symmetrical to". 
The symmetrical properties, i.e. which hold for all the symmetrical 
states in a class, may be verified over the quotient graph. Study of 
structural properties (deadlocks, connectivity,....) [3, 5, 9], and tem- 
poral logic model checking [2, 1] have been adapted to these quotient 
graphs. 

] l~xtraetion 

FIGURE 1. The symmetrical approach 

The symmetry approach faces two difficulties : the symmetry derivation 
from the formal description, on one hand, and the computation efficiency 
for deciding whether two states are symmetrical, on the other hand. 

A main contribution of this paper is to propose an efficient application 
of symmetries to Process Algebras for each step of the former symme- 
try approach. The motivation is twofold. On one hand, the validation of 
symmetrical systems described by process algebras will be conducted over 
reduced graph modulo system symmetries. Consequently, when the reduced 
graph derivation cost is low, space saving and time speed-up are expected. 
From a design point of view, on the other hand, the process composition 
is performed by means of algebraic operators, these operators have to pre- 
serve the symmetries of each components. This is the reason why Pool 
expressions will be introduced. 

The purpose is not to promote a new Process Algebra but to present the 
ingredients which may be added to a Process Algebra, here CCSi in order to 
use symmetries. These ingredients concern the description formalism and 
specific types of symmetry : 

Descr ip t ion  Formal i sm : The detection of symmetries in the case of 
usual formalisms is a complex problem, e.g. Symmetries of Petri Nets [9]. 
Specific formalisms have been designed in order to explicitly state symme- 
tries rather than to detect them : the Well-Formed Nets [3, 5], the language 
Mur~ extended by scalarsets [4]. Like in Mur~o, an already existing formal- 
ism, CCS, will be extended by symmetrical structures, Pools of concurrent 
agents, resulting in PCCS. 

The second section briefly introduces the syntax, semantics and behav- 
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ioral equivalence in CCS, the third section extends these three issues to 
PCCS. 

S y m m e t r i e s  : [2] has shown that ,  in the general case, to determine 
whether two states are symmetrical  is as hard as the graph isomorphism 
problem for which no polynomial  solution is known. For this reason, PCCS 
only implements  a particular kind of symmetries : all agents in a pool are 
pairwise permutable.  In this context, the relation "is symmetrical  to" is 
called Permutabil i ty.  Permutabi l i ty  is defined syntactically : two PCCS ex- 
pressions are permutable  iff they can be obtained from each other by an 
agent permuta t ion  within the Pool expressions. The behavioural interpre- 
ta t ion of Permutabi l i ty  is made precise by means of the P-Equivalence, 
which is a specific strong equivalence. 

The Permutabi l i ty  definition, its interpretation and its computat ion,  
polynomial  w.r.t, length of terms, are presented in forth section. 

Q u o t i e n t  G r a p h s  : Permutabil i ty  allows symbolic Processes to be de- 
fined as an equivalence class. From each symbolic Process, a symbolic L.T.S. 
(the quotient graph in the symmet ry  approach) can be derived by a transi- 
tional semantics. An efficient construction algorithm manages to built the 
symbolic L.T.S. for any PCCS expression. 

S y m m e t r i c a l  P r o p e r t i e s  : The behavior verification is conducted on 
the symbolic L.T.S.. Tha t  is, properties of states, which are symbolic Pro- 
cesses, are derived from the Permutabi l i ty  interpretation by means of the 
P-Equivalence. 

The symbolic Processes and their properties are developed in the fifth 
section. 

PCCS seems to offer a good balance between a low (polynomial) com- 
putat ion cost and a high reduction rate. This question is discussed in a 
deeper way in the sixth section. 

2 CCS Algebra 

CCS is a Process Algebra whose basic elements are a set of names .4 , the 
associated co-names ,4 and a set ]C of agent constants. s = ,4 U r denotes 
the set of labels and Act = • U {r} denotes the set of actions. Its syntax is 
described in the first part ,  its transitional semantics in second part .  In the 
third part ,  three notions of equivalence among processes are given: s t r o n g  
equivalence, observation equivalence and observation congruence. 

2.1 Syntax of CCS 

The agent expressions are : 0 a.E E + F ElF E \ L Elf] 
where E, F are agent expressions, a E Z:, L C s and f is a relabeling 
function, that  is a function f rom/2 to Z: such that  f(l i = f(1); f is extended 

to Act by f ( r )  = r.  
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Every constant A in tg is assumed to have a definition : 

A d~__/E where E is an agent expression. 
R e m a r k :  the operator Eicx El, where I is any set of indexes, is not included 
in our version of CCS. Indeed, it will be assumed in the sequel of the article, 
that  the length of expressions is finite and so is the set of constant names. 

2 .2  Trans i t ional  s eman t i c s  o f  C C S  

The semantics of CCS is defined in terms of labelled transition systems 
(L.T.S.). Their states are agent expressions, and transition labelled by ac- 
tions are ruled by : 

E1 ~>E~ E2 ~ E ~  

a.E a) E EI + E2 --'~ E~ E l + E 2  a) E' 2 

E1 ") E l E2 ~) E L E1 ") E~ E2 ~> E L 

BilE2 ~) E;IE2 SllE2 ") EllE~ BilE2 ~> Bi lE  ~ 
E a ) E t  a _ _  E - U  E' E " E'( A "~ 

E \ L  a ) E , \ L  (a '~ '~L)  E[f] f(al E[I] A ~) 
Consequently, with each agent expression E, a L.T.S. can be associated. 

2.3 Behavioral  Equivalence o f  processes 

In [7], three kind of equivalences are introduced; from the strongest to 
the weakest: strong equivalence, observation congruence, and observation 
equivalence. The first two relations are also congruence for the operators 
of CCS. They are all defined according to the same idea : If  two processes 
are equivalent then they can perform the same action and then become 
equivalent processes. Only the semantics of "perform an action" changes. 

Strong equivalence is defined as the union of all strong bisimulation : 

De f in i t i on  2.1 ( S t r o n g  bls lmulat ion~ s t r o n g  equiva lence)  a binary 
relation among agent expressions, B, is a strong bisimulation iff it verifies : 

P B Q =~ Va, VP', (P "> P' ~ 3Q',Q a~ Q, and P, B Q,) 
and VQ',(Q a> Q' ~ 3P ' ,P  a> P, and P, B Q') 

the relation ,.~= UBstrong bisirnulationB iS an equivalence relation called 
strong equivalence. 

To define observation equivalence, the particular action T, representing in- 
ternal computation, is considered.Transition relations =~ and ~r~y are de- 
fined by abstracting internal computation : 

�9 V P,Q agent expressions, Va 6 Act : P ~ Q r P ~" ~* Q 
�9 ~ 1  = =r U{ (P, r, P) / P  agent expression } 

The definition of weak bisimulation and observation equivalence is obtained 
by substituting ==~ey for --4 in Definition 2A. Unfortunately, observation 
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equivalence is not a congruence for the operator "+" ,  that  is why the 
stronger observation congruence is introduced : 

D e f i n i t i o n  2.2 ( o b s e r v a t i o n  c o n g r u e n c e ,  e q u a l i t y )  
P and Q are observation equivalent iff 
V a E A e L  VP', ( P - - ~  P' ~ 3 Q ' , Q = ~ Q '  a n d P '  ~ Q') 

and VQ',(Q a~Q, ~ 3 p , , p ~  p ,  a n d P ,  ~ Q') 
Observation congruence is also called equality and denoted by the usual 
symbol '~- ". 

In the sequel, the symbol -~ denotes ,-% ~ or = in properties verified by 
three equivalences. 

3 P C C S  p r e s e n t a t i o n  

In order to explicitly declare symmetries,  new concepts are introduced into 
CCS, resulting in an extended CCS, so-called Pool CCS (PCCS). PCCS 
describes in a simple way pools of concurrent processes sharing a class of 
possible behaviours. For each pool of agents, an unique name Pool_id  is 
introduced. I Pool_id  I is the number of agents in Pool_id.  I Pool_id  I. 
I Pool_ id  I is an integer constant, that  is, the number of agents for a given 
pool is constant,  agents in the pool are assumed to be numbered from 1 to 
I Pool_id I. 

Moreover, the set of labels is parti t ioned into : 

�9 the set of common labels s which enables communicat ion be- 
tween distinct pools (with distinct pool identifiers), 
Actcom = f-.co,, U {r} is the set of common actions, 

�9 the sets of symbolic labels s  attached to each pool Pool_id.  
Label a of s represents label ai of any agent i of pool 
Pool_id. 

E x a m p l e  : The Jobshop example described in [7] is extended. Let us consider 
that n jobbers share p hammers and q mallets to manufacture objects brought 
by a different conveyer belt for each jobbers. The whole system, depicted in 
Figure 2, may be represented by 3 pools JOBBERS, HAMMERS and MALLETS such 
that I J O B B E R S  I= n, [ H A M M E R S  l= p and I MALLETS  l= q. As each 
jobber is working on his own conveyer belt, entering and leaving of objects is 
expressed by symbolic labels in,  out in JOBBERS. The other labels geth,  puth,  
get-,,  putm are common labels. In Figure 2, agents Ji, the i th jobbers, Hk, the 
k th hammers, and M,, the l th mallets are represented. 

The communicat ions between distinct pools are restricted to labels of 
l:com in order to not break the pool agent symmetry  by composition. For 
instance, suppose that  pool 0ne_0bjec t  is inserted in the Jobshop system, 
its symbolic labels are {in} (cf. Figure 3). The i th agent in One_Object 
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in| outl 

geth/ ~/puth getm "~"-,% put. 

I ........... ~ ............. I HAMMERS I I .................... ( ~  ........... [MALLETS 

FIGURE 2. Jobshop system 

prevents the i th jobber to manufacture more than one object. Now, assume 
that  I One_Object I = 1, then only the first jobber cannot manufacture two 
objects, i.e., symmetry among jobbers is broken. 

) • t  One-Obl ect 

out 1 
outz ................ .Ini ouh ............................. 

JOBBERS 

FIGURE 3. Breaking symmetries by communication on symbolic labels 

The syntax and the transitional semantics are detailed in the next two 
parts. The relations between PCCS and behavioral equivalences are ex- 
plained in the third part. The last part compares the expressive power of 
CCS and PCCS. 

3.1 Syn tax  o f  P C C S  

The new syntactical elements are : 

�9 pool declaration, to define new pools, 
�9 Pool expression, to define a pool behaviour, 

The Pool expression addition to standard CCS expressions results in 
PCCS expressions. 

Dec lara t ion  of  Poo l s  

A pool is declared by : POOL Pool_id  n { symbolic_. labels  } 
POOL is a key word introducing the declaration. Pool_id is the identifier of 
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the declared pool, n is an integer constant defining the number of agents in 
the pool, I Pool_ id  I. s y m b o l i c _ l a b e l s  is a sequence of distinct identifiers 
defining symbolic labels of Pool_id,  s  

Pool expressions 

There are three imbricated syntactical levels in PCCS : 

S y m b o l i c  a g e n t  e x p r e s s i o n  describes the behaviour of agents within a 
Pool. For a given pool, Poo l . i d ,  it consists of : 

�9 a CCS expression using f com 0 s as labels, 

�9 a constant A such that  A ae_j E and E is a symbolic agent 
expression of Pool, Poo lAd.  

The set of symbolic agent expressions attached to a pool, Pool_id,  
defines the class of possible behaviours of agents within Pool_id.  

P o o l  e x p r e s s i o n  describes the behaviour of the whole pool. Syntacti- 
cally, it consists of the name of the pool, Pool_id,  following by an 
ordered list of n symbolic agent expressions delimited by parenthesis : 

Pool_id(E1,  E 2 , . . . ,  E i , . . . ,  En-1,  En) 
n must  be equal to I Pool_id  I, and the i th expression in the list, Ei,  
specifies behaviour of agent i. 

P C C S  e x p r e s s i o n  describes a system where several agent pools are 
working and consists of usual CCS operators and Pool expressions. 

In the sequel, Ei, Fi . . . .  wilt range over the symbolic agent expressions, 
P, Q , . . .  will range over PCCS expressions, and Poo lAd  is a pool of n 
agents. 
R e m a r k  �9 as symbolic agent expressions are usual CCS terms, the imbrication 
of pools is forbidden in PCCS (this choice is explained in part 6). 

E x a m p l e  : In the Jobshop system, the three pools are declared by : 
POOL JOBBERS n {in,out) POOL HAMMERS p {} POOL MALLETS q {} 

The behaviour of agents are expressed by the symbolic agent expression : 
def  

J = in.(geth.puth.out .J  + getm.putm.out .  J) 
d e /  d e f  

H = geth.puth.H M = getm.putm.M 

Behaviours of pools are expressed by Pool expressions : 
n t i m e s  p t i m e s  q t i m e s  

JOBBERS ($,..., J) HAMMERS (H .... , H) MALLETS (~/ .... ,/14") 
The whole system is specified by the PCCS expression : 
(J0SBERS(J, . . . ,J)  I HANMERS(H,...,H) I ~ALLETS(M . . . .  ,M) )  \ L 
where L = {geth, g e t m , p u t m , p u t h )  
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3.2 Transitional semantics of PCCS 

The PCCS semantics is defined in terms of labelled transition systems like 
in CCS. The specification rules of the behaviour of Pool expressions are 
defined in the first part. The PCCS rules are the standard CCS rules plus 
specific rules for Pool expressions. Some minor modifications are introduced 
for restriction and relabeling in the case of symbolic labels. 

Transitional semantics of Pool expressions 

The transitional semantics of a symbolic agent expression is given by the 
usual CCS rules. The following extra rules define the semantics of Pool 
expressions : 

E, -~+ E" 
C ~  Pool_id(...Ei_~, E,, E~+~ ...) - ~  Pool_id(...Ei_~, E~, Ei+~ ...) 

6 Act~o,~ ) 

E~ --% El 
Symbpool_id( .... Ei .... ) ..2.% Pool_id(..., E~, ...) 

( ,  6 s 

Corn is the production of common action a by agent i. 
Symb shows how a symbolic label catches the identity of the issuing 

agent, i.e. the symbolic agent expression is instantiated. 
Intra-pool Communications obey to (sync is a distinguished action in 

s  : 

( ) Ei ---?-r Ei Ej----+ Ej a ,5  6 s 
Rdv2 Pool_id( .... Ei, ..., Ej .... ) --~ eo'-oX_i'--d(-~.., E~, ..., E'~, ...) a, ~ r sync 

Rdv~u 
Vool_id(E,, . . . ,  E.) __L, Vool_id(E~,..., E') 

Rdv2 represents the communication between agents i and j in the pool 
on a common label. Only agents i and j are moving. 

Rdvan  is a natural rule of atomic multicast within a pool. This kind 
of multi-synchronization is not in the spirit of CCS but it is very conve- 
nient to build high-level specifications; furthermore, it is restricted within a 
pool. Nevertheless, this rule is not essential and can be deleted from PCCS 
without altering the results of the next sections. 

Example  : in the Jobshop system, a jobber which detects a default on its input 
object, must stop the production in the Jobshop. Thus, the other jobbers must 
stop working after having manufactured their current object. The description 
of the new system is obtained by replacing the symbolic agent expression J by 
J,ootch in the previous description : 

,]watch deJ in.( sync.O "b geth.puth.O~o~t~h + getm.putm.O~ateh ) 

Owateh ~-f S--OB'c.O + -O-~.dwateh 



195 

Transitional semantics of PCCS 

Pool expressions can be used in usual CCS expressions. Transitional se- 
mantics of "+" and "1" and "." remains the same, only restriction and 
relabeling have a different semantics when they are applied with labels of 
s : 

E--%E' E-~E' 
E \ L a~) E \ L (a E/:(Pool_id) and a,d, ~ L) E[f] I(_~ E'[f](a e •(Pool_id)) 

Moreover, a relabeling function must respect the domains : 
f(Z(Pool_id)) C L(Pool_id) 

Remarks : s N L(Pool_id') = 0 prevents different pools from com- 

municating on symbolic labels. However, two expressions of a single pool may 

communicate on symbolic labels. 

3.3 P C C S  behavioral equivalences 

The former three equivalence definitions are still valid in the case of PCCS. 
Moreover, they are congruences for operator Pool_id : 

P r o p e r t y  3.1 ( P o o l  e x p r e s s i o n s  a n d  b e h a v i o u r a l  e q u i v a l e n c e s )  
Ei ~- Fi ~ P o o l _ i d ( E 1 , . . . , E i , . . . , E , )  ~ V o o l _ i d ( E 1 , . . . , F i , . . . , E n )  

P r o o f  (sketch of) : 
B --- { (Vool_ id(E1 , . . . ,  Ei , . . . ,  En), Vool_ id(E1 , . . . ,  Fi, . . . ,  En)/Ei  ~- Fi} 
is a strong (resp. weak) bisimulation if ~ is ,~ (resp. ~- is ~)  as a conse- 
quence of the transitional semantics of Pool expressions. 
(~- is =) as a consequence of (~ is ,~). []. 

3.4 P C C S  power  o f  expression 

As any CCS expression is a PCCS expression, PCCS expressive power is 
greater than CCS. Conversely : 

P r o p e r t y  3.2 I f  the rule Rdvau is not used then there exists a set of 
rewriting rules changing each PCCS expression, in a CCS expression having 
the same derived L. T.S.. 

S k e t c h  o f  p r o o f  : For each Pool_id, a family (fi)t<i<n of relabeling 
functions is defined : 

a i fa E s 
fi(a) = ai ira E s  

Then, a CCS expression is obtained from each PCCS expression by the 
rewriting rules : 

P o o l _ i d ( E 1 , . . . ,  En) -+ El[f1] I - - .  I E,[fi] I .. .  [ E,,[fn] 
Finally, verify that  the obtained CCS expression share the same derived 
L.T.S. than P. [] 
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From this property, one could claim that the concept of pool is useless 
since it can be replaced by usual CCS expressions. But, in this case, the 
compositional issue of PCCS is lost : nothing ensure that symmetries in 
CCS expressions will be preserved by composition (see for instance, the 
example of 0ne_0bject in the jobshop). Hence, symmetries should be re- 
computed for each CCS expression. 

4 PCCS Symmetries 

PCCS symmetries are defined for Pool expressions of the same pool. They 
involve the notion of Permutability. Two expressions are permutable iff 
it exists an agent permutation within the pool which make them equal. A 
deductive system, introduced in the next part, makes this definition precise. 
The behaviour interpretation of permutability is explained in part two. An 
efficient permutability computation is presented in part three. 

4.1 P e r m u t a b l e  expres s ions  

Permutability is defined as the union of ~-equalities. Two expressions are 
related by a C-equality iff they are equal up to permutation r of symbolic 
agents in pool expressions. ~-equality and Permutability of pool expressions 
are first defined. The extension to any PCCS expression is then carried out 
by means of a deductive system. The recursion problem needs a particu- 
lar treatment. ~-equality is decidable over PCCS and so is Permutability. 
Permutability is finally defined, as an equivalence relation. 

Permutable Pool expressions 

Symmetries are derived from agent permutations : 

Defini t ion 4.1 (Pe rmu tab l e  Pool  express ions)  
Let ~ be permutation over {1,..,n}. 

Pool_id(E1, ..., En) and Pool_id(E~, ..., E~) are equal up to ~o or p-equal iff 
V~" E {1, . . . ,  n}, El and E!w~,i,) are syntactically equal. Two Pool expressions 
are permutable iff it exists ~ such that they are equal up to 9. 

R e m a r k  -" a more simple definition of permutable pool expression can be 
: two pool expressions are permutable iff they are syntactically equal up to 
associativity and commutativity among processes within a pool. However, 
the extension of permutability to any PCCS expressions requires to identify 
the permutation which makes two Pool expressions equal. This is the reason 
why p-equality is introduced. 
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PCCS ~-equality 

The extension to any PCCS expression is performed by first, defining a 
mapping C over Pool identifiers such that  : 

VPool_2d, C(Pool_id) is a permutat ion over { 1 , . . . ,  [ Pool_id  I}. 

Equality up to C, or C-equality, denoted -r is then defined by a deductive 
system. Obviously, the notion of @equality over Pool expressions remains 
the same that  in 4.1 : 

(A1) Pool_id(E1, ...) and Pool_id(E~, ...) are r 

Pool_id(E1, ...) _2_ Pool_id(E~, ...) 

As our motivation is to preserve symmetries by composition, C-equality 
is naturally extended as a congruence : 

P L Q  P~=Q pC=Q 
(A2)~=O (R1)p[f]. Q[f] (R2) (R3) . = P\LC=Q\L a.P=a.Q 

P1 a= QI and P2 ~ Q2 P1 ~ Q1 and P2 r Q2 (R4) (n~) 
(t'1 + P:) ~ (Q~ + Q2) (['1 I t:'2) ~ (Q, [ Q2) 

In rules R4, R5 commutat ivi ty of "+" and '1" are not used. Indeed, 
commutat ivi ty  would render the computation very complex. For instance, 
the comparison of A1 + .-.  + A,~ and B1 + . .-  + B~, would require the 
examination of all the possible orderings of A1,. �9 Am and B1, �9 �9 Bn. n! 
operations are to be performed, and the computation is no more polynomial 
with the length of the expressions. 

Recursion 

Recursion requires a specific treatment.  A naive idea would be to write the 
rule : 

E -r Q (A ~or= E) 
A*=Q 

But, the query, ~- A ---0 0 + A where A a j  0 + A, will lead to infinite 
computation.  

So, a new construction, which preserves during the computation the sub- 

stitution induced by a j  is defined : A -,-* P --r Q where A is a set of terms 

Pi r Qi �9 It means that  P -r Q under the assumption that  for all i, P~ =o Q~. 
The following axiom is then a direct consequence : 

(A3) 
A o { p  C---Q}~.+ p ~=Q 

This construction is related to the former ones by the relation : 

p~=Q 
(R6) (for any A set of/I)-equalities) 

A,..~ P ~ Q  
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The recursion rules can finally be completed : 

(Rr) A u I A  ~-Q}"* EV=Q(Ad~I E) (Rs) 
A,.,~A ~=Q 

A u { Q ' ~  A}..,zQ ~ = = E (A ~-! E) 
A,. , . ,Q~ A 

&-equality Decidability 

By taking into account the former set of axioms and inferences rules, -~ is 
decidable : 

P r o p e r t y  4.1 it can be decided by finite applications o r A l , . . . ,  Rs whether 
~- p c - Q  

S k e t c h  o f  p roo f :  The derivation tree whose root is t- P ~ Q is shown to 
be finite : 
(a) as the length of expressions is assumed to be finite, the number of sons 
of each node in the derivation tree is finite. (b) as the number of constant 
names is assumed to be finite, the number of possible sets A is finite, hence 
the depth of the tree is finite. (a) and (b) =~ the derivation tree is finite. D 

Permutability 

P and Q are said to be permutable, denoted by P 2_ Q, iff it exists �9 such 

that  t- P =~ Q. 

P r o p e r t y  4.2 Permutability is an equivalence relation 

S k e t c h  o f  p roo f :  the set of all mappings r is a group from laws : 

�9 �9 o O'(Pool__id) = O(Poolid) o (I)'(Pool..id) 
�9 and o - l (Poo l_•  = (O(Pool_• -1 

This group structure implies an equivalence relation, more particularly, 
neutral element ~ reflexivity, inverse ~ symmetry, internal composition 
law =~ transitivity. [] 

4.2  In terpre ta t ion  of  Permutab i l i t y  

Interpretation of @equality 

The interpretation of (I)-equality is similar to the other behavioral equiv- 
alences : two processes are equal up to �9 iff if they can perform the same 
action up to �9 and then become O-equal processes . The meaning of equal 
actions up to �9 is made precise by : 

i f  a E ~(Pool_id)  then O(ai) = aj with j : O(Pool_id)(i) ,  
i f  a E s then O(a) = a 

The bisimulation and equivalence up to (i) may then be defined : 
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Def in i t ion  4.2 A binary relation Bv is a bisimulation up to �9 iff 

PBoQ=:~ Va, VP', (P a) p, =~ 3Q', Q ~ Q' and P'B~Q') 

and VQ', (Q ~ Q' ~ 3P', P -5+P '  and P'BoQ') 

The relation r U By is called O-equivalence. 

The O-equality is sound for the O-equivalence : 

P r o p e r t y  4.3 ( S o u n d n e s s  o f  O-equa l i ty  ) �9 P __o Q ==~ p ~ Q 

Ske tch  of  proof :  {(P, Q)/P ~= Q} is a bisimulation up to �9 (use At , .  �9 Rs). 
[3 

Interpretation of Permutability 

Permutabili ty is defined as the union of all O-equalities, so permutability in- 
terpretation is defined as the union of all O-equivalences, or P-Equivalence, 
denoted •. 

The O-equalities properties entail the following property: 

P r o p e r t y  4.4 ( I n t e r p r e t a t i o n  o f  ~)  P v__ Q :=~ p L Q 

3.3 Efficient Computation of Permutability 

Processing Pool expression 

Let [ X [ be the cardinal of the finite set X. To decide whether two Pool 
expressions are permutable does not require the exhaustive enumeration of 
all the I Poo lAd I! possible permutations because of the following funda- 
mental property : 

P r o p e r t y  4.5 Let {P1,..., Pro} and {Q1,..., Qm} partitions of{l,  ..., n}, 
(V1 < i < rn :l Pi I=l Qi l) 4:~ (9 �9 permutation of {1, ..., n}:  0(Pi) = Q~) 

In the case of Pool expressions, partitions are induced by the notion of 
P-state : The P-state of a Pool expression Pool_. id(El , . . .  , En), denoted 
s (Pool_ id(E1 , . . . ,  E , ) )  is the set {(Pk, Ek)/1 < k < rn} such that  Pk C 
{1, ..., n}, is the set of agents which share the same symbolic expression E k. 
{Pk/1 < k < rn} constitutes a partition of { 1 , . .  ,n}. 

I s ] i s  the set {(1 Pk I, Ek)/1 <- k <_ rn} which gives for each k the 
number of agents which share E k. 

Example : in a Jobshop system with 3 hammers, it holds that: 
s( HAMMERS(H, puth.H,H) ) = { ({1,3},H), ({2},puth.H) } 

Is( HAMMERS(H, puth.H,H) ) [= { (2, H), (1,puth.H) } 

If s (resp. s') denotes the P-state of a Pool expression P (resp. P') then 
from property 4.5 : 

P r o p e r t y  4.6 I s I=1 s' 1r P p- P '  



200 

Example  : HAMMERS(H,  puth.H, H) p- HAMMERS(H, H, puth.H) since: 
Is( HAMMERS(H,p ,  th.H,H) )1 =1 s( HAMMERS(H,  H, puth.g) )1 

= {(2, H), (1,puth.H)} 
Intuitively, in both cases, there are two free hammers. 

E x t e n s i o n  to  P C C S  

The extension of P-state to PCCS is similar to the extension of C-equality. 
The whole process is rather technical. Therefore, it is detailed in appendix 
1. Basically, it uses the fact that  C-equality is defined as a congruence and 
P-state is computed by intersection of partitions. 

5 Validation in PCCS 

PCCS symmetries may be applied for an efficient reduction of the state 
space. This reduction is performed by associating symbolic process P with 
each PCCS process P, as defined in the next section. The transitional se- 
mantics of symbolic Processes, derived from the PCCS transitional seman- 
tics, is then used to build a L.T.S.. The algorithm, described in section 
2, takes, as input, a PCCS expression P and constructs the L.T.S. de- 
rived from the symbolic Process P.  The symbolic Process properties are 
presented in section 3. 

5.1 Symbol ic  Processes 

A symbolic Process is an equivalence class of PCCS processes with respect 
p 

to the equivalence relation --. The equivalence class of process P is denoted 
P.  It represents a process up to a permutation among agents inPools .  This 
abstraction can be extended to actions by the mapping abs t :  

i f  a e s then abst(a) = a 
i f  a = b~ with b E s  then abst(a) = b 
for  all co-action ~, abst(-5) = abst(a) 

The transitional semantics of symbolic Processes is defined by the rule: 

P =~Q 

That  is, the identity of agents is abstracted. This rule is not ambiguous 
since two processes, attached to the same symbolic Process gives the same 
symbolic transitions by the previous rule. In other words : 

Property 5.1 (-P = -R and P --~ Q) 

(3b, 3T, abst(a) - abst(b) and Q =  T and R b) T) 
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S k e t c h  o f  p r o o f :  from the interpretation of Permutability 
by P-Equivalence. [] 

The symbolic L.T.S. of PCCS process P is the L.T.S. which can be 
derived from P using the transitional semantics of symbolic Processes. 

5.2 The symbolic L. T.S. 

The algorithm, depicted in Table .1, build the symbolic L.T.S. of P. The 
algorithm consists of a partial exploration of the L.T.S. which can be de- 
rived from P. An equivalence class of processes is represented by a class 
member,  the first reached one (line (*) in the algorithm). 

In the algorithm, --~ denotes the set of the symbolic L.T.S. transition 
relation, the reached states are putted in set Reached, the states whose 
transitions are to be fired are stored in stack To_~xplore. 

PROCEDURE SYMBOLIC_LTS( P : IN PCCS expression) IS 
Reached := {P}; Push(To_Explore,P) ; -+= @; 
WHILE To_Explore ~& empty_stack LOOP 

Pop (To_Explore, Q) ; 
FOR ALL (Q,a,R) PCCS transitions 

IF B R' E Reached such that R -p R' 

THEN -~=-~ u{(q, abet(a), R')}; 
ELSE Reached := Reached U {R}; 

- + : = - +  u{(0, ab~t(a), n)}; 
END IF; 

END F0R ALL; 

END WHILE; 

END PROCEDURE; 

(*) 

TABLE .1. Symbohc L.T.S. derivation algorithm 

P r o p e r t y  5.2 ( S o u n d n e s s )  The algorithm of Table .1 builds the symbolic 
L. T.S. of P 

S k e t c h  o f  p r oo f :  consequence of Property 5.1. [] 

5.3 Properties of symbolic Processes 

The property of symbolic Processes can be deduced from the interpretation 
of Permutabil i ty  in terms of P-Equivalence. 

The O-equivalence notion is similar to the usual behavioral equivalences : 

P r o p e r t y  5.3  Q ~ P and Q ~- R and R r T ~ P ~- T 

The following property may then be deduced : 
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P r o p e r t y  5,4 P -~ Q =~ P ='~ Q 

This property is interesting in its negative form : P ~ Q ~ P ~ Q 
Tha t  is it can be deduced over symbolic processes that  two PCCS expres- 
sions are not linked by a behavioral equivalence. 

Unfortunately, the converse property is false as shown by Figure 4. 

Declarations: 

POOL Any 2 {a} 
d~ 0 d--~a-O P = s . a . 0  

Any(O,Q) ~ Any(P,0) and Any(O,Q) ~ Any(P,O) 

8 

FIGURE 4. Counter example 

Some weaker properties can nevertheless be decided : 

1. s  = ~ =P P o o l _ i d ( E z , . . . ,  En) "~ Pool - - id (Ez , . . . ,  En), 
2. P is a deadlock ~ P is a deadlock, 
3. P is divergent r P is divergent 

( P is divergent iff it can perform an infinite sequence of r)  

S k e t c h  o f  p roo f :  (1) consequence of property 5.1, and by noticing that  a 
= abst(a)  if a E Actcom. (2)+(3) from Property 5.1. o 
Property (1) is very interesting since it allows a partial compositional anal- 
ysis by substituting P o o l _ i d ( E z , . . . , / i n )  for PooZ-id(E1,..., E,) in the 
system description. Moreover, it expresses a simple intuitive idea as shows 
the following example: 

H A M M E R S ( H  ..... H) 

p times 
A. 

geth geth 

FIGURE 5. Symbolic L.T.S. 

Example  : in the Jobshop system, the symbolic L.T.S. of pool expression 
H A M M E R S ( H ,  . . . ,  H)  is described in Figure 5. In CCS, it can be expressed by 
the agent hamp such that : 

Vl <_ j <_ p - 1, hamj  deJ geth .hamj_l  + puth.hamj+z 
del hamo = puth .haml  hamp de! = geth.hamp_z 

The same process can be applied to pool M A L L E T S .  And the system described 

by : 
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(JOBBERS(J , . . . ,  J ) l hamp I malleta) \ {geth, puth, getm, putm } 
is strongly equivalent to the initial description of section 3 by Property (1). Hence, 
a conceptually simple expression can be automatically replaced by an expression 
easier to analyze. 

6 PCCS enhancement 

Two criteria are essential for a symmetrical formalism : 

�9 the number of states of the quotient graph with respect to the initial 
graph. The reduction rate must be as high as possible. 

�9 the quotient graph construction complexity must be low in order to 
preserve in time the save in space. 

To formalize the reduction rate, let us consider a set of n agents (param- 
eter n represents the complexity of the system). Each agent behaviour has 
m states. The agent composition is assumed to not restrict their reachable 
states, that  is, the number of states of the whole systems is ran: the number 
of state grows exponentially with the complexity. 

The quotient graph state number of this system is now computed for 
several groups of agent permutations. This defines the theoretical reduction 
power of each permutation group. 

The procedure complexity for determining whether two states are sym- 
metrical is directly related to the computation complexity. 

Table .2 shows the results in the case of four symmetries: 

�9 The group of rotation, the agents are located on a ring, 
�9 The dihedral group, the agents are located on a polygon, 
�9 PCCS, i.e the group of all permutations, the agents are in a set (or a 

complete net), 
�9 2D-PCCS, an extension of PCCS where a pool of agents can contain 

other pools of agents. For instance, the agents are located on a tree. 

Rotations 
Dihedral group 
PCCS 

Size of quotient Complexity w.r.t n 

> mn/n polynomial 
> rnn/2n polynomial 

C~+.~_, < (n + m) "~ 
2D-PCCS < ((n/2) + m) zm 

polynomial 
equivalent to 

the graph isomorphism problem 

TABLE .2. Results for different kinds of symmetries 

It seems not interesting to use rotations or dihedral groups in order to 
fight against combinatorial explosion, because their reduction rate is low. 
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2D-PCCS could be a good candidate but the complexity of computat ion 
constitutes a handicap. Finally, PCCS seems to be a good trade-off. Besides, 
the list is not exhaustive, and other kind of symmetries may combine good 
figures. 

7 Conclusion 

PCCS supplies a suitable formalism for Pools of agents and their symme- 
tries. The agent Pools are described by a new structure: Pool expressions. 
The symmetries are expressed by means of Permutabili ty concept. As Per- 
mutabili ty is an equivalence relation, symbolic Processes can be defined 
as an equivalence class. A symbolic transitional semantics is brought to 
symbolic processes. Furthermore, an algorithm is available for computing 
the symbolic L.T.S. of a PCCS expression. Permutabili ty can be decided in 
polynomial time, consequently the computation cost of the symbolic L.T.S. 
is low. The Permutabili ty interpretation in terms of P-Equivalence, makes 
possible verifications over symbolic L.T.S. : divergence, showing that  two 
processes are not related by behaviour equivalences . . .  

Now, we are working on solutions to verify behavioral equivalence on 
symbolic processes. We think that it can be performed by introducing new 
synchronization operators II such that  behavioral equivalence between P 
and Q can be verified upon the symbolic process P [[ Q. 
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Inforrnatik-Berlchte 33, Humbol t -  

1 Efficient Computation of Permutabilty 

1.1 P-s ta tes  o f  Pool  expression sets 

The  not ion  of P-s ta te  is generalized to sets of Pool  expressions by : 
Let  (Pool_id(E~,.. i �9 , En))l_<i<z be a family of 1 Pool expressions of the same 
Pool,  Pool_ id .  
The  P-s ta te  of this family is the set: s = ( (Pk, V~) / 1 < k < m } where 

�9 (Vk)l<k<m is a family of vectors of length 1 : 
Vk =-(Vqk,..., V~) where V h is a symbolic agent expression. 

�9 j and g in Pk means that ,  for each 1 < h < l, agents j and g share the same 
agent  expression V h in the h th Pool  expression: 

Pool_id( . . . .  V~ . . . . .  V~] . . . .  ) 
1 Pool expressions . 

P o o l _ i d ( . . . ,  V~, . . . ,  V~ . . . .  ) 

Moreover,  I s l =  { ( I P ~ I , ~ )  / 1 < i < m  }. 
The  P-s ta te  of a singleton { P o o l _ i d ( E 1 , . . . ,  En)} defined in section 4.3 is de- 

no ted  s(Pool_id(E1 . . . .  , E,~)). The  P-s ta te  of the union of two families can be 
computed  f rom the P-s ta tes  of these two families, by the operat ion n : 

P r o p e r t y  1.1 Let s (resp. s'} be the P-state of family Y:~ (resp. Yr2), 
s Iq s '  is the smallest set obtained by : 
If (P~, Vk ) e s and ( PL  V~) ~ s' and Pk n Pt  # 0 then ( Pk N P~, V~.V~) E s fq s' 
( Vk.V~ is the concatenation of vectors Vk and V~ ). 
s lq s' is the P-state of 3rl U Y:2. 

I n d l e a t i o n  o f  p r o o f :  from the property,  if T ~ and Q are par t i t ion  of {1, . . . ,  n} 
then  so are 

P n Q = { P n Q /  P E P ,  Q G Q ,  P n Q # O } D  

Moreover,  the indetermined P-s ta te  denoted w is introduced.  It is the P-s ta te  as- 
sociated to an  empty  set of Pool expressions. It is assumed that :  w n s = s [qw = s 

and Iw I=O. 

1.2 Ex t ens ion  to P C C S  expressions 

First ,  an extended P-s ta te  S is defined as a mapping such that  : 
VPool_id,  S (Poo l_ id )  is a P-s ta te  of a Pool  expression family of Pool_ id .  
The  operat ions  over P-s ta tes  are natural ly  extended : 

I S I: Poo1_id ~I S(Poo1_id) I 
S R S ~ : Pool_id ~-~ S(Pool_id) R S'(Pool_id) 

The  indetermined extended P-s ta te  denoted ~ is defined by: 
VPool_id, fl(Pool_id) = w. 
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Now, the extended P-state  S(P) associated with each P can be computed by : 

S(O) --- ~ S(a.P)  = S (P)  S(P[f])  = S(P)  S ( P  \ L) = S (P)  

S ( P  + Q) = S ( P  I Q) = S(P)  cl S(Q) 

S(Pool_id(E1, . . . ) )----f~ [7 s (Pool_ id(E1 , . . . ) )  

Recursion is treated like for ~-equality, i.e., a new construction is defined : 
A ~,  S (P)  = S, where A is a set of equalities S(P~) = Si. 
It means that  S(P)=S under the assumption that  for all i, S(Pi) = S~. 
Hence, the axiom and the rule : 

A U {S(P)  = S} --~ S(P)  = S 

The Recursion is processed by : 

S ( P )  = S 

a - . ,  s ( e )  = s 

A U{S(A)  f~}-,~ S(E)  = StAr ~ I  E) 
S(A)  = S = 

For the same reasons that  0-equality, the computation of S(P) is always finite. 
And the Property 4.6 about P-states and Permutabili ty can be extended : 

P r o p e r t y  1.2 P ~ Q #~,] S(P)  I=] S(Q) I 

S k e t c h  o f  p roo f :  by structural  induction over P Jr Property 4.6 n 
Moreover, since the computation of H is polynomial with the arity of each pools 
of agents, the computation of the P-state  is polynomial with the length of the 
system PCCS description, i.e., the sum of the length of the PCCS expressions 
which represents the whole behaviour and the length of all needed expressions 
Ad~=I E. 


