
Permutable Agents in Process
Algebras
Fran iois Michel*
Pierre Az6ma*
Franqois Vernadat*

A B S T R A C T
Within the framework of symmetrical systems, an extension of CCS [6], so-
called PCCS, is described. PCCS equips CCS with the concept of pool of
agents by means of the explicit structure of Pool expressions. The symme-
tries whithin a Pools of agents may then be used to simplify the validation
process of concurrent systems.
An equivalence relation, so-called Permutability, is formally introduced :
two PCCS expressions are permutable iff they can be obtained from each
other by a permutat ion of expressions within a pool. Permutabili ty can
be decided in a polynomial time w.r.t, the length of expressions. The Per-
mutabil i ty notion allows the definition of symbolic Processes, which de-
scribe the system behaviour when inside a pool the agent identities are
removed . A transitional semantics is defined and behavioral verifications
may be conducted over symbolic Processes.
K e y w o r d s : Process Algebras, Symmetries, Concurrent Systems, Verification

1 Introduction

In concur ren t sys tems , a single behav iour m a y be shared by several pro-
cesses, in o the r words, all th is processes are ins tances of a s ame process
class. F u r t h e r m o r e , th is k ind of sys tems often exhib i t s a rch i t ec tu ra l sym-
met r ies , e.g. two processes of the s ame class m a y be s u b s t i t u t e d one for
each o ther w i thou t mod i fy ing the sys tem behavior .

In order to s t u d y these s y m m e t r i c a l sys tems, some procedures have ever
been designed. The i r m a i n advan t age lies in the s impl i f ica t ion of the vali-
d a t i o n s tep by e l imina t ion of s y m m e t r i c a l cases in behav io ra l s tudies . This
approach , i n i t i a t e d by [8] wi th HL-Trees, fo rmal ly consists of three s teps
(cf. F igure 1) :

1. E x t r a c t i o n of a g roup of s y m m e t r i e s f rom the fo rmal descr ip t ion . Two
s ta tes are s y m m e t r i c a l iff t hey sat isfy a s y m m e t r y re la t ionship . This

*LAAS/CNRS 7,Avenue du Colonel Roche - 31077 Toulouse Cedex - France

188

.

.

group of symmetries defines the equivalence relation "is symmetrical
to" among states.
As a consequence, a quotient graph may be considered. This quo-
tient graph may be directly built from the formal description, that
is on line. Such a construction algorithm is easily derived from any
standard enumeration algorithm, by replacing the syntactical equal-
ity among states by the relation "is symmetrical to".
The symmetrical properties, i.e. which hold for all the symmetrical
states in a class, may be verified over the quotient graph. Study of
structural properties (deadlocks, connectivity,....) [3, 5, 9], and tem-
poral logic model checking [2, 1] have been adapted to these quotient
graphs.

] l~xtraetion

FIGURE 1. The symmetrical approach

The symmetry approach faces two difficulties : the symmetry derivation
from the formal description, on one hand, and the computation efficiency
for deciding whether two states are symmetrical, on the other hand.

A main contribution of this paper is to propose an efficient application
of symmetries to Process Algebras for each step of the former symme-
try approach. The motivation is twofold. On one hand, the validation of
symmetrical systems described by process algebras will be conducted over
reduced graph modulo system symmetries. Consequently, when the reduced
graph derivation cost is low, space saving and time speed-up are expected.
From a design point of view, on the other hand, the process composition
is performed by means of algebraic operators, these operators have to pre-
serve the symmetries of each components. This is the reason why Pool
expressions will be introduced.

The purpose is not to promote a new Process Algebra but to present the
ingredients which may be added to a Process Algebra, here CCSi in order to
use symmetries. These ingredients concern the description formalism and
specific types of symmetry :

Descr ip t ion Formal i sm : The detection of symmetries in the case of
usual formalisms is a complex problem, e.g. Symmetries of Petri Nets [9].
Specific formalisms have been designed in order to explicitly state symme-
tries rather than to detect them : the Well-Formed Nets [3, 5], the language
Mur~ extended by scalarsets [4]. Like in Mur~o, an already existing formal-
ism, CCS, will be extended by symmetrical structures, Pools of concurrent
agents, resulting in PCCS.

The second section briefly introduces the syntax, semantics and behav-

189

ioral equivalence in CCS, the third section extends these three issues to
PCCS.

S y m m e t r i e s : [2] has shown that , in the general case, to determine
whether two states are symmetrical is as hard as the graph isomorphism
problem for which no polynomial solution is known. For this reason, PCCS
only implements a particular kind of symmetries : all agents in a pool are
pairwise permutable. In this context, the relation "is symmetrical to" is
called Permutabil i ty. Permutabi l i ty is defined syntactically : two PCCS ex-
pressions are permutable iff they can be obtained from each other by an
agent permuta t ion within the Pool expressions. The behavioural interpre-
ta t ion of Permutabi l i ty is made precise by means of the P-Equivalence,
which is a specific strong equivalence.

The Permutabi l i ty definition, its interpretation and its computat ion,
polynomial w.r.t, length of terms, are presented in forth section.

Q u o t i e n t G r a p h s : Permutabil i ty allows symbolic Processes to be de-
fined as an equivalence class. From each symbolic Process, a symbolic L.T.S.
(the quotient graph in the symmet ry approach) can be derived by a transi-
tional semantics. An efficient construction algorithm manages to built the
symbolic L.T.S. for any PCCS expression.

S y m m e t r i c a l P r o p e r t i e s : The behavior verification is conducted on
the symbolic L.T.S.. Tha t is, properties of states, which are symbolic Pro-
cesses, are derived from the Permutabi l i ty interpretation by means of the
P-Equivalence.

The symbolic Processes and their properties are developed in the fifth
section.

PCCS seems to offer a good balance between a low (polynomial) com-
putat ion cost and a high reduction rate. This question is discussed in a
deeper way in the sixth section.

2 CCS Algebra

CCS is a Process Algebra whose basic elements are a set of names .4 , the
associated co-names ,4 and a set]C of agent constants. s = ,4 U r denotes
the set of labels and Act = • U {r} denotes the set of actions. Its syntax is
described in the first part , its transitional semantics in second part . In the
third part , three notions of equivalence among processes are given: s t r o n g
equivalence, observation equivalence and observation congruence.

2.1 Syntax of CCS

The agent expressions are : 0 a.E E + F ElF E \ L Elf]
where E, F are agent expressions, a E Z:, L C s and f is a relabeling
function, that is a function f rom/2 to Z: such that f(l i = f(1); f is extended

to Act by f (r) = r.

190

Every constant A in tg is assumed to have a definition :

A d~__/E where E is an agent expression.
R e m a r k : the operator Eicx El, where I is any set of indexes, is not included
in our version of CCS. Indeed, it will be assumed in the sequel of the article,
that the length of expressions is finite and so is the set of constant names.

2 .2 Trans i t ional s eman t i c s o f C C S

The semantics of CCS is defined in terms of labelled transition systems
(L.T.S.). Their states are agent expressions, and transition labelled by ac-
tions are ruled by :

E1 ~>E~ E2 ~ E ~

a.E a) E EI + E2 --'~ E~ E l + E 2 a) E' 2

E1 ") E l E2 ~) E L E1 ") E~ E2 ~> E L

BilE2 ~) E;IE2 SllE2 ") EllE~ BilE2 ~> Bi lE ~
E a) E t a _ _ E - U E' E " E'(A "~

E \ L a) E , \ L (a '~ '~L) E[f] f(al E[I] A ~)
Consequently, with each agent expression E, a L.T.S. can be associated.

2.3 Behavioral Equivalence o f processes

In [7], three kind of equivalences are introduced; from the strongest to
the weakest: strong equivalence, observation congruence, and observation
equivalence. The first two relations are also congruence for the operators
of CCS. They are all defined according to the same idea : If two processes
are equivalent then they can perform the same action and then become
equivalent processes. Only the semantics of "perform an action" changes.

Strong equivalence is defined as the union of all strong bisimulation :

De f in i t i on 2.1 (S t r o n g bls lmulat ion~ s t r o n g equiva lence) a binary
relation among agent expressions, B, is a strong bisimulation iff it verifies :

P B Q =~ Va, VP', (P "> P' ~ 3Q',Q a~ Q, and P, B Q,)
and VQ',(Q a> Q' ~ 3P ' ,P a> P, and P, B Q')

the relation ,.~= UBstrong bisirnulationB iS an equivalence relation called
strong equivalence.

To define observation equivalence, the particular action T, representing in-
ternal computation, is considered.Transition relations =~ and ~r~y are de-
fined by abstracting internal computation :

�9 V P,Q agent expressions, Va 6 Act : P ~ Q r P ~" ~* Q
�9 ~ 1 = =r U{ (P, r, P) / P agent expression }

The definition of weak bisimulation and observation equivalence is obtained
by substituting ==~ey for --4 in Definition 2A. Unfortunately, observation

191

equivalence is not a congruence for the operator "+" , that is why the
stronger observation congruence is introduced :

D e f i n i t i o n 2.2 (o b s e r v a t i o n c o n g r u e n c e , e q u a l i t y)
P and Q are observation equivalent iff
V a E A e L VP', (P - - ~ P' ~ 3 Q ' , Q = ~ Q ' a n d P ' ~ Q')

and VQ',(Q a~Q, ~ 3 p , , p ~ p , a n d P , ~ Q')
Observation congruence is also called equality and denoted by the usual
symbol '~- ".

In the sequel, the symbol -~ denotes ,-% ~ or = in properties verified by
three equivalences.

3 P C C S p r e s e n t a t i o n

In order to explicitly declare symmetries, new concepts are introduced into
CCS, resulting in an extended CCS, so-called Pool CCS (PCCS). PCCS
describes in a simple way pools of concurrent processes sharing a class of
possible behaviours. For each pool of agents, an unique name Pool_id is
introduced. I Pool_id I is the number of agents in Pool_id. I Pool_id I.
I Pool_ id I is an integer constant, that is, the number of agents for a given
pool is constant, agents in the pool are assumed to be numbered from 1 to
I Pool_id I.

Moreover, the set of labels is parti t ioned into :

�9 the set of common labels s which enables communicat ion be-
tween distinct pools (with distinct pool identifiers),
Actcom = f-.co,, U {r} is the set of common actions,

�9 the sets of symbolic labels s attached to each pool Pool_id.
Label a of s represents label ai of any agent i of pool
Pool_id.

E x a m p l e : The Jobshop example described in [7] is extended. Let us consider
that n jobbers share p hammers and q mallets to manufacture objects brought
by a different conveyer belt for each jobbers. The whole system, depicted in
Figure 2, may be represented by 3 pools JOBBERS, HAMMERS and MALLETS such
that I J O B B E R S I= n, [H A M M E R S l= p and I MALLETS l= q. As each
jobber is working on his own conveyer belt, entering and leaving of objects is
expressed by symbolic labels in, out in JOBBERS. The other labels geth, puth,
get-,, putm are common labels. In Figure 2, agents Ji, the i th jobbers, Hk, the
k th hammers, and M,, the l th mallets are represented.

The communicat ions between distinct pools are restricted to labels of
l:com in order to not break the pool agent symmetry by composition. For
instance, suppose that pool 0ne_0bjec t is inserted in the Jobshop system,
its symbolic labels are {in} (cf. Figure 3). The i th agent in One_Object

192

in| outl

geth/ ~/puth getm "~"-,% put.

I ~ I HAMMERS I I (~ [MALLETS

FIGURE 2. Jobshop system

prevents the i th jobber to manufacture more than one object. Now, assume
that I One_Object I = 1, then only the first jobber cannot manufacture two
objects, i.e., symmetry among jobbers is broken.

) • t One-Obl ect

out 1
outzIni ouh

JOBBERS

FIGURE 3. Breaking symmetries by communication on symbolic labels

The syntax and the transitional semantics are detailed in the next two
parts. The relations between PCCS and behavioral equivalences are ex-
plained in the third part. The last part compares the expressive power of
CCS and PCCS.

3.1 Syn tax o f P C C S

The new syntactical elements are :

�9 pool declaration, to define new pools,
�9 Pool expression, to define a pool behaviour,

The Pool expression addition to standard CCS expressions results in
PCCS expressions.

Dec lara t ion of Poo l s

A pool is declared by : POOL Pool_id n { symbolic_. labels }
POOL is a key word introducing the declaration. Pool_id is the identifier of

193

the declared pool, n is an integer constant defining the number of agents in
the pool, I Pool_ id I. s y m b o l i c _ l a b e l s is a sequence of distinct identifiers
defining symbolic labels of Pool_id, s

Pool expressions

There are three imbricated syntactical levels in PCCS :

S y m b o l i c a g e n t e x p r e s s i o n describes the behaviour of agents within a
Pool. For a given pool, Poo l . i d , it consists of :

�9 a CCS expression using f com 0 s as labels,

�9 a constant A such that A ae_j E and E is a symbolic agent
expression of Pool, Poo lAd.

The set of symbolic agent expressions attached to a pool, Pool_id,
defines the class of possible behaviours of agents within Pool_id.

P o o l e x p r e s s i o n describes the behaviour of the whole pool. Syntacti-
cally, it consists of the name of the pool, Pool_id, following by an
ordered list of n symbolic agent expressions delimited by parenthesis :

Pool_id(E1, E 2 , . . . , E i , . . . , En-1, En)
n must be equal to I Pool_id I, and the i th expression in the list, Ei,
specifies behaviour of agent i.

P C C S e x p r e s s i o n describes a system where several agent pools are
working and consists of usual CCS operators and Pool expressions.

In the sequel, Ei, Fi wilt range over the symbolic agent expressions,
P, Q , . . . will range over PCCS expressions, and Poo lAd is a pool of n
agents.
R e m a r k �9 as symbolic agent expressions are usual CCS terms, the imbrication
of pools is forbidden in PCCS (this choice is explained in part 6).

E x a m p l e : In the Jobshop system, the three pools are declared by :
POOL JOBBERS n {in,out) POOL HAMMERS p {} POOL MALLETS q {}

The behaviour of agents are expressed by the symbolic agent expression :
def

J = in.(geth.puth.out .J + getm.putm.out . J)
d e / d e f

H = geth.puth.H M = getm.putm.M

Behaviours of pools are expressed by Pool expressions :
n t i m e s p t i m e s q t i m e s

JOBBERS ($,..., J) HAMMERS (H , H) MALLETS (~/ ,/14")
The whole system is specified by the PCCS expression :
(J0SBERS(J, . . . ,J) I HANMERS(H,...,H) I ~ALLETS(M ,M)) \ L
where L = {geth, g e t m , p u t m , p u t h)

194

3.2 Transitional semantics of PCCS

The PCCS semantics is defined in terms of labelled transition systems like
in CCS. The specification rules of the behaviour of Pool expressions are
defined in the first part. The PCCS rules are the standard CCS rules plus
specific rules for Pool expressions. Some minor modifications are introduced
for restriction and relabeling in the case of symbolic labels.

Transitional semantics of Pool expressions

The transitional semantics of a symbolic agent expression is given by the
usual CCS rules. The following extra rules define the semantics of Pool
expressions :

E, -~+ E"
C ~ Pool_id(...Ei_~, E,, E~+~ ...) - ~ Pool_id(...Ei_~, E~, Ei+~ ...)

6 Act~o,~)

E~ --% El
Symbpool_id(.... Ei) ..2.% Pool_id(..., E~, ...)

(, 6 s

Corn is the production of common action a by agent i.
Symb shows how a symbolic label catches the identity of the issuing

agent, i.e. the symbolic agent expression is instantiated.
Intra-pool Communications obey to (sync is a distinguished action in

s :

() Ei ---?-r Ei Ej----+ Ej a ,5 6 s
Rdv2 Pool_id(.... Ei, ..., Ej) --~ eo'-oX_i'--d(-~.., E~, ..., E'~, ...) a, ~ r sync

Rdv~u
Vool_id(E,, . . . , E.) __L, Vool_id(E~,..., E')

Rdv2 represents the communication between agents i and j in the pool
on a common label. Only agents i and j are moving.

Rdvan is a natural rule of atomic multicast within a pool. This kind
of multi-synchronization is not in the spirit of CCS but it is very conve-
nient to build high-level specifications; furthermore, it is restricted within a
pool. Nevertheless, this rule is not essential and can be deleted from PCCS
without altering the results of the next sections.

Example : in the Jobshop system, a jobber which detects a default on its input
object, must stop the production in the Jobshop. Thus, the other jobbers must
stop working after having manufactured their current object. The description
of the new system is obtained by replacing the symbolic agent expression J by
J,ootch in the previous description :

,]watch deJ in.(sync.O "b geth.puth.O~o~t~h + getm.putm.O~ateh)

Owateh ~-f S--OB'c.O + -O-~.dwateh

195

Transitional semantics of PCCS

Pool expressions can be used in usual CCS expressions. Transitional se-
mantics of "+" and "1" and "." remains the same, only restriction and
relabeling have a different semantics when they are applied with labels of
s :

E--%E' E-~E'
E \ L a~) E \ L (a E/:(Pool_id) and a,d, ~ L) E[f] I(_~ E'[f](a e •(Pool_id))

Moreover, a relabeling function must respect the domains :
f(Z(Pool_id)) C L(Pool_id)

Remarks : s N L(Pool_id') = 0 prevents different pools from com-

municating on symbolic labels. However, two expressions of a single pool may

communicate on symbolic labels.

3.3 P C C S behavioral equivalences

The former three equivalence definitions are still valid in the case of PCCS.
Moreover, they are congruences for operator Pool_id :

P r o p e r t y 3.1 (P o o l e x p r e s s i o n s a n d b e h a v i o u r a l e q u i v a l e n c e s)
Ei ~- Fi ~ P o o l _ i d (E 1 , . . . , E i , . . . , E ,) ~ V o o l _ i d (E 1 , . . . , F i , . . . , E n)

P r o o f (sketch of) :
B --- { (Vool_ id(E1 , . . . , Ei , . . . , En), Vool_ id(E1 , . . . , Fi, . . . , En)/Ei ~- Fi}
is a strong (resp. weak) bisimulation if ~ is ,~ (resp. ~- is ~) as a conse-
quence of the transitional semantics of Pool expressions.
(~- is =) as a consequence of (~ is ,~). [].

3.4 P C C S power o f expression

As any CCS expression is a PCCS expression, PCCS expressive power is
greater than CCS. Conversely :

P r o p e r t y 3.2 I f the rule Rdvau is not used then there exists a set of
rewriting rules changing each PCCS expression, in a CCS expression having
the same derived L. T.S..

S k e t c h o f p r o o f : For each Pool_id, a family (fi)t<i<n of relabeling
functions is defined :

a i fa E s
fi(a) = ai ira E s

Then, a CCS expression is obtained from each PCCS expression by the
rewriting rules :

P o o l _ i d (E 1 , . . . , En) -+ El[f1] I - - . I E,[fi] I .. . [E,,[fn]
Finally, verify that the obtained CCS expression share the same derived
L.T.S. than P. []

196

From this property, one could claim that the concept of pool is useless
since it can be replaced by usual CCS expressions. But, in this case, the
compositional issue of PCCS is lost : nothing ensure that symmetries in
CCS expressions will be preserved by composition (see for instance, the
example of 0ne_0bject in the jobshop). Hence, symmetries should be re-
computed for each CCS expression.

4 PCCS Symmetries

PCCS symmetries are defined for Pool expressions of the same pool. They
involve the notion of Permutability. Two expressions are permutable iff
it exists an agent permutation within the pool which make them equal. A
deductive system, introduced in the next part, makes this definition precise.
The behaviour interpretation of permutability is explained in part two. An
efficient permutability computation is presented in part three.

4.1 P e r m u t a b l e expres s ions

Permutability is defined as the union of ~-equalities. Two expressions are
related by a C-equality iff they are equal up to permutation r of symbolic
agents in pool expressions. ~-equality and Permutability of pool expressions
are first defined. The extension to any PCCS expression is then carried out
by means of a deductive system. The recursion problem needs a particu-
lar treatment. ~-equality is decidable over PCCS and so is Permutability.
Permutability is finally defined, as an equivalence relation.

Permutable Pool expressions

Symmetries are derived from agent permutations :

Defini t ion 4.1 (Pe rmu tab l e Pool express ions)
Let ~ be permutation over {1,..,n}.

Pool_id(E1, ..., En) and Pool_id(E~, ..., E~) are equal up to ~o or p-equal iff
V~" E {1, . . . , n}, El and E!w~,i,) are syntactically equal. Two Pool expressions
are permutable iff it exists ~ such that they are equal up to 9.

R e m a r k -" a more simple definition of permutable pool expression can be
: two pool expressions are permutable iff they are syntactically equal up to
associativity and commutativity among processes within a pool. However,
the extension of permutability to any PCCS expressions requires to identify
the permutation which makes two Pool expressions equal. This is the reason
why p-equality is introduced.

197

PCCS ~-equality

The extension to any PCCS expression is performed by first, defining a
mapping C over Pool identifiers such that :

VPool_2d, C(Pool_id) is a permutat ion over { 1 , . . . , [Pool_id I}.

Equality up to C, or C-equality, denoted -r is then defined by a deductive
system. Obviously, the notion of @equality over Pool expressions remains
the same that in 4.1 :

(A1) Pool_id(E1, ...) and Pool_id(E~, ...) are r

Pool_id(E1, ...) _2_ Pool_id(E~, ...)

As our motivation is to preserve symmetries by composition, C-equality
is naturally extended as a congruence :

P L Q P~=Q pC=Q
(A2)~=O (R1)p[f]. Q[f] (R2) (R3) . = P\LC=Q\L a.P=a.Q

P1 a= QI and P2 ~ Q2 P1 ~ Q1 and P2 r Q2 (R4) (n~)
(t'1 + P:) ~ (Q~ + Q2) (['1 I t:'2) ~ (Q, [Q2)

In rules R4, R5 commutat ivi ty of "+" and '1" are not used. Indeed,
commutat ivi ty would render the computation very complex. For instance,
the comparison of A1 + .-. + A,~ and B1 + . .- + B~, would require the
examination of all the possible orderings of A1,. �9 Am and B1, �9 �9 Bn. n!
operations are to be performed, and the computation is no more polynomial
with the length of the expressions.

Recursion

Recursion requires a specific treatment. A naive idea would be to write the
rule :

E -r Q (A ~or= E)
A*=Q

But, the query, ~- A ---0 0 + A where A a j 0 + A, will lead to infinite
computation.

So, a new construction, which preserves during the computation the sub-

stitution induced by a j is defined : A -,-* P --r Q where A is a set of terms

Pi r Qi �9 It means that P -r Q under the assumption that for all i, P~ =o Q~.
The following axiom is then a direct consequence :

(A3)
A o { p C---Q}~.+ p ~=Q

This construction is related to the former ones by the relation :

p~=Q
(R6) (for any A set of/I)-equalities)

A,..~ P ~ Q

198

The recursion rules can finally be completed :

(Rr) A u I A ~-Q}"* EV=Q(Ad~I E) (Rs)
A,.,~A ~=Q

A u { Q ' ~ A}..,zQ ~ = = E (A ~-! E)
A,. , . ,Q~ A

&-equality Decidability

By taking into account the former set of axioms and inferences rules, -~ is
decidable :

P r o p e r t y 4.1 it can be decided by finite applications o r A l , . . . , Rs whether
~- p c - Q

S k e t c h o f p roo f : The derivation tree whose root is t- P ~ Q is shown to
be finite :
(a) as the length of expressions is assumed to be finite, the number of sons
of each node in the derivation tree is finite. (b) as the number of constant
names is assumed to be finite, the number of possible sets A is finite, hence
the depth of the tree is finite. (a) and (b) =~ the derivation tree is finite. D

Permutability

P and Q are said to be permutable, denoted by P 2_ Q, iff it exists �9 such

that t- P =~ Q.

P r o p e r t y 4.2 Permutability is an equivalence relation

S k e t c h o f p roo f : the set of all mappings r is a group from laws :

�9 �9 o O'(Pool__id) = O(Poolid) o (I)'(Pool..id)
�9 and o - l (Poo l_• = (O(Pool_• -1

This group structure implies an equivalence relation, more particularly,
neutral element ~ reflexivity, inverse ~ symmetry, internal composition
law =~ transitivity. []

4.2 In terpre ta t ion of Permutab i l i t y

Interpretation of @equality

The interpretation of (I)-equality is similar to the other behavioral equiv-
alences : two processes are equal up to �9 iff if they can perform the same
action up to �9 and then become O-equal processes . The meaning of equal
actions up to �9 is made precise by :

i f a E ~(Pool_id) then O(ai) = aj with j : O(Pool_id)(i) ,
i f a E s then O(a) = a

The bisimulation and equivalence up to (i) may then be defined :

199

Def in i t ion 4.2 A binary relation Bv is a bisimulation up to �9 iff

PBoQ=:~ Va, VP', (P a) p, =~ 3Q', Q ~ Q' and P'B~Q')

and VQ', (Q ~ Q' ~ 3P', P -5+P ' and P'BoQ')

The relation r U By is called O-equivalence.

The O-equality is sound for the O-equivalence :

P r o p e r t y 4.3 (S o u n d n e s s o f O-equa l i ty) �9 P __o Q ==~ p ~ Q

Ske tch of proof : {(P, Q)/P ~= Q} is a bisimulation up to �9 (use At , . �9 Rs).
[3

Interpretation of Permutability

Permutabili ty is defined as the union of all O-equalities, so permutability in-
terpretation is defined as the union of all O-equivalences, or P-Equivalence,
denoted •.

The O-equalities properties entail the following property:

P r o p e r t y 4.4 (I n t e r p r e t a t i o n o f ~) P v__ Q :=~ p L Q

3.3 Efficient Computation of Permutability

Processing Pool expression

Let [X [be the cardinal of the finite set X. To decide whether two Pool
expressions are permutable does not require the exhaustive enumeration of
all the I Poo lAd I! possible permutations because of the following funda-
mental property :

P r o p e r t y 4.5 Let {P1,..., Pro} and {Q1,..., Qm} partitions of{l, ..., n},
(V1 < i < rn :l Pi I=l Qi l) 4:~ (9 �9 permutation of {1, ..., n}: 0(Pi) = Q~)

In the case of Pool expressions, partitions are induced by the notion of
P-state : The P-state of a Pool expression Pool_. id(El , . . . , En), denoted
s (Pool_ id(E1 , . . . , E ,)) is the set {(Pk, Ek)/1 < k < rn} such that Pk C
{1, ..., n}, is the set of agents which share the same symbolic expression E k.
{Pk/1 < k < rn} constitutes a partition of { 1 , . . ,n}.

I s] i s the set {(1 Pk I, Ek)/1 <- k <_ rn} which gives for each k the
number of agents which share E k.

Example : in a Jobshop system with 3 hammers, it holds that:
s(HAMMERS(H, puth.H,H)) = { ({1,3},H), ({2},puth.H) }

Is(HAMMERS(H, puth.H,H)) [= { (2, H), (1,puth.H) }

If s (resp. s') denotes the P-state of a Pool expression P (resp. P') then
from property 4.5 :

P r o p e r t y 4.6 I s I=1 s' 1r P p- P '

200

Example : HAMMERS(H, puth.H, H) p- HAMMERS(H, H, puth.H) since:
Is(HAMMERS(H,p , th.H,H))1 =1 s(HAMMERS(H, H, puth.g))1

= {(2, H), (1,puth.H)}
Intuitively, in both cases, there are two free hammers.

E x t e n s i o n to P C C S

The extension of P-state to PCCS is similar to the extension of C-equality.
The whole process is rather technical. Therefore, it is detailed in appendix
1. Basically, it uses the fact that C-equality is defined as a congruence and
P-state is computed by intersection of partitions.

5 Validation in PCCS

PCCS symmetries may be applied for an efficient reduction of the state
space. This reduction is performed by associating symbolic process P with
each PCCS process P, as defined in the next section. The transitional se-
mantics of symbolic Processes, derived from the PCCS transitional seman-
tics, is then used to build a L.T.S.. The algorithm, described in section
2, takes, as input, a PCCS expression P and constructs the L.T.S. de-
rived from the symbolic Process P. The symbolic Process properties are
presented in section 3.

5.1 Symbol ic Processes

A symbolic Process is an equivalence class of PCCS processes with respect
p

to the equivalence relation --. The equivalence class of process P is denoted
P. It represents a process up to a permutation among agents inPools . This
abstraction can be extended to actions by the mapping abs t :

i f a e s then abst(a) = a
i f a = b~ with b E s then abst(a) = b
for all co-action ~, abst(-5) = abst(a)

The transitional semantics of symbolic Processes is defined by the rule:

P =~Q

That is, the identity of agents is abstracted. This rule is not ambiguous
since two processes, attached to the same symbolic Process gives the same
symbolic transitions by the previous rule. In other words :

Property 5.1 (-P = -R and P --~ Q)

(3b, 3T, abst(a) - abst(b) and Q = T and R b) T)

201

S k e t c h o f p r o o f : from the interpretation of Permutability
by P-Equivalence. []

The symbolic L.T.S. of PCCS process P is the L.T.S. which can be
derived from P using the transitional semantics of symbolic Processes.

5.2 The symbolic L. T.S.

The algorithm, depicted in Table .1, build the symbolic L.T.S. of P. The
algorithm consists of a partial exploration of the L.T.S. which can be de-
rived from P. An equivalence class of processes is represented by a class
member, the first reached one (line (*) in the algorithm).

In the algorithm, --~ denotes the set of the symbolic L.T.S. transition
relation, the reached states are putted in set Reached, the states whose
transitions are to be fired are stored in stack To_~xplore.

PROCEDURE SYMBOLIC_LTS(P : IN PCCS expression) IS
Reached := {P}; Push(To_Explore,P) ; -+= @;
WHILE To_Explore ~& empty_stack LOOP

Pop (To_Explore, Q) ;
FOR ALL (Q,a,R) PCCS transitions

IF B R' E Reached such that R -p R'

THEN -~=-~ u{(q, abet(a), R')};
ELSE Reached := Reached U {R};

- + : = - + u{(0, ab~t(a), n)};
END IF;

END F0R ALL;

END WHILE;

END PROCEDURE;

(*)

TABLE .1. Symbohc L.T.S. derivation algorithm

P r o p e r t y 5.2 (S o u n d n e s s) The algorithm of Table .1 builds the symbolic
L. T.S. of P

S k e t c h o f p r oo f : consequence of Property 5.1. []

5.3 Properties of symbolic Processes

The property of symbolic Processes can be deduced from the interpretation
of Permutabil i ty in terms of P-Equivalence.

The O-equivalence notion is similar to the usual behavioral equivalences :

P r o p e r t y 5.3 Q ~ P and Q ~- R and R r T ~ P ~- T

The following property may then be deduced :

202

P r o p e r t y 5,4 P -~ Q =~ P ='~ Q

This property is interesting in its negative form : P ~ Q ~ P ~ Q
Tha t is it can be deduced over symbolic processes that two PCCS expres-
sions are not linked by a behavioral equivalence.

Unfortunately, the converse property is false as shown by Figure 4.

Declarations:

POOL Any 2 {a}
d~ 0 d--~a-O P = s . a . 0

Any(O,Q) ~ Any(P,0) and Any(O,Q) ~ Any(P,O)

8

FIGURE 4. Counter example

Some weaker properties can nevertheless be decided :

1. s = ~ =P P o o l _ i d (E z , . . . , En) "~ Pool - - id (Ez , . . . , En),
2. P is a deadlock ~ P is a deadlock,
3. P is divergent r P is divergent

(P is divergent iff it can perform an infinite sequence of r)

S k e t c h o f p roo f : (1) consequence of property 5.1, and by noticing that a
= abst(a) if a E Actcom. (2)+(3) from Property 5.1. o
Property (1) is very interesting since it allows a partial compositional anal-
ysis by substituting P o o l _ i d (E z , . . . , / i n) for PooZ-id(E1,..., E,) in the
system description. Moreover, it expresses a simple intuitive idea as shows
the following example:

H A M M E R S (H H)

p times
A.

geth geth

FIGURE 5. Symbolic L.T.S.

Example : in the Jobshop system, the symbolic L.T.S. of pool expression
H A M M E R S (H , . . . , H) is described in Figure 5. In CCS, it can be expressed by
the agent hamp such that :

Vl <_ j <_ p - 1, hamj deJ geth .hamj_l + puth.hamj+z
del hamo = puth .haml hamp de! = geth.hamp_z

The same process can be applied to pool M A L L E T S . And the system described

by :

203

(JOBBERS(J , . . . , J) l hamp I malleta) \ {geth, puth, getm, putm }
is strongly equivalent to the initial description of section 3 by Property (1). Hence,
a conceptually simple expression can be automatically replaced by an expression
easier to analyze.

6 PCCS enhancement

Two criteria are essential for a symmetrical formalism :

�9 the number of states of the quotient graph with respect to the initial
graph. The reduction rate must be as high as possible.

�9 the quotient graph construction complexity must be low in order to
preserve in time the save in space.

To formalize the reduction rate, let us consider a set of n agents (param-
eter n represents the complexity of the system). Each agent behaviour has
m states. The agent composition is assumed to not restrict their reachable
states, that is, the number of states of the whole systems is ran: the number
of state grows exponentially with the complexity.

The quotient graph state number of this system is now computed for
several groups of agent permutations. This defines the theoretical reduction
power of each permutation group.

The procedure complexity for determining whether two states are sym-
metrical is directly related to the computation complexity.

Table .2 shows the results in the case of four symmetries:

�9 The group of rotation, the agents are located on a ring,
�9 The dihedral group, the agents are located on a polygon,
�9 PCCS, i.e the group of all permutations, the agents are in a set (or a

complete net),
�9 2D-PCCS, an extension of PCCS where a pool of agents can contain

other pools of agents. For instance, the agents are located on a tree.

Rotations
Dihedral group
PCCS

Size of quotient Complexity w.r.t n

> mn/n polynomial
> rnn/2n polynomial

C~+.~_, < (n + m) "~
2D-PCCS < ((n/2) + m) zm

polynomial
equivalent to

the graph isomorphism problem

TABLE .2. Results for different kinds of symmetries

It seems not interesting to use rotations or dihedral groups in order to
fight against combinatorial explosion, because their reduction rate is low.

204

2D-PCCS could be a good candidate but the complexity of computat ion
constitutes a handicap. Finally, PCCS seems to be a good trade-off. Besides,
the list is not exhaustive, and other kind of symmetries may combine good
figures.

7 Conclusion

PCCS supplies a suitable formalism for Pools of agents and their symme-
tries. The agent Pools are described by a new structure: Pool expressions.
The symmetries are expressed by means of Permutabili ty concept. As Per-
mutabili ty is an equivalence relation, symbolic Processes can be defined
as an equivalence class. A symbolic transitional semantics is brought to
symbolic processes. Furthermore, an algorithm is available for computing
the symbolic L.T.S. of a PCCS expression. Permutabili ty can be decided in
polynomial time, consequently the computation cost of the symbolic L.T.S.
is low. The Permutabili ty interpretation in terms of P-Equivalence, makes
possible verifications over symbolic L.T.S. : divergence, showing that two
processes are not related by behaviour equivalences . . .

Now, we are working on solutions to verify behavioral equivalence on
symbolic processes. We think that it can be performed by introducing new
synchronization operators II such that behavioral equivalence between P
and Q can be verified upon the symbolic process P [[Q.

8 REFERENCES

[1] A. Sistla E. Emerson. Symmetry and model checking. In Computer Aided
Verification, pages 463-478. Lecture Notes in Computer Science 697, June-
July 1993.

[2] T. Filkorn E.M. Clarke and S. Jha. Exploiting symmetry in temporal logic
model checking. In Computer Aided Verification, pages 451-462. Lecture
Notes in Computer Science 697, 3une-July 1993.

[3] G. Franceschinis G. Chiola, C. Dutheillet and S. Haddad. On well-formed
coloured nets and their symbolic reachability graph. In High-Level Petri
Nets, pages 373-396. Springer-Verlag, 1991.

[4] C. Ip and D. Dill. Better verification through symmetry. In Int. Syrup. on
Computer Hardware Description language and their Application, 1993.

[5] Claude DutheiUet Lamonthezie. Symdtrie darts les Rdseau Colords. PhD
thesis, Universit~ Paris 6, 1991.

[6] Robin Milner. A Calculus of Communication Systems, volume 92. Springer-
Verlag, lncs edition, 1980.

[7] Robin Mihaer. Communication and Concurrency. Prentice Hall, 1989.

[8] L.O. 3epsen P. Huber, A.M. Jensen and K. 3ensen. Reachability trees for
high-level petri nets. In High-Level Petri Nets, pages 319-350. Springer-
Verlag, 1991.

205

[9] K. Schmidt. Symmetr ies of pet r i nets.
Universi ts zu Berlin, 1994.

Inforrnatik-Berlchte 33, Humbol t -

1 Efficient Computation of Permutabilty

1.1 P-s ta tes o f Pool expression sets

The not ion of P-s ta te is generalized to sets of Pool expressions by :
Let (Pool_id(E~,.. i �9 , En))l_<i<z be a family of 1 Pool expressions of the same
Pool, Pool_ id .
The P-s ta te of this family is the set: s = ((Pk, V~) / 1 < k < m } where

�9 (Vk)l<k<m is a family of vectors of length 1 :
Vk =-(Vqk,..., V~) where V h is a symbolic agent expression.

�9 j and g in Pk means that , for each 1 < h < l, agents j and g share the same
agent expression V h in the h th Pool expression:

Pool_id(. . . . V~ V~])
1 Pool expressions .

P o o l _ i d (. . . , V~, . . . , V~)

Moreover, I s l = { (I P ~ I , ~) / 1 < i < m }.
The P-s ta te of a singleton { P o o l _ i d (E 1 , . . . , En)} defined in section 4.3 is de-

no ted s(Pool_id(E1 , E,~)). The P-s ta te of the union of two families can be
computed f rom the P-s ta tes of these two families, by the operat ion n :

P r o p e r t y 1.1 Let s (resp. s'} be the P-state of family Y:~ (resp. Yr2),
s Iq s ' is the smallest set obtained by :
If (P~, Vk) e s and (PL V~) ~ s' and Pk n Pt # 0 then (Pk N P~, V~.V~) E s fq s'
(Vk.V~ is the concatenation of vectors Vk and V~).
s lq s' is the P-state of 3rl U Y:2.

I n d l e a t i o n o f p r o o f : from the property, if T ~ and Q are par t i t ion of {1, . . . , n}
then so are

P n Q = { P n Q / P E P , Q G Q , P n Q # O } D

Moreover, the indetermined P-s ta te denoted w is introduced. It is the P-s ta te as-
sociated to an empty set of Pool expressions. It is assumed that : w n s = s [qw = s

and Iw I=O.

1.2 Ex t ens ion to P C C S expressions

First , an extended P-s ta te S is defined as a mapping such that :
VPool_id, S (Poo l_ id) is a P-s ta te of a Pool expression family of Pool_ id .
The operat ions over P-s ta tes are natural ly extended :

I S I: Poo1_id ~I S(Poo1_id) I
S R S ~ : Pool_id ~-~ S(Pool_id) R S'(Pool_id)

The indetermined extended P-s ta te denoted ~ is defined by:
VPool_id, fl(Pool_id) = w.

206

Now, the extended P-state S(P) associated with each P can be computed by :

S(O) --- ~ S(a.P) = S (P) S(P[f]) = S(P) S (P \ L) = S (P)

S (P + Q) = S (P I Q) = S(P) cl S(Q)

S(Pool_id(E1, . . .))----f~ [7 s (Pool_ id(E1 , . . .))

Recursion is treated like for ~-equality, i.e., a new construction is defined :
A ~, S (P) = S, where A is a set of equalities S(P~) = Si.
It means that S(P)=S under the assumption that for all i, S(Pi) = S~.
Hence, the axiom and the rule :

A U {S(P) = S} --~ S(P) = S

The Recursion is processed by :

S (P) = S

a - . , s (e) = s

A U{S(A) f~}-,~ S(E) = StAr ~ I E)
S(A) = S =

For the same reasons that 0-equality, the computation of S(P) is always finite.
And the Property 4.6 about P-states and Permutabili ty can be extended :

P r o p e r t y 1.2 P ~ Q #~,] S(P) I=] S(Q) I

S k e t c h o f p roo f : by structural induction over P Jr Property 4.6 n
Moreover, since the computation of H is polynomial with the arity of each pools
of agents, the computation of the P-state is polynomial with the length of the
system PCCS description, i.e., the sum of the length of the PCCS expressions
which represents the whole behaviour and the length of all needed expressions
Ad~=I E.

