
F o r m a l S p e c i f i c a t i o n and V e r i f i c a t i o n o f t h e
p G V T A l g o r i t h m *

Balakrishnan Kannikeswaran, Radharamanan Radhakrishnan, Peter Frey,
Perry Alexander, and Philip A. Wilsey

Computer Architecture Design Laboratory, Dept of ECECS, PO Box 210030,
University of Cincinnati, Cincinnati, Ohio 45221-0030, phil.wilsey@uc.edu (513)

556-4779 (voice) (513) 556-7326 (fax)

Abs t r ac t . The time warp mechanism is a technique for optimistically
synchronizing Parallel and distributed Discrete Event-driven Simulators
(PDES). Within this synchronization paradigm lie numerous parallel al-
gorithms, chief among them being an estimation of the Global Virtual
Time (GVT) value for fossil collection and output commit. Because the
optimistic synchronization strategy allows for temporary violations of
causal relations in the system being simulated, developing algorithms
that correctly estimate GVT can prove extremely difficult. Testing and
debugging can also prove difficult as error situations are frequently not
repeatable due to varying load conditions and processing orders. Conse-
quently, the application of formal methods to develop and analyze such
algorithms are of extreme importance. This paper addresses the appli-
cation of formal methods for the development of GVT estimation al-
gorithms. More precisely, the paper presents a formal specification for
and verification of one specific GVT estimation algorithm, the pGVT al-
gorithm. The specifications are presented in the Larch Shared Language
and verification completed using the Larch Proof Assistant. The ultimate
goal of this work is to develop a reusable infrastructure for GVT proof
development that can be used by developers of new GVT estimation
algorithms.

1 I n t r o d u c t i o n

Discrete event-driven simulation is an impor tant modeling technique used across
many disciplines including, to name a few: communication networks, weather
prediction, molecular motion, and economic forecasting [8]. While widely used,
desires for more accurate results st imulate a need for faster simulator throughput .
In response to this need, the simulation communi ty has turned, in part , toward
the potential solutions offered by parallel processing (resulting in the emergence
of the subfield of Parallel Discrete Event-Driven Simulation or PDES [9]).

* Support for this work was provided in part by the Advanced Research Projects
Agency, contracts F33615-93-C-1315 and F33615-93-C-1316 monitored by Wright
Laboratory and contract J-FBI-93-116 monitored by the Department of Justice. The
authors also wish to thank Wright Labs and ARPA for their continuing support.

406

Parallel solutions for discrete-event driven simulation can be broadly classi-
fied as using either (i) a central event dispatch mechanism [2, 5] or (ii) a dis-
tributed event execution mechanism [9, 20]. Modifying sequential simulators for
parallel execution using central event dispatch is reasonably simple, but provides
only limited speedups. Parallel simulators using distributed control are able to
exploit higher degrees of parallelism, but their implementation costs can be high.
This is especially true in optimistically synchronized simulators where causality
relationships can be violated and then repaired [9, 13]. Decisions about global
progress and the satisfaction of termination conditions in such simulations can
be difficult to make. Consequently, algorithms for such decisions are frequently
difficult to develop, analyze, and test.

At the University of Cincinnati, we have been studying the acceleration of
digital system simulation using the time warp optimistic synchronization strat-
egy. As part of our investigations, we have implemented a time warp simulation
called WARPED and released it for public use [17, 18]. The WARPED kernel re-
quired a five month development time and over half of that time was spent in
the development and test of algorithms to solve two problems, namely: decisions
about the global progress of the simulation (computing a value called Global
Virtual Time, or GVT), and deciding when the simulation had terminated. The
difficulty experienced in developing these sections of the WARPED kernel moti-
vated us to consider the use of formal methods for our algorithm development.

This paper presents our experiences using formal methods to develop a spe-
cific GVT estimation algorithm called pGVT. In particular, we describe our
development of a formal specification and proof for the pGVT algorithm. The
algorithm is specified using the Larch Shared Language [11]. This formal specifi-
cation is then used to prove the correctness of the algorithm by passing the spec-
ification through the Larch Prover 2 [10] and establishing that the system GVT
increases monotonically. Similar endeveours with formal specification in the dis-
tributed environment are being actively pursued by many researchers[16, 21, 23].

The reminder of the paper is organized as follows: Section 2 provides some
background information on time warp, the pGVT algorithm, and the WARPED

project. Section 3 presents an overview of the Larch Shared Language and the
Larch Prover. Section 4 presents the formal specification of the pGVT algorithm.
Section 5 contains the proof that the pGVT algorithm works correctly. Sections
6 and 7 contain some concluding remarks and a discussion of assumptions and

limitations.

2 B a c k g r o u n d

2.1 Parallel Simulation and Time Warp

In distributed discrete event driven simulation, a system is generally modeled
as a group of communicating entities, referred to here as Logical Processes (or
LPs). Each LP maintains a local clock that defines the simulation time for that

2 Please note that in this paper the abbreviation LP does not denote Larch Prover.

407

LP and the LPs operate as distinct discrete event simulators, exchanging event
information as necessary. Synchronization between the LPs can be either con-
servative [3, 9, 20] or optimistic [4, 9, 13]. Under conservative synchronization,
events are processed by each LP only when it can guarantee that no causality
(out of order) violation will occur. In contrast, an optimistically synchronized
simulation does not strictly enforce causality constraints; instead, some mecha-
nism to recover from a causality violation is defined. Time warp is an example
of an optimistically synchronized parallel simulator.

In t ime warp any LP with an event to process is allowed to simulate without
consideration of the progress of other LPs. Since some LPs will process ahead of
others at any given (real) time, simulation time is referred to as virtual time, and
a given object 's simulation time at any given moment is called its local virtual
time (or LVT) [9, 13]. Furthermore, since each LP simulates asynchronously, it
is possible for an LP to receive an event from the past - - violating the causality
constraints of the simulation. Such messages are referred to as straggler mes-
sages. In order to recover, the LP receiving the straggler message must rollback
to an earlier simulation time and reprocess the events in their correct order. To
enable rollback, each LP must maintain a history of state and event information
(Figure 1). During rollback, an LP must revert to an earlier state and cancel
any output events sent while it was doing (possibly) erroneous look-ahead. This
cancellation is performed by sending antimessages to other LPs who then re-
move the erroneous event message from their input queue (sometimes causing
rollback).

I @ . / F I

Input Queue
|

Local Virtual Time (LVT)

Simulation~
Object / ~ : :

Antimessages

l.....i: Ou,oo, Ooeoe

State Queue

Fig. 1. A Time Warp Simulation Object

One important overhead associated with checkpointing state and event infor-

408

mation is the memory space required for the saved data. This space can be freed
only when global progress of the simulation advances beyond the (simulation)
time at which the saved information is needed. The process of identifying and re-
claiming this space is called fossil collecr The global time against which fossil
collection algorithms operate is cMled the global virtual time (or GVT) and sev-
eral algorithms for GVT estimation have been proposed [1, 6, 7, 15, 19, 24, 26].
In addition to its use for fossil collection, GVT is also useful for deciding when
irrevocable operations (such as I/O) can be performed and, in some instances,
when the simulation has completed.

2.2 The p G V T Algo r i t hm

The pGVT algorithm [6, 7] is comprised of two functional elements: (1) the
GVT management process; and (2) LGVT (local GVT) value calculation and
reporting by the LPs. The GVT manager calculates, maintains, and broadcasts
GVT information to LPs. Responsibility for LGVT management is distributed
to each LP and is ideally organized to report new LGVT information to the
central GVT manager only when failure to do so would inhibit advancement of
estimates of GVT. Thus, LPs on the critical path will frequently report new
LGVT information to the GVT managers, whereas LPs well in advance of the
GVT will report less frequently [7]. This is described more formally below.

A single GVT manager calculates, maintains and broadcasts global GVT
information to the LPs. As the LPs report their LGVT values to the GVT
manager the information is saved and used to determine new estimates for GVT.
When estimates of GVT increase, the GVT manager distributes (for purposes
of this paper, broadcasts) this information to the LPs. Included in the GVT
broadcasts, the GVT manager also computes and distributes the average rate
of increase in the GVT estimates, called AGVT. A G V T is used by the LPs in
determining when to report new LGVT information. More precisely, following
the n th GVT broadcast, the GVT manager computes:

GVT' = min({LGVT]) (I)

AGVT = ~{~=~-k AGV~ (2)
k

where {LGVT] is the set containing all reported LGVT values, k is the sample
size used for smoothing the A G V T values, and AGVT~ is the increase in the
GVT value in the i th GVT broadcast. The i th discrete increment in the estimated
GVT value is denoted AGVT~ and the average of the last k increases in GVT
estimates is zflGVT. From these calculations, the GVT manager then broadcasts
an ordered pair, (AGVT,GVT ') , to each LP.

As previously indicated, each LP independently determines when to calculate
and report new LGVT information. Ideally, the LPs will report new informa-
tion only when failure to do so would hinder the advancement of GVT. Thus,
messages to report GVT information by each LP are reduced for all LPs except

409

those on the critical path of GVT advancement. 3 The LPs defining the critical
path frequently report the GVT information and allow an accurate estimate of
GVT. More formally, the LPs report GVT information as follows:

1. Each LP calculates GVT information and saves it in a buffer called LGVT
(local GVT). LGVT is the smaller of the minimum timestamp of all un-
processed events in the event queue and the minimum timestamp of all
unacknowledged output messages.

2. Each LP maintains a ratio of the (real) t ime for a message to be sent and
acknowledged to the GVT manager (denoted by tmesg) and the average
(real) t ime between successive GVT updates (denoted by ART~). Tha t is, if
K denotes the aforementioned ratio, then on the n th GVT broadcast K is
defined as:

tmesg
K - RT, (3)

k

where k is the sample size for smoothing. K helps trigger the calculation
of new LGVT information. Informally, [K] is the number of A G V T cycles
required to report new information to the GVT manager. Because the time
required to report a value from a LP to the GVT manager may vary based
on processor localities, K is computed locally.

3. Each LP recalculates and reports new LGVT information whenever:

(a) Th~ LP receives a straggler message with a t imestamp smaller than
the current LGVT value. The LP reports the new LGVT value (which
will be lesser than or equal to the straggler message time) to the GVT
manager before acknowledging receipt of the straggler message. When
the GVT manager reports acknowledges the report, the LP acknowledges
and processes the straggler message.

(b) The broadcast GVT value approaches the current LGVT value. Report-
ing of new LGVT information is triggered following a just-in-time policy
to ensure the most aggressive advancement of GVT. More formally, the
LP computes (and reports) a new LGVT value whenever:

G V T + [K] �9 A G V T >__ L G V T (4)

holds. Informally, the factor [K] * A G V T denotes the expected increase
in the GVT value over the real t ime interval required to send (and receive
acknowledgment of) a message to the GVT manager. If the GVT value
plus the expected increase exceeds the last reported LGVT value, a new
value for LGVT should be calculated and reported. Failure to do so
would likely inhibit the advancement of GVT.

3 A L P is said to be on the critical path ff its reported LGVT value is the minimum
of all values thus becoming the new GVT update.

410

3 A n O v e r v i e w o f L a r c h

Many formal specification languages could have been used to specify the pGVT
algorithm. The alternatives considered included Z [25], Larch [11] and CSP [12].
Larch was selected due to tool availability, the two-tiered specification style,
and local expertise. Specifications for the pGVT algorithm components were
written in the Larch Shared Language (LSL) [11] and verified using the Larch
Prover [10].

The Larch style of specification is described as a two-tiered approach because
specifications are written using two languages. The lower tier is written using the
Larch Shared Language (LSL). LSL is an algebraic specification language that
is used to model abstract data types. The functional unit of a LSL specification
is the trait. The first line of the trait gives the name of the specification and
declares the trait. The reminder of the specification is given in three parts: (1)
the introduces section defining operation signatures and sorts; (2) the asserts
section defining axioms over operations; and (3) the implies section defining
proof obligations.

The in t roduces section specifies the operators by their signatures. A signa-
ture defines the sorts for the operator's domain and range. The a s s e r t s section
specifies relationships among the operators using equational logic and induction
rules by specifying generators for sorts. Finally, the implies section specifies
equations that should be provable from the introduces and asserts sections. LSL
supports combining specifications through parameterized inclusion much like
macro expansion. 4

A Larch specification's upper tier is an interface specification describing the
specified component's interface. Interface specifications are written using a Larch
Interface Language (LIL) that is tailor made to represent the target application
language's calling conventions and language structures. LSL structures are refer-
enced from LIL specifications providing common structures and behaviors in an
application language independent manner. Since the algorithm being specified
is written in C++, the Larch/C++ LIL is used for the GVT interface specifica-
tion. The pGVT algorithm's behavior is specified using LSL making it accessible
to any LIL, not simply Larch/C++. As this work deals with the pGVT's cor-
rectness independent of the specific Larch/C++ implementation, the interface
specifications are not presented here.

The Larch Prover [10] is a proof assistant compatible with the LSL speci-
fications. The equations specified in an LSL asserts section are converted into
rewrite rules, deduction rules and induction rules. The Larch Prover allows the
user to make conjectures and applies the rules using either forward or backward
inferencing techniques. The Larch Prover's primary uses include checking for
consistency and theory containment.

4 LSL contains a number of additional constructs not used in this specification.

411

4 The Specification of the pGVT Algorithm

The formal specification of the model consists of two parts defining the GVT
manager and the simulation model from a logical process view point. This two
part approach supports direct representation of the pGVT algorithm's two func-
tional elements described in Section 2.2. The GVT Manager trait specifies GVT
calculation and LGVT value update. The trait provides two operations repre-
senting these activities for use in the LP specification. The Model trait specifies
the behavior of a logical process. This logical process can be any one of the LPs
present in the system. The LP model processes messages and interacts with the
GVT manager to update its LGVT entry and obtain new values of GVT.

4.1 The GVT Manager

The GVT manager trait defines a GVT manager's behavior. The GVT manager
maintains a record of LGVT values for each LP. The interface to the GVT
manager consists of function to: (a) update an LP's associated LGVT value and
(b) calculate and return GVT.

Manager : trait

includes FiniteMap(LPRecords, LPHame, LatestLGVT)

includes Natural (Lat estLGVT)

introduces

Mgr

sendGVT
gvt

empty

range

getrange

min_inrange :

min

asserts

LPRecords-+ GVTmgr

GVTmgr, LPName, LatestLGVT -~ GVTmgr
GVTmgr-+ LatestLGVT

-+ LPInfo

LatestLGVT, LPlnfo -~ LPlnfo

LPRecords--+ LPInfo

LPInfo --+ LatestLGVT

LPRecords--~ LatestLGVT

LPInfo generated by empty, getrange
V LastReportLGVT : LPRecords,

lgvtl, igvt2 : LatestLGVT,
lpn~me : LPName,

ipinfo : LPInfo

gvt(Mgr(LastReportLGVT)) == min(LastReportLGVT);
sendGVT(Mgr(LastReportLGVT), 1pname, Igvtl) ==

Mgr(update(LastReportLGVT,lpname,lgvti));
getrange({}) = empty;
getrange(update(LastReportLGVT,Ipname,lgvtl)) ==

range(lgvtl,getrange(LastReportLGVT));
min(LastReportLGVT) == if getrange(LastReportLGVT) ~ = empty

then

412

min_in_range(getrange(LastReportLGVT))
else

O;
min_in_range(range(Igvtl,lpinfo)) ==

if Ipinfe = empty then
Igvtl

else
if igvti < min_in_range(Ipinfo) then

igvtl
else

mininrange(1pinfo);
update(npdate(LastReportLGVT,1pname,lgvt2),lpname,lgvtl)

= update(LastReportLGVT,1pname,lgvtl);
getrange(update(LastReportLGVT,lpname,lgvtl)) ~ = empty

implies
V LastReportLGVT : LPRecords, Igvtl : LatestLGVT, ipname : LPName
Igvtl > min(LastReportLGYT)

gvt(sendGVT(Mgr(LastReportLGVT), Ipname, Igvtl))
gvt(Mgr(LastRepertLGVT));

M a n a g e r Tra i t O p e r a t o r s A GVT manager is represented by sort GVTmgr
generated by the operator Mgr. Its principle data structure is a finite map from
each LP name to that LP's most recently reported LGVT. This finite map is
updated when a new LGVT is reported by any LP.

Two operators are specified to update the LGVT map and obtain a new
GVT value from a GVT manager. The sendGVT operator updates the value
of an LGVT value stored in the GVT manager. The operator's domain is a 3-
tupte, (GVTmgr, LPName, LatestLGVT), where GVTmgr is the current state
of the GVT manager, LPName represents the logical process in question and
LatestLGVT represents the new LGVT. The gvt operator is used to get the
current GVT value from a GVT manager. GVT is obtained by applying the
operator gvt to the GVT manager (GVTmgr). These two operators define the
external interface of a GVT manager allowing updates to stored LGVT values
and GVT value retrieval.

G V T M a n a g e r Axioms Updating an LGVT value in the GVT manager is
represented as a finite map update for the LP in question. The update function
is defined in the finite map trait and simply referenced in the single sendGVT
axiom:

sendGVT(Mgr(LastReportLGVT),ipname,lgvtl) ==
Mgr(update(LastReportLGVT,ipname,lgvtl));

The system GVT is simply the minimum LGVT in the finite map maintained
by the GVT manager. Thus, gvt is defined:

gvt(Mgr(LastReportLGVT)) == min(LastReportLGVT);

413

The minimum value in the finite map is found by obtaining its range and
searching it for the minimum value.

min(LastReportLGVT) == i f getrange(LastReportLGVT) ~= empty then
min_in_range(getrange(LastReportLGVT))

else
O;

The check for an empty range exists because it is possible to have no LPs, leading
to an empty map with an empty range. In the case of an empty map, GVT will
not change and remains equal to zero.

The operator min_in_range is recursivety defined as follows:

min_in_range(range(Igvtl,ipinfo)) ==
if Ipinfo = empty then

lgvtl
else

if lgvtl < minin_range(1pinfo) then
lgvtl

else
min_in_range(ipinfo);

This simple specification does a linear search for the minimum value in I p i n f o .

The operator getrange maps the domain of a finite map to a range set. An
empty map results in an empty range.

getrange({}) = empty;
getrange(update(LastReportLGVT,1pname,lgvtl)) ==

range(lgvtl ,getrange(LastReportLGVT));

g e t r a a g e builds the range set recursively stepping through the finite map entries.
If the finite map is not empty, the range is the value of the mapping function
(the map entry, lgvt l) and the range of the rest of the finite map.

The following two domain axioms are added to support the Larch Proof
assistant.

1. If a range value in the finite map is updated, it can be replaced by only the
new value.

update (update (LastReportLGVT, Ipname, igvt 2), ipname, igvt 1) =
update (L astRepert LGVT, lpname, lgvt 1) ;

2. A finite map with at least one entry cannot be empty.

getrange (update (LastReportLGVT,ipname, igvtl)) -~ = empty

414

4.2 Model ing the L P s

The logical process model defines a logical process's behavior. Each logical pro-
cess communicates with the GVT manager by: (a) sending a new LGVT value;
or (b) receiving a new GVT value. Thus, the interaction between an LP and
the manager is completely defined by the two interface operators defined in the
Manager trait. Using the Manager trait is a simple matter of including the trait
in the LP specification.

Model : trait

includes Manager

introduces
LP : LatestLGVT, GVTmgr -+ LPName

check: LPName -+ LPName

work: LPName -+ LPName
progress: SystemState -+ SystemState

state: SystemState, LPName -+ SystemState

start : --+ SystemState
straggler : SystemState -+ Bool
stragglertime : SystemState -+ LatestLGVT
rollback : SystemState, LatestLGVT, GVTmgr -+ SystemState

MGR : SystemState -+ GVTmgr

time: SystemState -+ LatestLGVT

delta :-+ LatestLGVT

asserts
SystemState generated by state, start

V ipname : LPName,
igvtl, igvt2 : LatestLGVT,

mgr,curmgr : GVTmgr,

LastReportLGVT : LPRecords,
systemstate : SystemState

progress(start) == state(start, LP(gvt(mgr), mgr));

progress(state(systemstate,lpname)) ==
if straggler(state(systemstate,ipname)) then

rollback(state(systemstate,lpname),
stragglertime(state(systemstate,lpname)),

MGR(state(systemstate,lpname)))

else
state(state(systemstate,lpname),check(work(lpname)));

stragglertime(state(systemstate,LP(lgvti,mgr))) < lgvtl;
stragglertime(systemstate) ~ gvt(MGR(systemstate));

rollback(state(systemstate,LP(lgvtl,mgr)),lgvt2,curmgr) ==

if lgvtl > lgvt2 then
rollback(systemstate,lgvt2, curmgr)

else
state(systemstate,LP(lgvtl,

sendGVT(curmgr,LP(lgvtl,mgr), lgvtl)));

415

work(LP(lgvtl ,mgr)) == LP(succ(lgvt l) ,mgr) ;
check(LP(lgvt l , mgr)) ==

if (gvt(mgr)+delta) > lgvtl then
LP(igvtl, sendGVT(mgr,LP(lgvtl,mgr),lgvtl))

else
LP(lgvtl, mgr);

MGR(state(systemstate, LP(lgvtl, mgr))) = mgr;
time(state(systemstate,LP(lgvtl, mgr))) = lgvtl;

gvt(MGR(start)) = time(start);
time(progress(start)) < time(state(systemstate,lpname));
gvt(MGR(start)) < gvt(MGR(progress(start)));

implies
V systemstatei,systemstate2 : SystemState
time(systemstatel) ~ gvt(MGR(systemstatel))
progress(systemstatel) = systemstate2~

gvt(MGR(systemstatel)) ~ gvt(MGR(systemstate2))

T h e L P M o d e l T r a i t O p e r a t o r s The basic model construct is the logical
process. It is obtained using the operator LP with range LPName and domain
(LatestLGVT, GVTrngr), where LatestLGVT represents the current LGVT
value of the logical process and GVTmgr represents the GVT manager.

To model the progress of the GVT algorithm, modeling system state and
change of state is necessary. The sort state consists of the tuple (SystemState,
LPName) and stores the history of a simulation. To allow a proof by induction
on the states, the initial state, start, is defined. The operator progress allows
reference to the history of simulation states.

The operator check is a mapping from one logical process to another. It
checks the conditions for LGVT update and changes the GVT manager 's value
if necessary.

In order to specify logical process execution, the operator work is defined. It
maps one logical process to another and abstractly represents the change in LP
state resulting from execution. The specifics of the state change are immaterial
to this verification effort - - only that the state changes need be represented. The
only assumption made is that work increases the LPs LGVT value representing
"positive" work.

Additional operators are introduced to specify the special simulation prop-
erties. A straggler operator is a mapping from a system state to a boolean type.
The boolean variable indicates whether a straggler message has been processed.
The operator stragglertime accesses the straggler message's arrival time. This
t ime is used in the rollback operator, along with the present state and a refer-
ence to the GVT manager, to model rollback to an earlier state. Rollback is the
inverse of work. The state change it produces always causes LGVT to decrease.

Two operators are defined to access the fields of a logical process state. MGR
relates the GVT manager with its current state. The operator time references
the LGVT of the state.

416

Finally, the operator delta represents passage of a small simulation time in-
terval that represents the value cMculated by Equation 3.

Model Trai t Axioms The system is represented by states described by the
state sort. To prove characteristics over system progress, proof by induction over
states is necessary. The following axiom specifies the initial state:

progress(start) == state (start, LP(gvt (mgr), mgr)) ;

The initial condition occurs when the logical process's LGVT is equal to the
GVT held by the GVT manager. A change in state (progress) is modeled as
shown below:

progress (state (systemstate, ipname)) ==
if straggler(state(systemstate,lpname)) then

rollback (state (systemst at e, Ipname),
stragglertime (state (syst emstat e, 1pname)),
MGR (state (syst emstat e, lpname)))

else
st at e (st at e (syst emst at e, lpname), check (work (lpname))) ;

Note that the LP changes state in two ways. Either a straggler message arrives
and the state is rolled back, or a logicM process proceeds with its task.

The operator straggler is used in the progress operator definition. The strag-
gler operator is an abstraction used to denote the fact that, the LP under con-
sideration could have received this straggler message from any other LP in the
system. Thus the whole system is modelled, by just focussing on any LP. If a
straggler occurs, the following two statements determine the rollback time.

stragglertime (state (systemstate, LP (igvt I ,mgr))) < igvt i ;
stragglertime(systemstate) ___ gvt (MGR(systemstate)) ;

If a straggler message arrives, the straggler's event time is less than the LP's
LGVT. In addition the event time must be greater than or equal to the GVT.
Because all states up to the state whose LGVT is equal to the GVT are stored,
rollback to a previous state is possible. This characteristic is asserted in the
following axiom:

rollback (state (systemstate, LP (igvt i ,mgr)), Igvt2, curmgr) ==
if Igvtl > igvt2 then

rollback (systemstate,lgvt2, curmgr)

else
st at e (syst emst at e, LP (Igvt I, sendGVT (curmgr, LP (lgvt I, mgr), Igvt 1))) ;

Although this appears to be an extremely strong assertion, it simply states that
if a straggler arrives and GVT is managed correctly, stored state information
can reconstruct the state when the straggler message should have arrived.

As long as the time of the previous state is greater than straggler time,
rollback continues. When the state time is less than the straggler time, processing

417

can continue as a state prior to message arrival has been reconstructed. This
state's time is the rollback time. As mentioned in the algorithm 2.2, the rollback
time must be reported to the GVT manager as the LP's current LGVT.

The following axioms model the internal behavior of a logical process.

work(LP(lgvtl,mgr)) == LP(succ(lgvtl),mgr);

The operator work describes forward progress from the logical process's point of
view. When a logical process has done work, it increases its LGVT. The operator
check, however has to determine whether the LGVT has reached the boundary
described in Equation 4.If the condition is true, the logical process must report
its LGVT to the GVT manager. Otherwise the logical process simply advances:

check(LP(lgvtl, mgr)) ==
if (gvt(mgr)+delta) > lgvtl

then LP(lgvtl, sendGVT(mgr,LP(lgvtl,mgr),lgvtl))
else LP(lgvtl, mgr);

As described before, two accessor operators are defined. MGR accesses the
GVT manager for the current state and time accesses the current state's LGVT.

MGR(state(systemstate, LP(igvtl, mgr))) = mgr;
time(state(systemstate, LP(lgvtl, mgr))) = lgvtl;

The following auxiliary axioms state basic truths necessary for the proof
process. They define characteristics of time and gvt in the initial state. Specifi-
cally, time and gvt in the initial state represent minimum values for each. These
assertions are necessary for proof by induction.

1. The system's initial condition asserts that GVT and LGVT are initially the
same for all logical processes.

gvt(MGR(start)) = time(start);

2. A state's time will never be less than the initial state's time:

time(progress(start)) < time(state(systemstate,lpname));

3. GVT is never less than GVT in the initial state:

gvt(MGR(start)) ~ gvt(MGR(progress(start)));

5 T h e C o r r e c t n e s s P r o o f

The pGVT algorithm is operating correctly when GVT monotonically increases.
Each increase in GVT value represents movement forward in simulation time and
thus progress towards a completed simulation. Although individual LPs may roll-
back, GVT should never decrease as it represents a lower floor for LGVT values.
Allowing GVT to decrease causes the entire system to rollback eliminating the

418

guarantee that !'progress" is being made. Furthermore, since GVT is used for
fossil collection, allowing GVT to decrease violates the assumption that throwing
away information from states earlier than GVT is desirable.

The proof for this obligation is decomposed into 3 subproofs: (1) prove that
GVT always increases and is calculated correctly if new LGVT values exceed
GVT; (2) prove that in any state, the LGVT is always higher than the last GVT;
and (3) using results from (1) and (2), show that GVT increases monotonically.
Formally, the three proof obligations become:

(I) igvtl ~ min(LastReportLGYT) =~
gvt(sendGVT(Mgr(LastReportLGVT), ipname, igvtl))

gvt(Mgr(LastReportLGVT));
(2) time(systemstatel) > gvt(MGR(systemstatel));
(3) progress(systemstatel) = systemstate2

gvt(MGR(systemstatel)) ~ gvt(MGR(systemstate2));

5.1 Prov ing Conditional Monotonic GVT Increase

The primary focus of this proof is showing that the GVT manager must either
make progress or maintain GVT. This represents the overall proof obligation - -
unfortunately it cannot be proven directly. What is shown initially is that the
GVT manager definition guarantees that GVT monotonically increases given
that all new LGVT values are greater than GVT. This obligation is modeled by
the following Larch proposition:

igvti ~ min(LastReportLGVT)
gvt(sendGVT(Mgr(LastReportLGVT), ipname, Igvtl))

gvt(Mgr(LastReportLGVT));

The proof obligation states simply that if all reported LGVT values increase,
then GVT also increases or stays the same.

The prover initially tries to prove the propositions using existing axioms,
formulas and rewrite rules in combination with the default proof methods. In
this case, the prover does not have enough knowledge to select a more powerful
proof method. Thus, the following directives are supplied by the user to the
Larch Proof Assistant:

1. To reduce the complexity of the current conjecture, the formula

Manager.5: getrange(update(LastReportLGVT, ipname, igvtl))
= range(Igvtl, getrange(LastReportLGVT))

was applied to the conjecture. The command issued by the user is

rewrite conjecture with Manager.5

2. After analyzing the conjecture, two range cases were found - either the
number of logical processes is equal to 0 or greater than 0. Hence the following
command was used to continue using a proof by cases:

419

resume by cases getrange(LastReportLGVT) = empty

The prover continues by attempting to prove a conjecture representing each
case. A third obligation, proving the two cases cover all possibilities, is dis-
charged automatically by the prover.

3. Next, the proof continues by implication using the following LP command:

resume by =~

4. Finally another proof by cases is attempted. This time the proof is generated
for the case when lgvtl is less than the minimum value. The subproof is
generated by the statement:

resume by cases
igvtlc O min_in_range(getrange(LastReportLGVTc)) = 0
A ~ (lgvtlc = minin_range(getrange(LastReportLGVTc)))

The final command causes the proof to complete and the original proposition
becomes a theorem for use in later proofs. Thus, we know that GVT always
increases if new LGVT values increase.

Larch Prover instructions for the complete proof have the following form:

Z Conjecture:
igvtl ~ min(LastReportLGVT)

% gvt(sendGVT(Mgr(LastReportLGVT), ipname, Igvtl)
Z ~ gvt(Mgr(LastReportLGVT));

Proof steps:

rewrite con with Manager.5

(get rid of update

transform getrange into the range)

resume by cases
(Either LPs exist or they don't)

getrange(LastReportLGVT) = empty)

resume by
(Assuming that the input is correct then the result
is also)

resume by cases

(for send time
lgvtlc O min_in_rauge(getrange(LastReportLGVTc)) = 0
A ~ (igvtlc = min_inrange(getrange(LastRepcrtLGVTc)))

5.2 Prov ing L G V T Less T h a n GVT

The second subproof conjecture is that the LGVT of any state will always be
greater than or equal to the present GVT. The Larch statement representing
this hypothesis is:

420

time(systemstatel) > gvt(MGR(systemstatel))

After the transformation into the Larch Prover, the following steps guide the
Larch Prover:

1. Because the statement has to hold for all possible states of the logical process,
a proof by induction over states is required. The Larch Prover command to
a t tempt a proof by induction is as follows:

resume by induction on systemstatel

2. A close examination of the new conjecture shows that the present set of
rewrite rules should be enough to prove the conjecture. In order to repeatedly
apply the rewrite rules, the critical-pairs command is used to apply Knuth-
Bendix [14] completion over a subset of assertions:

critical-pairs Model* with Model*

The result is that for all LP states, LGVT is greater than or equal to GVT.
Using this result and properties of work and rollback, it will be shown that LGVT
associated with every next state is also greater than GVT. Thus, successive GVT
values are greater than or equal to old GVT values.

5.3 P r o v i n g G V T P rog re s s

Progress from one state to another implies that the GVT of the new state must
be greater than or equM to the GVT of the old state. Because progress is defined
on the state of a logical process, logical processes that make progress guarantee
the growth of the GVT. This is represented by the following Larch conjecture:

progress (sys temsta te l) = systemstate2 =r
gvt(MflR(systemstatel)) < gvt(MGR(systemstate2))

Two occurrences cause an LP to change state: (1) normal forward processing
(or work); or (2) processing straggler messages (or rollback). Recall that the
definition of progress indicates when work or rollback applies. In either case,
progress generates a new state. Using a proof by cases, it is shown that regardless
of how the state changes, GVT will either change positively or not at all. The
steps to aid the Larch Proof Assistant are:

1. Stating the proof obligation over state transitions allows proof by induction
over states. This is written as follows:

resume by induction on systemstatel

2. A proof by cases is at tempted to show that in any state the logical process
can either move forward (work) or receive a straggler message (rolEback). To
achieve this proof, LP is given the following command:

421

resume by cases straggler(state(systemstatelc, 1pn~ae))

3. Careful evaluation of the conjecture reveals that existing rewrite rules can
prove the conjecture directly. However the c r i t i c a l - p a i r s command needs
to be applied twice, because it halts after a first partial proof.

critical-pairs Model* with Model*

Larch Prover code for the final two proof obligations has the following form:

Conjecture time(systemstatel) > gvt(MGR(systemstatel))
Steps :
resume by induction on systemstatel
critical-pairs Model* with Model*
qed

After stating the above axiom as a theorem we prove the following.
Conjecture: progress(systemstatel) = systemstate2

gvt(MGR(systemstatel)) < gvt(MGR(systemstate2))
Steps :
resume by induction on systemstatel
resume by cases straggler(state(systemstatelc, Ipstate))
critical-pairs Model* with Model*
critical-pairs Model* with Model*
qed

This completes the proof of the desired conjecture. Specifically that GVT mono-
tonically increases over a set of simulation states. Because GVT monotonically
increases and represents a floor for LGVT, discarding LP state information prior
to GVT is a legitimate and correct fossil collection algorithm.

6 Limitations and Assumptions

6.1 Per fec t C o m m u n i c a t i o n

This model specifies a pGVT algorithm under the assumption that message
passing between the GVT manager and the logical processes is a single, perfect
message. The actual algorithm specifies a handshaking protocol implemented
using acknowledgment messages. The current specification does not model the
acknowledgment process. The assumption is made that when a logical process or
the GVT manager sends a message to another logical process or GVT manager
the sender waits until an acknowIedgment is received.

6.2 S imula t ion Progress

It should be noted that successive values of GVT are guaranteed to be greater
than or equal to the previous GVT value. There is no guarantee that GVT

422

ever increases. It is possible for a simulation to maintain a single GVT value
indefinitely. Showing that GVT always increases is a desirable result, but it is
impossible without knowing the internal details of the LPs. It can be concluded
that if all LPs' LGVT values increase, then GVT will increase. Thus, if LPs
make progress, the overall system will make progress.

7 C o n c l u s i o n s

Parallel processing promises to deliver performance improvement needed for
large modeling efforts using discrete event simulation. However, this promise
requires solutions of distributed synchronization that can be difficult to deliver.
This is especially true with optimistic synchronization techniques where algo-
rithm developers must deal with non-repeatable behaviors and transient error
situations. In such environments traditional testing and path analysis fails and
the designer must turn to other methods for algorithm design and analysis.
One possible solution is the application of formal methods for specification and
proof. From this context, we have pursued the application of formal methods for
two important subproblerns of a time warp simulator. The first addressed the
problem of demonstrating correct LP behavior and event commitment [22]. The
second, described herein, addresses the problem of global time management - -
specifically the estimation of GVT advancement with the pGVT [7] algorithm.

In this paper, a formal specification for the pGVT algorithm has been pre-
sented with an automated formal proof that GVT increases monotonically. Al-
though the specifications and proof are important results in themselves, this
activity represents a pragmatic application of formal verification to a realistic
algorithm. The pGVT algorithm is a commonly used parallel simulation algo-
rithm and represents much more than a "toy" analysis problem. The specifica-
tions were written and verified by formal methods practitioners working with
experts in parallel simulation.

One gain of this effort was the knowledge that a formal specification of an
algorithm is not as daunting as it seems and as an end result, the specifiers
and readers of the proof have a more precise understanding of the algorithm.
The result of this exercise ultimately led to a clean interface and well structured
implementation of the algorithm in the WARPED kernel [18].

Lastly, the chief final objective of this effort is the de,zelopment for a proof in-
frastructure to support reasoning about various alternative algorithms for GVT
estimation. More precisely, we hope to develop a framework for GVT proof that
will support and simplify the work required by future designers of GVT algo-
rithms.

R e f e r e n c e s

1. BAUER, It., AND SPORRER, C. Distributed logic simulation and an approach
to asynchronous GVT-cMculation. In 6th Workshop on Parallel and Distributed
Simulation (January 1992), Society for Computer Simulation, pp. 205-208.

423

2. BLANK, T. A survey of hardware accelerators used in computer-aided design.
IEEE Design and Test of Computers 1, 4 (August 1984), 21-39.

3. CHANDY, K. M., AND MISRA, J. Asynchronous distributed simulation via a se-
quence of parallel computations. Communications of the ACM 24, 11 (April 1981),
198-206.

4. CHANDY, K. M., AND SHERMANr R. Space-time and simulation. In Distributed
Simulation (1989), Society for Computer Simulation, pp. 53-57.

5. DENNEAU, M., KRONSTADT, E., AND PFISTER, G. Design and implementation of
a software simulation engine. Computer-Aided Design 15, 3 (May 1983), 123-130.

6. D'SouzA, L. M. Global virtual time estimation algorithms in optimistically syn-
chronized distributed discrete event driven simulation. Master's thesis, University
of Cincinnati, Cincinnati, Ohio, May 1994.

7. D'SouZA, L. M., FAN, X., AND WlLSEY, P . A . pGVT: An algorithm for accu-
rate GVT estimation. In Proc. of the 8th Workshop on Parallel and Distributed
Simulation (PADS 9~) (July 1994), Society for Computer Simulation, pp. 102-109.

8. FISHWICK, P . A . Simulation Model Design and Execution: Building Digital
Worlds. Prentice Hall, Englewood Cliffs, N J, 1995.

9. FUJIMOTO, R. Parallel discrete event simulation. Communications of the ACM
33, 10 (October 1990), 30-53.

10. GARLAND, S. J., AND GUTTAG, J .V . A guide to LP, the Larch Prover. Tech.
rep., TR 82, DEC/SRC, December 1991.

11. GUTTAG, J .V. , AND HORNING, J . J . Larch: Languages and Tools for Formal
Specification. Springer-Verlag, New York, NY, 1993.

12. HOARE, C. A. R. Communicating SequentialProcesses. Prentice-Hall, Englewood
Cliffs, 1985.

13. JEFFERSON, e . Virtual time. A CM Transactions on Programming Languages and
Systems 7, 3 (July 1985), 405-425.

14. KNUTH, D. E., AND BENDIX, P. B. Simple word problems in universal algebras.
In Computational Problems in Abstract Algebra, J. Leech, Ed. Pergamon Press,

1970.
15. LIN, Y.-B., AND LAZOWSKA, E. Determining the global virtual time in a dis-

tributed simulation. In 1990 International Conference on Parallel Processing
(1990), pp. III-201-III-209.

16. LINCOLN, P., AND RUSHBY~ J. Formal verification of an algorithm for interactive
consistency under a hybrid fault model. In Computer-Aided Verification, CAV'93
(June/July 1993), C. Courcoubetis, Ed., vol. 697 of Lecture Notes in Computer
Science, Springer-Verlag, pp. 292-304.

17. MARTIN, D. E., McBRAYER, T., AND WILSEY, P . A . WARPED: A time warp
simulation kernel for analysis and application development, 1995. (available on
the www at h t t p ://~ww. ece. uc. edu/-paw/~arped/).

18. MARTIN, D. E., McBRAYER, T. J., AND WILSEY, P. A. WARPED: A time warp
simulation kernel for analysis and application development. In 29th Hawaii Inter-
national Conference on System Sciences (HICSS-29) (January 1996). (forthcom-
ing).

19. MATTERN, F. Effecient algorithms for distributed snapshots and global virtual
time approximation. Journal of Parallel and Distributed Computing 18, 4 (August
1993), 423-434.

20. MISRA, J. Distributed discrete-event simulation. Computing Surveys 18, 1 (March
1986), 39-65.

424

21. OWRE, S., RUSHBY, J., SHANKAR, N., AND VON HENKE, F. Formal verification for
fault-tolerant architectures: Prolegomena to the design of pvs. IEEE Transactions
on Software Engineering 27(2) (February 1995), 107-125.

22. PENIX, 3., ALEXANDER, P., MARTIN, D., AND WILSEY, P. A. Formal specification
and partial verification of LVT in a time warp simulation kernel, 1995.

23. RUSHBY, J. A formally verified algorithm for clock synchronization under a hy-
brid fault model. 13th ACM Symposium on Principles of Distributed Comput-
ing(PODC'9~) (August 1994), 304-313.

24. SAMADI, B. Distributed Simulation, Algorithms and Performance Analysis. PhD
thesis, Computer Science Department, University of California, Los Angeles, CA,
1985.

25. SPIVEY, J. M. Understanding Z: A Specification Language and its Formal Seman-
tics. Cambridge University Press, Cambridge, 1988.

26. TOMLINSON, A. I., AND GARG, V. K. An algorithm for minimally latent global
virtual time. In Proc of the 7th Workshop on Parallel and Distributed Simulation
(PADS) (July 1993), Society for Computer Simulation, pp. 35-42.

