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Abs t r ac t .  The time warp mechanism is a technique for optimistically 
synchronizing Parallel and distributed Discrete Event-driven Simulators 
(PDES). Within this synchronization paradigm lie numerous parallel al- 
gorithms, chief among them being an estimation of the Global Virtual 
Time (GVT) value for fossil collection and output commit. Because the 
optimistic synchronization strategy allows for temporary violations of 
causal relations in the system being simulated, developing algorithms 
that correctly estimate GVT can prove extremely difficult. Testing and 
debugging can also prove difficult as error situations are frequently not 
repeatable due to varying load conditions and processing orders. Conse- 
quently, the application of formal methods to develop and analyze such 
algorithms are of extreme importance. This paper addresses the appli- 
cation of formal methods for the development of GVT estimation al- 
gorithms. More precisely, the paper presents a formal specification for 
and verification of one specific GVT estimation algorithm, the pGVT al- 
gorithm. The specifications are presented in the Larch Shared Language 
and verification completed using the Larch Proof Assistant. The ultimate 
goal of this work is to develop a reusable infrastructure for GVT proof 
development that can be used by developers of new GVT estimation 
algorithms. 

1 I n t r o d u c t i o n  

Discrete event-driven simulation is an impor tant  modeling technique used across 
many  disciplines including, to name a few: communication networks, weather 
prediction, molecular motion, and economic forecasting [8]. While widely used, 
desires for more accurate results st imulate a need for faster simulator throughput .  
In response to this need, the simulation communi ty  has turned, in part ,  toward 
the potential  solutions offered by parallel processing (resulting in the emergence 
of the subfield of Parallel Discrete Event-Driven Simulation or PDES [9]). 

* Support for this work was provided in part by the Advanced Research Projects 
Agency, contracts F33615-93-C-1315 and F33615-93-C-1316 monitored by Wright 
Laboratory and contract J-FBI-93-116 monitored by the Department of Justice. The 
authors also wish to thank Wright Labs and ARPA for their continuing support. 
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Parallel solutions for discrete-event driven simulation can be broadly classi- 
fied as using either (i) a central event dispatch mechanism [2, 5] or (ii) a dis- 
tributed event execution mechanism [9, 20]. Modifying sequential simulators for 
parallel execution using central event dispatch is reasonably simple, but provides 
only limited speedups. Parallel simulators using distributed control are able to 
exploit higher degrees of parallelism, but their implementation costs can be high. 
This is especially true in optimistically synchronized simulators where causality 
relationships can be violated and then repaired [9, 13]. Decisions about global 
progress and the satisfaction of termination conditions in such simulations can 
be difficult to make. Consequently, algorithms for such decisions are frequently 
difficult to develop, analyze, and test. 

At the University of Cincinnati, we have been studying the acceleration of 
digital system simulation using the time warp optimistic synchronization strat- 
egy. As part of our investigations, we have implemented a time warp simulation 
called WARPED and released it for public use [17, 18]. The WARPED kernel re- 
quired a five month development time and over half of that time was spent in 
the development and test of algorithms to solve two problems, namely: decisions 
about the global progress of the simulation (computing a value called Global 
Virtual Time, or GVT), and deciding when the simulation had terminated. The 
difficulty experienced in developing these sections of the WARPED kernel moti- 
vated us to consider the use of formal methods for our algorithm development. 

This paper presents our experiences using formal methods to develop a spe- 
cific GVT estimation algorithm called pGVT. In particular, we describe our 
development of a formal specification and proof for the pGVT algorithm. The 
algorithm is specified using the Larch Shared Language [11]. This formal specifi- 
cation is then used to prove the correctness of the algorithm by passing the spec- 
ification through the Larch Prover 2 [10] and establishing that the system GVT 
increases monotonically. Similar endeveours with formal specification in the dis- 
tributed environment are being actively pursued by many researchers[16, 21, 23]. 

The reminder of the paper is organized as follows: Section 2 provides some 
background information on time warp, the pGVT algorithm, and the WARPED 

project. Section 3 presents an overview of the Larch Shared Language and the 
Larch Prover. Section 4 presents the formal specification of the pGVT algorithm. 
Section 5 contains the proof that the pGVT algorithm works correctly. Sections 
6 and 7 contain some concluding remarks and a discussion of assumptions and 

limitations. 

2 B a c k g r o u n d  

2.1 Parallel Simulation and Time Warp 

In distributed discrete event driven simulation, a system is generally modeled 
as a group of communicating entities, referred to here as Logical Processes (or 
LPs). Each LP maintains a local clock that defines the simulation time for that 

2 Please note that in this paper the abbreviation LP does not denote Larch Prover. 
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LP and the LPs operate as distinct discrete event simulators, exchanging event 
information as necessary. Synchronization between the LPs can be either con- 
servative [3, 9, 20] or optimistic [4, 9, 13]. Under conservative synchronization, 
events are processed by each LP only when it can guarantee that  no causality 
(out of order) violation will occur. In contrast, an optimistically synchronized 
simulation does not strictly enforce causality constraints; instead, some mecha- 
nism to recover from a causality violation is defined. Time warp is an example 
of an optimistically synchronized parallel simulator. 

In t ime warp any LP with an event to process is allowed to simulate without 
consideration of the progress of other LPs. Since some LPs will process ahead of 
others at any given (real) time, simulation time is referred to as virtual time, and 
a given object 's simulation time at any given moment is called its local virtual 
time (or LVT) [9, 13]. Furthermore, since each LP simulates asynchronously, it 
is possible for an LP to receive an event from the past - -  violating the causality 
constraints of the simulation. Such messages are referred to as straggler mes- 
sages. In order to recover, the LP receiving the straggler message must rollback 
to an earlier simulation time and reprocess the events in their correct order. To 
enable rollback, each LP must maintain a history of state and event information 
(Figure 1). During rollback, an LP must revert to an earlier state and cancel 
any output  events sent while it was doing (possibly) erroneous look-ahead. This 
cancellation is performed by sending antimessages to other LPs who then re- 
move the erroneous event message from their input queue (sometimes causing 
rollback). 
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Fig. 1. A Time Warp Simulation Object 

One important  overhead associated with checkpointing state and event infor- 
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mation is the memory space required for the saved data. This space can be freed 
only when global progress of the simulation advances beyond the (simulation) 
time at which the saved information is needed. The process of identifying and re- 
claiming this space is called fossil collecr The global time against which fossil 
collection algorithms operate is cMled the global virtual time (or GVT) and sev- 
eral algorithms for GVT estimation have been proposed [1, 6, 7, 15, 19, 24, 26]. 
In addition to its use for fossil collection, GVT is also useful for deciding when 
irrevocable operations (such as I/O) can be performed and, in some instances, 
when the simulation has completed. 

2.2 The  p G V T  Algo r i t hm 

The pGVT algorithm [6, 7] is comprised of two functional elements: (1) the 
GVT management process; and (2) LGVT (local GVT) value calculation and 
reporting by the LPs. The GVT manager calculates, maintains, and broadcasts 
GVT information to LPs. Responsibility for LGVT management is distributed 
to each LP and is ideally organized to report new LGVT information to the 
central GVT manager only when failure to do so would inhibit advancement of 
estimates of GVT. Thus, LPs on the critical path will frequently report new 
LGVT information to the GVT managers, whereas LPs well in advance of the 
GVT will report less frequently [7]. This is described more formally below. 

A single GVT manager calculates, maintains and broadcasts global GVT 
information to the LPs. As the LPs report their LGVT values to the GVT 
manager the information is saved and used to determine new estimates for GVT. 
When estimates of GVT increase, the GVT manager distributes (for purposes 
of this paper, broadcasts) this information to the LPs. Included in the GVT 
broadcasts, the GVT manager also computes and distributes the average rate 
of increase in the GVT estimates, called AGVT.  A G V T  is used by the LPs in 
determining when to report new LGVT information. More precisely, following 
the n th GVT broadcast, the GVT manager computes: 

GVT' = min({LGVT]) (I) 

AGVT = ~{~=~-k AGV~ (2) 
k 

where {LGVT]  is the set containing all reported LGVT values, k is the sample 
size used for smoothing the A G V T  values, and AGVT~ is the increase in the 
GVT value in the i th GVT broadcast. The i th discrete increment in the estimated 
GVT value is denoted AGVT~ and the average of the last k increases in GVT 
estimates is zflGVT. From these calculations, the GVT manager then broadcasts 
an ordered pair, (AGVT,GVT ' ) ,  to each LP. 

As previously indicated, each LP independently determines when to calculate 
and report new LGVT information. Ideally, the LPs will report new informa- 
tion only when failure to do so would hinder the advancement of GVT. Thus, 
messages to report GVT information by each LP are reduced for all LPs except 
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those on the critical path of GVT advancement. 3 The LPs defining the critical 
path frequently report the GVT information and allow an accurate estimate of 
GVT.  More formally, the LPs report GVT information as follows: 

1. Each LP calculates GVT information and saves it in a buffer called LGVT 
(local GVT).  LGVT is the smaller of the minimum timestamp of all un- 
processed events in the event queue and the minimum timestamp of all 
unacknowledged output  messages. 

2. Each LP maintains a ratio of the (real) t ime for a message to be sent and 
acknowledged to the GVT manager (denoted by tmesg) and the average 
(real) t ime between successive GVT updates (denoted by ART~). Tha t  is, if 
K denotes the aforementioned ratio, then on the n th  GVT broadcast K is 
defined as: 

tmesg 
K -  RT, ( 3 )  

k 

where k is the sample size for smoothing. K helps trigger the calculation 
of new LGVT information. Informally, [K] is the number of A G V T  cycles 
required to report new information to the GVT manager. Because the time 
required to report a value from a LP to the GVT manager may vary based 
on processor localities, K is computed locally. 

3. Each LP recalculates and reports new LGVT information whenever: 

(a) Th~ LP receives a straggler message with a t imestamp smaller than 
the current LGVT value. The LP reports the new LGVT value (which 
will be lesser than or equal to the straggler message time) to the GVT 
manager before acknowledging receipt of the straggler message. When 
the GVT manager reports acknowledges the report, the LP acknowledges 
and processes the straggler message. 

(b) The broadcast GVT value approaches the current LGVT value. Report- 
ing of new LGVT information is triggered following a just-in-time policy 
to ensure the most aggressive advancement of GVT. More formally, the 
LP computes (and reports) a new LGVT value whenever: 

G V T  + [K] �9 A G V T  >__ L G V T  (4) 

holds. Informally, the factor [K] * A G V T  denotes the expected increase 
in the GVT value over the real t ime interval required to send (and receive 
acknowledgment of) a message to the GVT manager. If the GVT value 
plus the expected increase exceeds the last reported LGVT value, a new 
value for LGVT should be calculated and reported. Failure to do so 
would likely inhibit the advancement of GVT. 

3 A L P  is said to be on the critical path ff its reported LGVT value is the minimum 
of all values thus becoming the new GVT update. 
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3 A n O v e r v i e w  o f  L a r c h  

Many formal specification languages could have been used to specify the pGVT 
algorithm. The alternatives considered included Z [25], Larch [11] and CSP [12]. 
Larch was selected due to tool availability, the two-tiered specification style, 
and local expertise. Specifications for the pGVT algorithm components were 
written in the Larch Shared Language (LSL) [11] and verified using the Larch 
Prover [10]. 

The Larch style of specification is described as a two-tiered approach because 
specifications are written using two languages. The lower tier is written using the 
Larch Shared Language (LSL). LSL is an algebraic specification language that 
is used to model abstract data types. The functional unit of a LSL specification 
is the trait. The first line of the trait gives the name of the specification and 
declares the trait. The reminder of the specification is given in three parts: (1) 
the introduces section defining operation signatures and sorts; (2) the asserts 
section defining axioms over operations; and (3) the implies  section defining 
proof obligations. 

The in t roduces  section specifies the operators by their signatures. A signa- 
ture defines the sorts for the operator's domain and range. The a s s e r t s  section 
specifies relationships among the operators using equational logic and induction 
rules by specifying generators for sorts. Finally, the implies  section specifies 
equations that should be provable from the introduces and asserts sections. LSL 
supports combining specifications through parameterized inclusion much like 
macro expansion. 4 

A Larch specification's upper tier is an interface specification describing the 
specified component's interface. Interface specifications are written using a Larch 
Interface Language (LIL) that is tailor made to represent the target application 
language's calling conventions and language structures. LSL structures are refer- 
enced from LIL specifications providing common structures and behaviors in an 
application language independent manner. Since the algorithm being specified 
is written in C++,  the Larch/C++ LIL is used for the GVT interface specifica- 
tion. The pGVT algorithm's behavior is specified using LSL making it accessible 
to any LIL, not simply Larch/C++. As this work deals with the pGVT's cor- 
rectness independent of the specific Larch/C++ implementation, the interface 
specifications are not presented here. 

The Larch Prover [10] is a proof assistant compatible with the LSL speci- 
fications. The equations specified in an LSL asserts section are converted into 
rewrite rules, deduction rules and induction rules. The Larch Prover allows the 
user to make conjectures and applies the rules using either forward or backward 
inferencing techniques. The Larch Prover's primary uses include checking for 
consistency and theory containment. 

4 LSL contains a number of additional constructs not used in this specification. 
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4 The Specification of the pGVT Algorithm 

The formal specification of the model consists of two parts defining the GVT 
manager and the simulation model from a logical process view point. This two 
part approach supports direct representation of the pGVT algorithm's two func- 
tional elements described in Section 2.2. The GVT Manager trait specifies GVT 
calculation and LGVT value update. The trait provides two operations repre- 
senting these activities for use in the LP specification. The Model trait specifies 
the behavior of a logical process. This logical process can be any one of the LPs 
present in the system. The LP model processes messages and interacts with the 
GVT manager to update its LGVT entry and obtain new values of GVT. 

4.1 The  GVT Manager  

The GVT manager trait defines a GVT manager's behavior. The GVT manager 
maintains a record of LGVT values for each LP. The interface to the GVT 
manager consists of function to: (a) update an LP's associated LGVT value and 
(b) calculate and return GVT. 

Manager : trait 

includes FiniteMap(LPRecords, LPHame, LatestLGVT) 

includes Natural (Lat estLGVT) 

introduces 

Mgr 

sendGVT 
gvt 

empty 

range 

getrange 

min_inrange : 

min 

asserts 

LPRecords-+ GVTmgr 

GVTmgr, LPName, LatestLGVT -~ GVTmgr 
GVTmgr-+ LatestLGVT 

-+ LPInfo 

LatestLGVT, LPlnfo -~ LPlnfo 

LPRecords--+ LPInfo 

LPInfo --+ LatestLGVT 

LPRecords--~ LatestLGVT 

LPInfo generated by empty, getrange 
V LastReportLGVT : LPRecords, 

lgvtl, igvt2 : LatestLGVT, 
lpn~me : LPName, 

ipinfo : LPInfo 

gvt(Mgr(LastReportLGVT)) == min(LastReportLGVT); 
sendGVT(Mgr(LastReportLGVT), 1pname, Igvtl) == 

Mgr(update(LastReportLGVT,lpname,lgvti)); 
getrange({}) = empty; 
getrange(update(LastReportLGVT,Ipname,lgvtl)) == 

range(lgvtl,getrange(LastReportLGVT)); 
min(LastReportLGVT) == if getrange(LastReportLGVT) ~ = empty 

then 



412 

min_in_range(getrange(LastReportLGVT)) 
else 

O; 
min_in_range(range(Igvtl,lpinfo)) == 

if Ipinfe = empty then 
Igvtl 

else 
if igvti < min_in_range(Ipinfo) then 

igvtl 
else 

mininrange(1pinfo); 
update(npdate(LastReportLGVT,1pname,lgvt2),lpname,lgvtl) 

= update(LastReportLGVT,1pname,lgvtl); 
getrange(update(LastReportLGVT,lpname,lgvtl)) ~ = empty 

implies 
V LastReportLGVT : LPRecords, Igvtl : LatestLGVT, ipname : LPName 
Igvtl > min(LastReportLGYT) 

gvt(sendGVT(Mgr(LastReportLGVT), Ipname, Igvtl)) 
gvt(Mgr(LastRepertLGVT) ); 

M a n a g e r  Tra i t  O p e r a t o r s  A GVT manager is represented by sort GVTmgr 
generated by the operator Mgr. Its principle data structure is a finite map from 
each LP name to that LP's most recently reported LGVT. This finite map is 
updated when a new LGVT is reported by any LP. 

Two operators are specified to update the LGVT map and obtain a new 
GVT value from a GVT manager. The sendGVT operator updates the value 
of an LGVT value stored in the GVT manager. The operator's domain is a 3- 
tupte, (GVTmgr, LPName, LatestLGVT), where GVTmgr is the current state 
of the GVT manager, LPName represents the logical process in question and 
LatestLGVT represents the new LGVT. The gvt operator is used to get the 
current GVT value from a GVT manager. GVT is obtained by applying the 
operator gvt to the GVT manager (GVTmgr). These two operators define the 
external interface of a GVT manager allowing updates to stored LGVT values 
and GVT value retrieval. 

G V T  M a n a g e r  Axioms Updating an LGVT value in the GVT manager is 
represented as a finite map update for the LP in question. The update function 
is defined in the finite map trait and simply referenced in the single sendGVT 
axiom: 

sendGVT(Mgr(LastReportLGVT),ipname,lgvtl) == 
Mgr(update(LastReportLGVT,ipname,lgvtl)); 

The system GVT is simply the minimum LGVT in the finite map maintained 
by the GVT manager. Thus, gvt is defined: 

gvt(Mgr(LastReportLGVT)) == min(LastReportLGVT); 
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The minimum value in the finite map is found by obtaining its range and 
searching it for the minimum value. 

min(LastReportLGVT) == i f  getrange(LastReportLGVT) ~= empty then 
min_in_range(getrange(LastReportLGVT)) 

else 
O; 

The check for an empty range exists because it is possible to have no LPs, leading 
to an empty map with an empty range. In the case of an empty map, GVT will 
not change and remains equal to zero. 

The operator min_in_range is recursivety defined as follows: 

min_in_range(range(Igvtl,ipinfo)) == 
if Ipinfo = empty then 

lgvtl 
else 

if lgvtl < minin_range(1pinfo) then 
lgvtl 

else 
min_in_range(ipinfo); 

This simple specification does a linear search for the minimum value in I p i n f o .  

The operator getrange maps the domain of a finite map to a range set. An 
empty map results in an empty range. 

getrange({})  = empty; 
getrange(update(LastReportLGVT,1pname,lgvtl)) == 

range(lgvtl ,getrange(LastReportLGVT)); 

g e t r a a g e  builds the range set recursively stepping through the finite map entries. 
If the finite map is not empty, the range is the value of the mapping function 
(the map entry, lgvt l )  and the range of the rest of the finite map. 

The following two domain axioms are added to support the Larch Proof  
assistant. 

1. If a range value in the finite map is updated, it can be replaced by only the 
new value. 

update (update (LastReportLGVT, Ipname, igvt 2 ), ipname, igvt 1 ) = 
update (L astRepert LGVT, lpname, lgvt 1 ) ; 

2. A finite map with at least one entry cannot be empty. 

getrange (update (LastReportLGVT,ipname, igvtl) ) -~ = empty 



414 

4.2 Model ing the L P s  

The logical process model defines a logical process's behavior. Each logical pro- 
cess communicates with the GVT manager by: (a) sending a new LGVT value; 
or (b) receiving a new GVT value. Thus, the interaction between an LP and 
the manager is completely defined by the two interface operators defined in the 
Manager trait. Using the Manager trait is a simple matter  of including the trait 
in the LP specification. 

Model : trait 

includes Manager 

introduces 
LP : LatestLGVT, GVTmgr -+ LPName 

check: LPName -+ LPName 

work: LPName -+ LPName 
progress: SystemState -+ SystemState 

state: SystemState, LPName -+ SystemState 

start : --+ SystemState 
straggler : SystemState -+ Bool 
stragglertime : SystemState -+ LatestLGVT 
rollback : SystemState, LatestLGVT, GVTmgr -+ SystemState 

MGR : SystemState -+ GVTmgr 

time: SystemState -+ LatestLGVT 

delta :-+ LatestLGVT 

asserts 
SystemState generated by state, start 

V ipname : LPName, 
igvtl, igvt2 : LatestLGVT, 

mgr,curmgr : GVTmgr, 

LastReportLGVT : LPRecords, 
systemstate : SystemState 

progress(start) == state(start, LP(gvt(mgr), mgr)); 

progress(state(systemstate,lpname)) == 
if straggler(state(systemstate,ipname)) then 

rollback(state(systemstate,lpname), 
stragglertime(state(systemstate,lpname)), 

MGR(state(systemstate,lpname))) 

else 
state(state(systemstate,lpname),check(work(lpname))); 

stragglertime(state(systemstate,LP(lgvti,mgr))) < lgvtl; 
stragglertime(systemstate) ~ gvt(MGR(systemstate)); 

rollback(state(systemstate,LP(lgvtl,mgr)),lgvt2,curmgr) == 

if lgvtl > lgvt2 then 
rollback(systemstate,lgvt2, curmgr) 

else 
state(systemstate,LP(lgvtl, 

sendGVT(curmgr,LP(lgvtl,mgr), lgvtl))); 
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work(LP(lgvtl ,mgr)) == LP(succ(lgvt l ) ,mgr) ;  
check(LP(lgvt l ,  mgr)) == 

if (gvt(mgr)+delta) > lgvtl then 
LP(igvtl, sendGVT(mgr,LP(lgvtl,mgr),lgvtl)) 

else 
LP(lgvtl, mgr); 

MGR(state(systemstate, LP(lgvtl, mgr))) = mgr; 
time(state(systemstate,LP(lgvtl, mgr))) = lgvtl; 

gvt(MGR(start)) = time(start); 
time(progress(start)) < time(state(systemstate,lpname)); 
gvt(MGR(start)) < gvt(MGR(progress(start))); 

implies 
V systemstatei,systemstate2 : SystemState 
time(systemstatel) ~ gvt(MGR(systemstatel)) 
progress(systemstatel) = systemstate2~ 

gvt(MGR(systemstatel)) ~ gvt(MGR(systemstate2)) 

T h e  L P  M o d e l  T r a i t  O p e r a t o r s  The basic model construct is the logical 
process. It is obtained using the operator LP with range LPName and domain 
(LatestLGVT, GVTrngr), where LatestLGVT represents the current LGVT 
value of the logical process and GVTmgr represents the GVT manager. 

To model the progress of the GVT algorithm, modeling system state and 
change of state is necessary. The sort state consists of the tuple (SystemState, 
LPName) and stores the history of a simulation. To allow a proof by induction 
on the states, the initial state, start, is defined. The operator progress allows 
reference to the history of simulation states. 

The operator check is a mapping from one logical process to another. It 
checks the conditions for LGVT update and changes the GVT manager 's value 
if necessary. 

In order to specify logical process execution, the operator work is defined. It 
maps one logical process to another and abstractly represents the change in LP 
state resulting from execution. The specifics of the state change are immaterial  
to this verification effort - -  only that  the state changes need be represented. The 
only assumption made is that  work increases the LPs LGVT value representing 
"positive" work. 

Additional operators are introduced to specify the special simulation prop- 
erties. A straggler operator is a mapping from a system state to a boolean type. 
The boolean variable indicates whether a straggler message has been processed. 
The operator stragglertime accesses the straggler message's arrival time. This 
t ime is used in the rollback operator, along with the present state and a refer- 
ence to the GVT manager, to model rollback to an earlier state. Rollback is the 
inverse of work. The state change it produces always causes LGVT to decrease. 

Two operators are defined to access the fields of a logical process state. MGR 
relates the GVT manager with its current state. The operator time references 
the LGVT of the state. 
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Finally, the operator delta represents passage of a small simulation time in- 
terval that represents the value cMculated by Equation 3. 

Model  Trai t  Axioms The system is represented by states described by the 
state sort. To prove characteristics over system progress, proof by induction over 
states is necessary. The following axiom specifies the initial state: 

progress(start) == state (start, LP(gvt (mgr), mgr)) ; 

The initial condition occurs when the logical process's LGVT is equal to the 
GVT held by the GVT manager. A change in state (progress) is modeled as 
shown below: 

progress (state (systemstate, ipname) ) == 
if straggler(state(systemstate,lpname)) then 

rollback (state (systemst at e, Ipname), 
stragglertime (state (syst emstat e, 1pname) ), 
MGR (state (syst emstat e, lpname) ) ) 

else 
st at e ( st at e (syst emst at e, lpname ), check ( work (lpname) ) ) ; 

Note that the LP changes state in two ways. Either a straggler message arrives 
and the state is rolled back, or a logicM process proceeds with its task. 

The operator straggler is used in the progress operator definition. The strag- 
gler operator is an abstraction used to denote the fact that, the LP under con- 
sideration could have received this straggler message from any other LP in the 
system. Thus the whole system is modelled, by just focussing on any LP. If a 
straggler occurs, the following two statements determine the rollback time. 

stragglertime (state (systemstate, LP (igvt I ,mgr) )) < igvt i ; 
stragglertime(systemstate) ___ gvt (MGR(systemstate)) ; 

If a straggler message arrives, the straggler's event time is less than the LP's 
LGVT. In addition the event time must be greater than or equal to the GVT. 
Because all states up to the state whose LGVT is equal to the GVT are stored, 
rollback to a previous state is possible. This characteristic is asserted in the 
following axiom: 

rollback (state (systemstate, LP (igvt i ,mgr) ), Igvt2, curmgr) == 
if Igvtl > igvt2 then 

rollback (systemstate,lgvt2, curmgr) 

else 
st at e (syst emst at e, LP (Igvt I, sendGVT (curmgr, LP (lgvt I, mgr), Igvt 1 ) ) ) ; 

Although this appears to be an extremely strong assertion, it simply states that 
if a straggler arrives and GVT is managed correctly, stored state information 
can reconstruct the state when the straggler message should have arrived. 

As long as the time of the previous state is greater than straggler time, 
rollback continues. When the state time is less than the straggler time, processing 
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can continue as a state prior to message arrival has been reconstructed. This 
state's time is the rollback time. As mentioned in the algorithm 2.2, the rollback 
time must be reported to the GVT manager as the LP's current LGVT. 

The following axioms model the internal behavior of a logical process. 

work(LP(lgvtl,mgr)) == LP(succ(lgvtl),mgr); 

The operator work describes forward progress from the logical process's point of 
view. When a logical process has done work, it increases its LGVT. The operator 
check, however has to determine whether the LGVT has reached the boundary 
described in Equation 4.If the condition is true, the logical process must report 
its LGVT to the GVT manager. Otherwise the logical process simply advances: 

check(LP(lgvtl, mgr)) == 
if (gvt(mgr)+delta) > lgvtl 

then LP(lgvtl, sendGVT(mgr,LP(lgvtl,mgr),lgvtl)) 
else LP(lgvtl, mgr); 

As described before, two accessor operators are defined. MGR accesses the 
GVT manager for the current state and time accesses the current state's LGVT. 

MGR(state(systemstate, LP(igvtl, mgr))) = mgr; 
time(state(systemstate, LP(lgvtl, mgr))) = lgvtl; 

The following auxiliary axioms state basic truths necessary for the proof 
process. They define characteristics of time and gvt in the initial state. Specifi- 
cally, time and gvt in the initial state represent minimum values for each. These 
assertions are necessary for proof by induction. 

1. The system's initial condition asserts that GVT and LGVT are initially the 
same for all logical processes. 

gvt(MGR(start)) = time(start); 

2. A state's time will never be less than the initial state's time: 

time(progress(start)) < time(state(systemstate,lpname)); 

3. GVT is never less than GVT in the initial state: 

gvt(MGR(start)) ~ gvt(MGR(progress(start))); 

5 T h e  C o r r e c t n e s s  P r o o f  

The pGVT algorithm is operating correctly when GVT monotonically increases. 
Each increase in GVT value represents movement forward in simulation time and 
thus progress towards a completed simulation. Although individual LPs may roll- 
back, GVT should never decrease as it represents a lower floor for LGVT values. 
Allowing GVT to decrease causes the entire system to rollback eliminating the 
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guarantee that !'progress" is being made. Furthermore, since GVT is used for 
fossil collection, allowing GVT to decrease violates the assumption that throwing 
away information from states earlier than GVT is desirable. 

The proof for this obligation is decomposed into 3 subproofs: (1) prove that 
GVT always increases and is calculated correctly if new LGVT values exceed 
GVT; (2) prove that in any state, the LGVT is always higher than the last GVT; 
and (3) using results from (1) and (2), show that GVT increases monotonically. 
Formally, the three proof obligations become: 

(I) igvtl ~ min(LastReportLGYT) =~ 
gvt(sendGVT(Mgr(LastReportLGVT), ipname, igvtl)) 

gvt(Mgr(LastReportLGVT)); 
(2) time(systemstatel) > gvt(MGR(systemstatel)); 
(3) progress(systemstatel) = systemstate2 

gvt(MGR(systemstatel)) ~ gvt(MGR(systemstate2)); 

5.1 Prov ing  Conditional Monotonic GVT Increase  

The primary focus of this proof is showing that the GVT manager must either 
make progress or maintain GVT. This represents the overall proof obligation - -  
unfortunately it cannot be proven directly. What is shown initially is that the 
GVT manager definition guarantees that GVT monotonically increases given 
that all new LGVT values are greater than GVT. This obligation is modeled by 
the following Larch proposition: 

igvti ~ min(LastReportLGVT) 
gvt(sendGVT(Mgr(LastReportLGVT), ipname, Igvtl)) 

gvt(Mgr(LastReportLGVT)); 

The proof obligation states simply that if all reported LGVT values increase, 
then GVT also increases or stays the same. 

The prover initially tries to prove the propositions using existing axioms, 
formulas and rewrite rules in combination with the default proof methods. In 
this case, the prover does not have enough knowledge to select a more powerful 
proof method. Thus, the following directives are supplied by the user to the 
Larch Proof Assistant: 

1. To reduce the complexity of the current conjecture, the formula 

Manager.5: getrange(update(LastReportLGVT, ipname, igvtl)) 
= range(Igvtl, getrange(LastReportLGVT)) 

was applied to the conjecture. The command issued by the user is 

rewrite conjecture with Manager.5 

2. After analyzing the conjecture, two range cases were found - either the 
number of logical processes is equal to 0 or greater than 0. Hence the following 
command was used to continue using a proof by cases: 



419 

resume by cases getrange(LastReportLGVT) = empty 

The prover continues by attempting to prove a conjecture representing each 
case. A third obligation, proving the two cases cover all possibilities, is dis- 
charged automatically by the prover. 

3. Next, the proof continues by implication using the following LP command: 

resume by =~ 

4. Finally another proof by cases is attempted. This time the proof is generated 
for the case when lgvtl is less than the minimum value. The subproof is 
generated by the statement: 

resume by cases 
igvtlc O min_in_range(getrange(LastReportLGVTc)) = 0 
A ~ (lgvtlc = minin_range(getrange(LastReportLGVTc))) 

The final command causes the proof to complete and the original proposition 
becomes a theorem for use in later proofs. Thus, we know that GVT always 
increases if new LGVT values increase. 

Larch Prover instructions for the complete proof have the following form: 

Z Conjecture: 
igvtl ~ min(LastReportLGVT) 

% gvt(sendGVT(Mgr(LastReportLGVT), ipname, Igvtl) 
Z ~ gvt(Mgr(LastReportLGVT) ); 

Proof steps: 

rewrite con with Manager.5 

(get rid of update 

transform getrange into the range ) 

resume by cases 
(Either LPs exist or they don't) 

getrange(LastReportLGVT) = empty) 

resume by 
(Assuming that the input is correct then the result 
is also) 

resume by cases 

(for send time 
lgvtlc O min_in_rauge(getrange(LastReportLGVTc)) = 0 
A ~ (igvtlc = min_inrange(getrange(LastRepcrtLGVTc))) 

5.2 Prov ing  L G V T  Less T h a n  GVT 

The second subproof conjecture is that the LGVT of any state will always be 
greater than or equal to the present GVT. The Larch statement representing 
this hypothesis is: 
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time(systemstatel) > gvt(MGR(systemstatel)) 

After the transformation into the Larch Prover, the following steps guide the 
Larch Prover: 

1. Because the statement has to hold for all possible states of the logical process, 
a proof by induction over states is required. The Larch Prover command to 
a t tempt  a proof by induction is as follows: 

resume by induction on systemstatel 

2. A close examination of the new conjecture shows that  the present set of 
rewrite rules should be enough to prove the conjecture. In order to repeatedly 
apply the rewrite rules, the critical-pairs command is used to apply Knuth- 
Bendix [14] completion over a subset of assertions: 

critical-pairs Model* with Model* 

The result is that  for all LP states, LGVT is greater than or equal to GVT. 
Using this result and properties of work and rollback, it will be shown that  LGVT 
associated with every next state is also greater than GVT. Thus, successive GVT 
values are greater than or equal to old GVT values. 

5.3 P r o v i n g  G V T  P rog re s s  

Progress from one state to another implies that  the GVT of the new state must 
be greater than or equM to the GVT of the old state. Because progress is defined 
on the state of a logical process, logical processes that  make progress guarantee 
the growth of the GVT. This is represented by the following Larch conjecture: 

progress (sys temsta te l )  = systemstate2 =r 
gvt(MflR(systemstatel)) < gvt(MGR(systemstate2)) 

Two occurrences cause an LP to change state: (1) normal forward processing 
(or work); or (2) processing straggler messages (or rollback). Recall that  the 
definition of progress indicates when work or rollback applies. In either case, 
progress generates a new state. Using a proof by cases, it is shown that  regardless 
of how the state changes, GVT will either change positively or not at all. The 
steps to aid the Larch Proof Assistant are: 

1. Stating the proof obligation over state transitions allows proof by induction 
over states. This is written as follows: 

resume by induction on systemstatel 

2. A proof by cases is at tempted to show that  in any state the logical process 
can either move forward (work) or receive a straggler message (rolEback). To 
achieve this proof, LP is given the following command: 
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resume by cases straggler(state(systemstatelc, 1pn~ae))  

3. Careful evaluation of the conjecture reveals that existing rewrite rules can 
prove the conjecture directly. However the c r i t i c a l - p a i r s  command needs 
to be applied twice, because it halts after a first partial proof. 

critical-pairs Model* with Model* 

Larch Prover code for the final two proof obligations has the following form: 

Conjecture time(systemstatel) > gvt(MGR(systemstatel)) 
Steps : 
resume by induction on systemstatel 
critical-pairs Model* with Model* 
qed 

After stating the above axiom as a theorem we prove the following. 
Conjecture: progress(systemstatel) = systemstate2 

gvt(MGR(systemstatel)) < gvt(MGR(systemstate2)) 
Steps : 
resume by induction on systemstatel 
resume by cases straggler(state(systemstatelc, Ipstate)) 
critical-pairs Model* with Model* 
critical-pairs Model* with Model* 
qed 

This completes the proof of the desired conjecture. Specifically that GVT mono- 
tonically increases over a set of simulation states. Because GVT monotonically 
increases and represents a floor for LGVT, discarding LP state information prior 
to GVT is a legitimate and correct fossil collection algorithm. 

6 Limitations and Assumptions 

6.1 Per fec t  C o m m u n i c a t i o n  

This model specifies a pGVT algorithm under the assumption that message 
passing between the GVT manager and the logical processes is a single, perfect 
message. The actual algorithm specifies a handshaking protocol implemented 
using acknowledgment messages. The current specification does not model the 
acknowledgment process. The assumption is made that when a logical process or 
the GVT manager sends a message to another logical process or GVT manager 
the sender waits until an acknowIedgment is received. 

6.2 S imula t ion  Progress  

It should be noted that successive values of GVT are guaranteed to be greater 
than or equal to the previous GVT value. There is no guarantee that GVT 
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ever increases. It is possible for a simulation to maintain a single GVT value 
indefinitely. Showing that GVT always increases is a desirable result, but it is 
impossible without knowing the internal details of the LPs. It can be concluded 
that if all LPs' LGVT values increase, then GVT will increase. Thus, if LPs 
make progress, the overall system will make progress. 

7 C o n c l u s i o n s  

Parallel processing promises to deliver performance improvement needed for 
large modeling efforts using discrete event simulation. However, this promise 
requires solutions of distributed synchronization that can be difficult to deliver. 
This is especially true with optimistic synchronization techniques where algo- 
rithm developers must deal with non-repeatable behaviors and transient error 
situations. In such environments traditional testing and path analysis fails and 
the designer must turn to other methods for algorithm design and analysis. 
One possible solution is the application of formal methods for specification and 
proof. From this context, we have pursued the application of formal methods for 
two important subproblerns of a time warp simulator. The first addressed the 
problem of demonstrating correct LP behavior and event commitment [22]. The 
second, described herein, addresses the problem of global time management - -  
specifically the estimation of GVT advancement with the pGVT [7] algorithm. 

In this paper, a formal specification for the pGVT algorithm has been pre- 
sented with an automated formal proof that GVT increases monotonically. Al- 
though the specifications and proof are important results in themselves, this 
activity represents a pragmatic application of formal verification to a realistic 
algorithm. The pGVT algorithm is a commonly used parallel simulation algo- 
rithm and represents much more than a "toy" analysis problem. The specifica- 
tions were written and verified by formal methods practitioners working with 
experts in parallel simulation. 

One gain of this effort was the knowledge that a formal specification of an 
algorithm is not as daunting as it seems and as an end result, the specifiers 
and readers of the proof have a more precise understanding of the algorithm. 
The result of this exercise ultimately led to a clean interface and well structured 
implementation of the algorithm in the WARPED kernel [18]. 

Lastly, the chief final objective of this effort is the de,zelopment for a proof in- 
frastructure to support reasoning about various alternative algorithms for GVT 
estimation. More precisely, we hope to develop a framework for GVT proof that 
will support and simplify the work required by future designers of GVT algo- 
rithms. 
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