
From Testing Theory to Test Driver
Implementation

J a n Peleska and Michael Siegel

JP Software-Consulting* and Christian-Albrechts-Universit~t zu Kiel**

A b s t r a c t . In this article we describe the theoretical foundations for
the VVT-RT test system (Verification, Validation and Test for Reac-
tive Real-Time Systems)which supports automated test generation, test
execution and test evaluation for reactive systems. VVT-RT constructs
and evaluates tests based on formal CSP specifications [6], making use
of their representation as labelled transition systems generated by the
CSP model checker FDR [3]. The present article provides a sound for-
mal basis for the development and verification of high-quality test tools:
Since, due to the high degree of automation offered by VVT-RT, human
interaction becomes superfluous during critical phases of the test pro-
cess, the trustworthiness of the test tool is an issue of great importance.
The VVT-RT system will therefore be formally verified so that it can be
certified for testing safety-critical systems. The present article represents
the start ing point of this verification suite, where the basic strategies
for test generation and test evaluation used by the system are formally
described and verified. VVT-RT has been designed to support automa-
tion of both untimed and real-time tests. The present article describes
the underlying theory for the untimed case. Exploiting these results, the
concepts and high-level algorithms used for the automation of real-time
tests are described in a second report which is currently prepared [14].
At present, VVT-RT is applied for hardware-in-the-loop tests of railway
and tramway control computers.

K e y w o r d s : CSP - - FDR - - may tests - - must tests - - reactive systems
- - refinement - - test evaluation - - test generation

1 I n t r o d u c t i o n

Design, execu t ion and eva lua t ion of t r u s t w o r t h y tes ts for sa fe ty-cr i t i ca l sys t ems
requi re cons iderab le effort and skil l and consume a large pa r t of t o d a y ' s de-
ve lopmen t costs for so f tware-based sys tems . I t has to be expec ted t h a t wi th
conven t iona l techniques , the tes t coverage to be requi red for these sys t ems in
the near fu tu re will become techn ica l ly u n m a n a g e a b l e and lead to u n a c c e p t a b l e
costs. Th i s hypo thes i s is s u p p o r t e d by the growing c omple x i t y of a pp l i c a t i ons

* Goethestrat~e 26, D-24116 Kiel, e-maih jap@informatik.uni-kiel.d400.de
** Inst i tut ffir Informatik und Praktische Mathematik, Preussers t r~se 1-9, 24105 Kiel,

Germany, Emaih mis@informatik.uni-ldel.d400.de

539

and the increasingly strict requirements of certification authorities with respect
to the verification of safety issues. For these reasons methods and tools helping
to automize the test process gather wide interest both in industry and research
communities. "Serious" testing - not just playing around with the system in an
unsystematic way - always has to be based on some kind of specification describ-
ing the desired system behaviour at least for the situations covered by the test
cases under consideration. As a consequence, the problem of test automation is
connected to formal methods in a natural way, because the computer-based de-
sign and evaluation of tests is only possible on the basis of formal specifications
with well-defined semantics.

Just as it is impossible to build theorem provers for the fully mechanized
proof of arbitrary assertions, the general problem of testing against arbitrary
types of specifications cannot be solved in a fully automized way. The situation
is much more encouraging, however, if we specialize on well-defined restricted
classes of systems and test objectives. This strategy is pursued in the present
article, where we will focus on the test of reactive systems.

The idea to apply the theoretical results about testing in process algebras to
practical problems was first presented by Brinksma, with the objective to au-
tomize testing against LOTOS specifications. His concept has been applied for
the automation of OSI conformance tests; see [1] for an overview. Today, testing
against different types of formal specifications has gained wide interest both for
engineers responsible for the quality assurance of safety-critical systems and in
the formal methods community: To name a few examples, Gaudel [4] investigates
testing against algebraic specifications, HSrcher and Mikk in collaboration with
the author [7, 8, 9] focus on the automatic test evaluation against Z specifica-
tions and Miillerburg [11] describes test automation in the field of synchronous
languages.

Rather than presenting a new testing theory for reactive systems, we inves-
tigate how to construct implementable and provably correct test drivers on the
basis of results from testing theory. Our approach is based on the untimed CSP
process algebra and uses Hennessy's testing methodology [5] as starting point.
To apply the concepts in practice, the VVT-RT tool (Validation, Verification and
Test for Reactive Real-Time Systems) offers the following possibilities:

- symbolic execution of CSP specifications
- formal validation and verification of the specification
- automized generation of test cases based on the CSP specification
- automized test execution
- automized test evaluation, including the check of real-time properties
- automized test documentation

Typical applications addressed by our approach are systems with discrete
interfaces and an emphasis on possibly complex control functionality. Examples
are railway control systems, telephone switching systems and network protocols.
At present the VVT-RT system is used for the test of computers controlling com-
ponents of railway interlocking systems. The first application was the automized

540

test of a PLC system controlling signals, traffic lights and train detection sen-
sors for a tramway crossing, documented in [2, 12, 13]. VVT-RT makes use of
the model checker FDR developed by Formal Systems Ltd [3].

This article focuses on theoretic results that are essential for the trustworthy
practical application of our testing approach. Examples, industrial applications
and a summary of the benefits to be expected from such a test automation
concept are described in [16].

The article is structured as follows. In Section 2 we introduce notations and
conventions used in subsequent sections. Section 3 introduces transition graphs
and results from ttennessy's testing theory. Section 4 contains the main results,
where we investigate implementable, minimal test classes and trustworthy test
drivers. The full proofs of the theorems discussed in this paper are contained
in a technical report [15] which may be obtained from the authors. Section 5
contains conclusions.

2 P r e l i m i n a r i e s

2.1 C S P O p e r a t o r s , S e m a n t i c s a n d R e f i n e m e n t

In this section we introduce some notation and conventions used throughout the
paper.

Tests and test drivers will be specified in the process algebraic framework
of Communicating Sequential Processes (CSP) [6]. We use the following set of
CSP operators: STOP (deadlock process), SKIP (terminating process),
-+ (prefixing), [7 (internal choice), ~ (external choice), II (parallel composition
with synchronization on common events), Itl (interleaving operator without syn-
chronization), \ (hiding), and ^(interrupt). Operator (x : {a l , . . . , a~}-+P(x))
abbreviates al--~P(al)[7 . . . ~ an --~ P(an), and Vl~:{a 1 a~}(x--~P(x)) is an
abbreviation for al --+ P(al) n . . . ~ an ~ P(a~). As basic programming opera-
tors we use i f t h e n else, c? (input from channel c) and g~B (guarded com-
mand, g is the guard and B the body).

For the specification of recursive processes we use sets of recursive equations
rather than an explicit H-operator. The alphabet of a process P is denoted by

We use the standard semantics for CSP processes: Traces(P) C ~(P)* (trace
semantics), Fail(P) _ ~(P)* • P ~(P) (failure semantics, P denotes the power
set operator), and Div(P) C c~(P)* (divergences of process P). The elements
s E Traces(P) are the observable traces generated by P. A failure (s, A) E
Fail(P) records the fact that process P may refuse to engage in any action of
set A after having performed trace s. Due to nondeterminism there may be
several A, A' C ~(P) with (s, A) E Fail(P) and (s, A') E Fail(P). The refusals
of a process P are defined by Itef(P) =dr {A I ((>, A) E Fail(P)}, where (>
denotes the empty trace. A divergence s E Div(P) denotes the situation that
process P may diverge after having engaged in trace s. Diverging processes show
completely unpredictable behaviour, denote by CHAOS in CSP.

541

Infinite behaviours are defined as limites of prefix closed sets of finite be-
haviours [6, p. 132]. We use the standard fixpoint semantics for recursive pro-
cesses. The set maxTraces(P) denotes the union of the set of all terminated
behaviours and the set of infinite behaviours of P.

In this paper we consider the following refinement relations:

- trace refinement: P E_T Q iff Traces(Q) c_ Traces(P)
- failures refinement: P EF Q iff Fail(Q) C_ Fail(P)
- failure-divergence refinement: P E_FD Q iff

Fail(Q) C Fail(P) A Div(Q) C_ Ply(P).

For x E (T, F, FD} we define process equivalence P =~ Q by
P E_xQAQ E~P.

For s E Traces(P) P/s denotes the process that behaves like process P after
having engaged in trace s. For arbitrary (finite) sequences s = (al,. . . , an) the
function first(s) returns al and last(s) returns a~. The functions tail(s), front(s)
are defined by s = (first(s))~ail(s) and s = front(s)~(last(s)), where ~ denotes
concatenation on sequences. Function ~ returns the length of a sequence, func-
tion IA projects traces to set A, e.g. (a, b, b, a, c)[{b, c} = (b, b, c). The set [p]0
is defined as [p]0 =d/ {e E (~(P) l (3u e Traces(P/s) �9 head(u) = e)}. Predi-
cate a in (a l , . . . , a~) is true iff there exists i e { 1 , . . . , n} with a = a,. Relation
s _~ t denotes the prefix relation on sequences. Operator \ stands for minus on
sets.

2 . 2 A l t e r n a t i v e R e f i n e m e n t D e f i n i t i o n s

The notion of correctness of an implementation IMP w.r.t, a specification SPEC
is given by the different refinement relations introduced above, depending on the
semantics which is currently investigated. However, in this paper we will slightly
re-phrase these refinement notions in order to emphasize their relationship to
the test classes introduced by Hennessy. (We assume without loss of generality
that IMP and SPEC use the same set of visible interface events, while their
internal hidden events may differ).

1. Sa fe ty : The implementation only generates traces alowed by the specifica-
tion. This corresponds to the notion of trace refinement:

SPEC E_s IMP iff Traces(IMP) C Traces(SPEC) 3

2. R e q u i r e m e n t s C o v e r a g e : After having engaged in trace s, the implemen-
tat ion never refuses a service which is guaranteed by the specification.

SPEC E_c IMP iff
(V s: Traces(SPEC)n Traces(IMP) �9

t~ef(IMP/s) C_ R~ef(SPEC/s))

3 We have introduced a new subscript for trace to indicate the correspondence to the
safety notion

542

Since () E Traces(SPEC) n Traces(IMP), this implies that a trace which
can never be refused by SPEC will also be guaranteed by IMP.

3. Non-Divergence: The implementation may only diverge after engaging in
trace s if also the specification diverges after s.

SPEC E-D IMP iff Div(IMP) C_ Div(SPEC)

4. Robus tness : An implementation is robust w.r.t, a specification if every
traces that can be performed by the specification is also a valid trace of the
implementation.

SPEC E-~ IMP iff Traces(SPEC) C Traces(IMP)

The notion of robustness, introduced in [1], can also be expressed as IMP GT
SPEC. This relation has not received much attention in the literature about
CSP refinement, though it is a common requirement in practical applications:
For example, robustness covers the situeition where the specification contains
nondeterminism for exception handling. Failures refinement only requires that
every guaranteed behaviour of the specification will also be performed by the
implementation. Robustness additionally requires that exceptional behaviours
of the specification are also covered by the implementation.

The advantage of the new refinement notions is the possibility to give ele-
gant alternative characterizations of these notions by means of mutually distinct
test classes. Before introducing these test classe we state the following obvious
relations between the standard and the new refinement notions.

L e m m a 1.

1. E_s = ET
~. Es n E c = E F
3. Es n Ec n ED=E~D

[]

Furthermore we define EFDI~=dI ES n E c n ED n E_n (failure-divergence
refinement plus robustness) .

3 T r a n s i t i o n G r a p h s a n d T e s t C l a s s e s

In this section we describe an implementable encoding of the semantics of CSP
processes by means of transition graphs. Afterwards we discuss those results of
Hennessy's testing theory [5] that are relevant for the development of imple-
mentable test drivers.

543

3.1 T r a n s i t i o n G r a p h s

Automated test generation will be performed by mechanized analysis of the spec-
ification, which results in a choice of traces and possible continuations to be
exercised as test cases on the target system. Automated test evaluation will be
performed by observing traces and their continuations in the target system and
checking mechanically, if these behaviours are correct with respect to the spec-
ification. Obviously, these tasks are fundamentally connected to the problem
of mechanized simulation of the specification which is in general based on the
following theorem [5, p. 94].

T h e o r e m 2 (N o r m a l F o r m T h e o r e m) . Let P be a CSP process, interpreted
in the failures-divergence model.

1. If () ~ Div(P), then P =FD n R:R~/(p)(x : ([p]0 \ R) --+ P/{x})
2. I f Div(P) -- 0, then P / s =EL) P(s) with

P(s) =dI n R:n~f(p/~)(x : ([P/s] ~ \ R)--+ P(s"(x)))
3. For arbitrary P, P E_F D P(()) holds.

[]

This theorem shows how CSP specifications can be symbolically executed:
choose a vMid refusal set R of P/s at random, engage into any one of the remain-
ing events e E [P/s]~ and continue in state PisS(e). Given an implementation
of a simulator, the problem of test generation for a given specification can be
related to the task of finding executions performable by the simulator. Test eval-
uation can be performed by determining whether an execution of the real system
is also a possible execution of the simulator.

With these general ideas in mind, the first problem to solve is how to re-
trieve the semantic representation - i. e., the failures and divergences - of a
specification written in CSP syntax. This has been solved by Formal Systems
Ltd and implemented in the FDR system [3], for the subset of CSP specifications
satisfying:

- The specification only uses a finite alphabet. As a consequence, each channel
admits only a finite range of values.

- Each sequential process which is part of the full specification can be modelled
using a finite number of states.

- The CSP syntax is restricted by a separation of operators into two levels:
The lower-level process language describes isolated communicating sequential
processes by means of the operators ---~, 9 , ~, ;, X = F(X). The composite
process language uses the operators II, Itl, ^, \ , f* to construct full systems
out of lower-level processes.

Under these conditions the CSP specification may be represented as a labelled
transition system [10] which can be encoded as a transition graph with only a
finite number of nodes and edges. Basically, the nodes of this directed graph are
constructed from Hennessy's Acceptance Tree representation [5] by identifying

544

semantically equivalent nodes of the tree in a single node of the transition graph.
The edges of the graph are labelled with events, and the edges leaving one node
carry distinct labels. Therefore, since the alphabet is finite, the number of leaving
edges is also finite. A distinguished node represents the equivalence class of the
initial state of the process P. A directed walk through the graph, starting in the
initial state and labelled by the sequence of events (e l , . . . , e~) represents the
trace s = (e l , . . . , en) which may be performed by P. The uniquely determined
node reached by the walk s represents the equivalence class of process state
P/s . The labels of the edges leaving this node in the graph correspond to the
set [P/s] ~ of events that may occur for process P after having engaged in s. The
set of internal states reachable in process P after s is encoded in one node of the
transition graph as the collection of their refusal sets, one for each internal state.
If two directed walks s and u lead to the same node in the transition graph, this
means that P / s = P / u holds in the failures model.

The problem of automatic test evaluation now can be re-phrased as follows: A
test execution results in a trace performed by the implementation. Evaluating the
transition graph, it may be verified whether this execution is correct according
to the specification. The problem of test generation is much more complex:
Theoretically, the transition graph defines exactly the acceptable behaviours
of the implementation. But at least for non-terminating systems, this involves
an infinite number of possible executions. Therefore the problem how to find
relevant test cases and how to decide whether sufficiently many test executions
have been performed on the target system has to be carefully investigated.

3.2 Te s t Classes

Tes t s t o C h a r a c t e r i z e R e f i n e m e n t In this section we recall results of tten-
nessy's testing theory [5] that are relevant for the construction of the test drivers
in Section 4.3.

Hennessy introduced processes U, so-called experimenters, with a(SPEC) =
a (U) \ {w}, where w is a specific event denoting successful execution of the
experiment which consists of U running in parallel with the process to be tested 4.
Experimenters coincide with our notion of test cases, so we will only use the latter
term. An execution of the test case U for the test of some system P is a trace
s E Traces(P H U). The execution is successful if (w / in s. Depending on U and
P, two satisfaction relations may be distinguished with respect to the outcome
of test executions:

D e f i n i t i o n 3. For a process P and an associated test case U we say

1. P may U ~-d/ (3s : Traces(P [] U) �9 (w / in s)
2. P must U =-d/ (Vs : maxTraces(P [] U) �9 (w / in s)

O

4 In [5] also another local experimenter event '1' has been introduced which enables
the experimenter to control the course of a test execution. However, for the specific
Hennessy test classes referenced in this article, this event is not needed.

545

P may U holds if there exists at least one successful execution of (P H U).
Only if every execution of (P II U) leads to success P must U holds.

Note that in general we cannot construct test cases that indicate failure in
addition to success, because the failure may materialize as a situation where
the test execution is blocked or diverges. Even if only non-diverging processes
are tested we would need a priority concept for transitions. We are currently
elaborating a corresponding theory for reactive real-time systems. Here, expected
events always have to occur within certain time bounds, so failures may be
detected by means of timeouts.

Based on the introduced refinement notions we classify test according to their
capability to detect certain implementation faults.

D e f i n i t i o n 4 . Let U be a test case.

1. U detects safety failure s iff (V P * P must U ~ s ~ Traces(P))
2. U detects requirements coverage failure (s, A)

iff (V P �9 P must U ~ (s, A) ~ Fail(P))
3. U detects divergence failure s iff (V P �9 P must U ~ s ~ Div(P))
4. U detects robustness failure s iff (V P * P may U ~ s E Traces(P))

[]

A main result of [5] is the definition of test classes which detect exactly the
failures introduced in the previous definition.

D e f i n i t i o n 5 . For a given specification SPEC, let s E a(SPEC)*, a E a(SPEC),
and A C a(SPEC). The class of Hennessy Test Cases is defined by the following
collection of test cases:

1. Safety Tests Us(s, a):

Us(s, a) =dr i f s = ()

t h e n (w --~ SKIP Oa --+ SKIP)
else (w SKIP (head(s) Us(ail(s), a))

2. Requirements Coverage Tests Uc(s, A):

Uc(s, A) =dr i f s = ()
t h e n (a : A --+ w ---* SKIP)

else (w -~ SKIP [t head(s) --~ Uc(tail(s), A))

3. Divergence Tests UD(S):

Uv(s) =dr i f s = ()
t h e n w--~ SKIP
else (w --~ SKIP ~ head(s) -+ Up(tail(s)))

546

4. Robustness Tests Up(s):

Up(s) =all i f s = ()
t h e n w --~ SKIP
else head(s)-~ Up(tail(s))

[]

Definition 5 is motivated by the following lemma:

L e m m a 6.

1. Us(s, a) detects safety failure s~(a).
2. Uc(s, A) detects requirements coverage failure (s, A).
s. y (s) detects divergence failure s.
4. Up(s) detects robustness failure s.

[]

Note that the Hennessy test classes even characterize the associated failure
types: If s ~ (a) ~ Traces(P) then P must Us(s, a) follows. Analogous results
hold for Uc(s, A), Up(s), Up(s). However, we are less interested in this property,
because test cases of practical relevance should be able to detect more than one
failure type during test execution.

In our context s E Div(P) means P/s = CHAOS in the sense of [6], that is,
P / s may both diverge internally (livelock) and produce and refuse arbitrary ex-
terualevents. The tests Up(s) have been designed by Hennessy to detect internal
divergence only. Conversely, the tests Us(s, a) and Uc(s, A) can detect exter-
nal chaotic behaviour but cannot distinguish internal divergence from deadlock.
However, using the three test classes together enables us to distinguish deadlock,
livelock and external chaotic behaviour. Note that P must Us(s, a) also implies
s ~ Div(P), because divergence along s would imply that every continuation of
s, specifically s~(a) would be a trace of P. P must Uc(s, A) implies s ~ Div(P),
because divergence along s implies the possibility to refuse every subset of (~(P)
after s.

Hennessy's results about the relation between testing and refinement can be
re-phrased for our context as follows:

T h e o r e m 7.

1. I f SPEC must Us(s, a) implies IMP must Us(s, a) for all a E ~(SPEC),
s E (~(SPEC)*, then SPEC C s IMP.

2. I f SPEC must Uc(s, A) implies lMP must Uc(s, A) for all s E Traces(SPEC)
and A C ~(SPEC), then SPEC E_c IMP.

3. I f SPEC must UD(S) implies IMP must UD(S) for all s E ~(SPEC)*, then
SPEC E_D IMP.

4. I f SPEC may Up(s) implies IMP may Un(s) for all s E ~(SPEC)*, then
SPEC E_n IMP.

[]

547

If SPEC E_D IMP holds, the four implications of the theorem become equiv-
alences. Theorem 7 shows that only requirements-driven test design is needed:
It is only necessary to execute test cases that will succeed for the specification.
Due to possible nondeterminism in SPEC, IMP and U the properties covered
by Theorem 7 cannot be verified by means of black-box tests alone, because
they require the analysis of every possible execution of S PEC II U and IMP II U.
Therefore a test monitor collecting information about the executions performed
so far is, in general, unavoidable. Note, that this is no disadvantage of the de-
fined classes of tests but inherent in every testing approach that is sensitive to
nondeterminism.

4 Minimal Test Classes and Test Drivers

The previous section summarized the relevant theoretical aspects of testing for
our approach. However, when constructing test drivers one is also confronted
with pragmatical concerns, such as implementability. Moreover, pragmatics in-
clude the definition of minimal test classes to avoid redundancy, characterization
of test strategies that eventually reveal every possible implementation failure,
and last but not least the implementation of such strategies by test drivers that
simultaneously simulate the operational environment of the process to be tested.
These topics will be discussed in this section.

4.1 A d m i s s i b l e Tes t s

First of all we characterize a class of tests that is particularly well-suited for
implementation. These tests satisfy the following requirements: 1) If the test
execution is successful success will be indicated within a bounded number of
events, 2) as test drivers have to know when a test execution has been successfully
completed, these tests perform a termination event after signalling success, 3)
success is signalled at most once during a test execution, and 4) the tests can
be successfully passed (according to the must interpretation) by at least one
process.

This leads to the following definition:

D e f i n i t i o n 8 . An admissible test case for the test against SPEC is a CSP pro-
cess U satisfying

1. (~(U) = (~(SPEC) U {w), w ~ (~(SPEC)
2. U sat S u (s , R) with

Su(~, R) -
(3 n E N * V s E Traces(SPEC) ,, V R E R e f (S P E C / s) �9

E [U/s] ~
w ~ ~ ^ #s < ,~ ^ ~ ((~) i~ s) ^ u / s - (~) = sK•

where n C N is a constant not depending on s or R.

548

3. There exists a process P such that P must U.

[]

The following examples illustrate the intuition standing behind the above
definition by presenting test cases tha t are not admissible.

Example 1. The test case U = a --* S K I P ~ b --~ (w --+ SKIP ~ U) would not be
admissible in the sense of Definition 8, because it is uncertain whether success
will be indicated after event b.
[]

Example 2. The test case U = a --~ w -~ SKIP ~ S T O P would not be admissible
in the sense of Definition 8, because no process can satisfy U as a must- tes t .
[]

Example 3. The test case

u = n.:N U(n)

U(n) = (n > O)&a -+ U(n - 1) ~ (n = 0)&w --4 SKIP

would be well-defined in the infinite traces model of Roscoe and Barret [17], and
P must U holds for process P - a -+ P. Moreover, if success w is possible after
U / s it will never be refused. However, U would not be admissible in the sense
of Definition 8, because no global upper bound exists after that every execution
of (P [l would show success.
[]

L e m m a 9 . The Hennessy tests specified in Definition 5 are admissible in the
sense of Definition 8.
[]

4.2 M i n i m a l T e s t C l a s s e s

When performing a test suite to investigate the correctness properties of a sys-
tem, a crucial objective is to perform a minimal number of test cruses. The
following definition specifies minimal sets of Hennessy test, which are still trust-
worthy in the sense tha t if the implementat ion passes these tests then it is a
refinement of the specification w.r.t, the currently chosen semantics.

D e f i n i t i o n 10. For a given specification SPEC, we define the following collec-
tions of test cases:

1. ~ s (S P E C) = (Us(s, a) I s E T r a c e s (S P E C) - D i v (S P E C) A a ~ [SPEC/s] ~
2. 7 t c (S P E C) = (Ue(s, A) [s ~ Traces(SPEC) - D iv (SPEC) A

A C_ [SPEC/s] ~ A
(V R : R e f (S P E C / s) * A ~: R) A
(V X : P A - {A}* (3 R : R e f (S P E C / s) * X C - R))}

549

3. 7tD(SPEC) = { UD(S) t s E Traces(SPEC) - Div(SPEC) A
(V u : Traees(SPEC) - Div(SPEC) *

s <_ u A [SPEC/u] ~ = ~ ~ s = u)}
4. ~R(SPEC) = { Un(s) I s C Traces(SPEC) A

(V u : Traces(SPEC).
s < u A [SPEC/u] ~ = O ~ s = u)}

U]

The following theorems state that in order to characterize the refinement
notions addressed by Theorem 7, it suffices already to exercise the tests specified
in Definition 10 on the implementat ion. Compared to the full set of ttennessy
tests, defined for all sequences s E a (P)* of events and sets A C a (P) , this
represents a considerable reduction of the test cases to be considered.

T h e o r e m 11. If

7-I(SPEC) =d] 7-ls(SPEC) U :Hc(SPEC) U 7-~D(SPEC) U :HR(SPEC)

for a given specification SPEC, then SPEC must U holds for all U E Tl(SPEC).
[]

T h e o r e m 12. Given SPEC and the corresponding r classes H~(SPEC), x E
{S, C, D, R}, the following properties hold:

1. I f lMP must U for all U E ?-ls(SPEC) , then SPEC E s IMP.
2. I f IMP musf U for all U E ?-lc(SPEC), then SPEC E c IMP.
3. I f lMPmust U for all U C ~D(SPEC), then SPEC U_D IMP.
4. I f IMP may U for all U E ~R(SPEC), then SPEC ~R IMP.

[]

This theorem shows that for terminat ing systems, refinement properties can
be verified by performing a finite number of tests. (Note, that all processes have
only finite internal nondeterminism.)

The definitions of ?-/s, 7-/c, ?-/D indicate further that it is not necessary to
perform any tests for traces s after which SPEC diverges ~, since in such a case
SPEC/s will allow chaotic behaviour which does not restrict the admissible
behaviours of IMP/s. For the test of safety properties, the definition of ?-/s
states that we only have to use those test cases Us(s, a), where s is a trace of
SPEC, but SPEC/s does not admit event a. For the requirements coverage tests
Uc(s, A), ?iv indicates that only the smallest sets A, such tha t SPEC/s can
never refuse A completely, have to be tested. As a consequence, it is not necessary
to exercise any tests Uc(s, A), if SPEC/s may refuse the full alphabet.

The definitions of 7-/D and ~ n are mot ivated by the fact that for the test of
divergence and robustness properties we only have to analyze maximal traces:

Of course, it is questionable if specifications allowing divergence will be used in
practice at all.

550

I f SPEC terminates or blocks after a trace u, the tests corresponding to proper
prefixes of u are covered by UD(U) and UR(u), so only the latter are contained
in T/D and T/R respectively.

The next theorem investigates minimali ty of the test classes T/s and T/c
defined above.

T h e o r e m l 3 . Given SPEC and the corresponding test classes 7~s,T/c, the fol-
lowing properties hold:

1. I f T~ C T/s there exists a process P satisfying P must U for all U E T~ but
not refining SPEC in the trace model.

2. I f T~ C T/c there exists a process P satisfying P must U for all U E T/s UT/
but not refining SPEC w.r.t, requirements coverage.

3. If Uc(s, A) E T/c and B C A then -~ (SPEC must Uc(s, B)).

[]

Theorem 13 shows tha t T/s and T /c are indeed minimal: I f one test U(s, a)
is removed from T/s, a process with safety failure s~(a) could be constructed, for
which all the remaining tests would succeed. Removing a test Uc(s, A) from T/c
would admit processes P satisfying the remaining tests without refining SPEC
in the failures model. Moreover, the set A cannot be reduced in Uc(s, A) in 7-/c,
since otherwise SPEC would no longer pass this test.

The test collections "~D and T/R, however, cannot be defined as minimal sets,
as soon as SPEC describes a non-terminat ing system: If s E maxTraces(SPEC)
is an infinite computa t ion of SPEC, T/D and T/R must contain infinitely many
tests associated with prefixes sl < s~ < s3 < . . . of s, and each infinite subset
of these tests would suffice to verify correct behaviour along s. At least we can
state that any T/~ C T/D satisfying

(V u : Traces(SPEC) - Dw(SPEC) * B s: T/~ D * u ~ s)

is sufficient to detect divergence failures against SPEC and any 7_/o C 7/R

satisfying

(V u: Traces(SPEC) - Div(SPEC) * 3 s: T/o . u ~ s)

is sufficient to detect robustness failures.

4.3 T e s t D r i v e r s

T h e C o n c e p t o f T e s t D r i v e r s Test Drivers are hardware and /or software
devices controlling the executions of test cases for a target system. To formalize
this notion, recall tha t a context in CSP is a te rm C(X) with a free identifier
X. Apar t f rom the free identifier X, C(X) may contain other CSP processes as

parameters .

551

D e f i n i t i o n 1 4 . A Test Driver for the test against SPEC is a context :D(X) using
admissible test cases Ui satisfying c~(SPEC) = a(Ui) \ {w} as parameters.
[]

We will focus on test drivers of the form

:D(X) = (i := 0); * (Ui N XA(w ~ monitor?next
--. (if next t h e n i :-- i + 1; SKIP else SKIP)));

with admissible test cases Ui. A test driver of this type will execute the test cases
in a certain order U1, U2,.. . ; one test case at a time and with only one copy of
the target system X = IMP running. As soon as a test case signals success w,
the execution will be interrupted. An input monitor?next will be required from
a process monitoring the test coverage achieved so far with the actual test Ui ~.
If the monitor signals next = true, the next test case Ui+l will be performed,
otherwise Ui will be repeated. If Ui is a may-test, next is always set to true.

The main criterion that test drivers have to satisfy is given in the next
definition.

D e f i n i t i o n l b . Let 7)(X) be a test driver for the test against SPEC, perform-
ing test cases of a collection/4 in the order U1, [72, U 3 , Let E E { E__T , __F
, E FD, ___R }. Then 7)(X) is called trustworthy for E -test against SPEC, iff the
following conditions hold:

1. U contains a subset/4 ~ which characterizes _E-refinement against SPEC.
2. For every safety-, requirements coverage-, divergence- or robustness-failure

violating _ , there exists an n E N such that Un E / l E can detect this failure
in the sense of Definition 4.

[]

Definition 15 covers the intuitive understanding of trustworthiness in a formal
way: whenever a fault may occur for IMP, this can be uncovered by a test case
which is guaranteed to be chosen by the driver after having selected a finite
number of other test cases.

T h e o r e m 16.

O(X) = (i := 0); * (U, II XA(w ~ monitor?next
--+ (if next t h e n i :-- i + 1; SKIP else SKIP)));

applying the tests U C 7-l according to Definition 10, ordered by the length of the
defining traces, is trustworthy for E_FOR-refinement.
[]

Analogous results hold for the other refinement notions E_s, E c , _ER, ED , _EF
E__FD .

s The implementation of test monitors is not addressed in this paper.

552

T e s t D r i v e r s f o r R e a c t i v e S y s t e m s The testing methodology presented so
far will now be specialized on the development of test drivers for the automated
test of reactive systems.

In the context of reactive systems it is useful to distinguish between the target
system and its operational environment in an explicit way, when investigating
properties of a specification SPEC and implementation IMP. The very paradigm
of reactive systems is to interact continuously with their environment. In many
applications certain hypotheses are made about the environment behaviour. This
means that the target system is not expected to act properly in every context.
Indeed, the objective of the test suite is to ensure the correct behaviour of
the target system when running in an operational environment satisfying these
hypotheses. Therefore test drivers have to test the target system behaviour while
simultaneously simulating the operational environment.

To formalize the notion of an operational environment we consider expres-
sions of the type

SPEC = E(ASYS) \ (a(E(ASYS)) - I)

with the following interpretation: E(X) is a context and A S Y S is the abstract
specification of the target system to be developed. The processes appearing a~
parameters in E represent the operational environment. The correctness of a
reactive system implementation will only be decided with respect to a subset
I of interface events. Therefore the specification consists of E(ASYS) with all
events apart from I concealed. The implementation can be described by the term

IMP = E(SYS) \ (a(E(SYS)) - I)

where SYS is the target system plugged into environment s It is natural to
require that I C_ a(E(ASYS)) n a(E(SYS)).

In many applications, the configuration of a reactive system and its environ-
ment will be appropriately described by the following definition:

D e f i n i t i o n 1 7 . A standard configuration (E, ASYS, SYS, I) (for reactive sys-
tems) consists of CSP processes E, ASYS, SYS and a set I of events such
that I = a (E) N a(ASYS) = a(E) A a(SYS). Context Eo(X) = (EIIX) is
called the environment. SPEC = Eo(ASYS) \ (a(Eo(ASYS)) - I) is called the
specification, and IMP = Eo(SYS) \ (a(Eo(SYS)) - I) the implementation. For
E_ e { E_T, __.F , E_FD, E_FDR, E__a, ___a , _UD }, a standard configuration is called
E_ -correct, if SPEC E IMP holds.
[]

In the following we use the abbreviation P1 = P \ (a(P) \ I). Note that
in a s tandard configuration (EII ASYS)[= (Ex I] ASYSI) and (EII SYS)I =
(Ex [I SYSI) holds, because the hiding operator distributes through tl, if none
of the interface events shared between the parallel components are concealed [6,
p. 112].

553

4.4 A T r u s t w o r t h y ___FD-Test D r i v e r for R e a c t i v e S y s t e m s

Now we are prepared to state the main result of this article, an implementable
test driver that is trustworthy for ~FD-refinement. The test driver uses test
cases derived from the Hennessy Test Cases introduced in Definition 10 and si-
multaneously simulates the operational environment of the process to be tested.
The properties of these test cases are formally expressed by Theorem 18. Their
main advantage when compared to the Hennessy Test Cases is that they allow to
investigate safety, requirements coverage and non-divergence at the same time,
while the Hennessy Cases require to perform different test suites for each correct-
ness feature. Therefore our test cases are more efficient in practical applications.

T h e o r e m 18. Let (E, ASYS, SYS, I) be a standard configuration of a reactive
system. Define a collection H = { U(n) I 0 <_ n} of test cases by

U(n) = U(n, ())

U(n, s) = (e : ([Ez/s] ~ \ [ASYS• ~ --+ ~ --+ SKIP)

D
(if # s < n
t h e n [q R:R~I(E~/s) U(n, s, [Ei /s] ~ \ R)
else (if A(s) - 0

t h e n (w ~ SKIP)
else q R:R~f(E+/s),A:A(s) U(n, s, A \ R)))

U(n, s, M) = (M = O),~(w -+ SKIP)

(e : M - + (if e E [ASYS1/s] ~
t h e n (if # s = n

t h e n (w ---+ SKIP) else U(n, s~(e)))
else (t -+SKIP)))

where

A(s) = {A: P I I A c_ [(EII ASYS)• ~ A
(VR: Ref((EIIASYS)• �9 A ~= R) A
(VX : P A - {A} ~ (3 R : Ref((Ell A S Y S) I / s) ~ X C_ R))}

Then

1. If SYSx must U (n) for all test eases in U, then (E II ASZS)~ ~FD (E tl sYS)~
follows.

2. I f (E [I ASYS) I EFD (E [1 SYS)z and Div(SYS) = 0 then SYSI must U(n)
for all test cases in H.

3. I f Div(ASYS) - 0 then ASYSI must U(n) for all test cases in U.
4. For all n E N, test U(u) is admissible.

[]

554

Each test case U(n) explores the behaviour of the target system for traces
s of length # s < n. The basic idea of the structure of U(n) is to simulate the
environment Ef with respect to traces and refusals, in parallel with a combi-
nation of test cases Us(s, a) and Uc(s,A). U(n, s) represents the state of a
test execution where trace s has already been successfully performed. At each
execution step, U(n, s) will detect any event e E ([Ei/s] ~ \ [ASYSI/s]~ which
is acceptable according to the environment but corresponds to a failure of the
target system SYS. Such a safety failure will be indicated by a special event t, if
the target system does not diverge before indication becomes possible. Note that
the first alternative (e : ([Ez/s] ~ \ [ASYSz/s] ~ ~ t --+ SKIP) in the definition of
U(n, s) is redundant, since a safety failure s~(a) would also be detected by the
tests U(n), n > # s in the last branch of a process U(n, s, M) satisfying a E M.
However, for practical reasons it is desirable to detect safety violations as soon as
possible, therefore U(n) never refuse a safety failure which might be accepted by
the environment E in the actual state of the test execution. As long as # s < n,
U(n, s) will behave as Ei/s with respect to the refusal of events. For # s = n,
U(n, s) will only admit events contained in a minimal acceptance set A E A(s),
so that U(n) can detect requirement coverage failures of SYS occurring after
traces of length n, when running in environment E. The nondeterministic N-
operator used in the definition of U(n, s) shows where internal decisions with
respect to the control of the test execution may be taken: At each execution step
U(n, s), the refusals R or the sets A may be selected according to a test coverage
strategy implemented in the test driver. Since there are many possibilities for
suitable strategies, these are hidden in the definition of U(n). Any strategy cov-
ering all possible executions of U(n) is valid. Using LTS representations for the
CSP specifications of EI and ASYSI, test U(n) is implementable in a straight
forward way: U(n) is determined by the traces and refusals of E• and ASYS~;
and these are contained in the corresponding LTS representations.

Using the results of Theorem 16 and Theorem 18, now we can state that test
drivers using the test eases U(n) have the desired correctness properties:

T h e o r e m l 9 . For a given standard configuration (E, ASYS, SYS, I) of a re-
active system, let the associated tests U(n) be defined as above. Then the test
driver

~ (X) = (n := 0); * (V(n) II X^(w ~ monitor?next -+
(i f next t h e n i := i + 1; SKIP else SKIP)));

is trustworthy for E_FD -test.
[]

5 C o n c l u s i o n

This article focused on the development of test drivers performing automized
generation, execution and evaluation of tests for reactive systems against CSP
specifications. Given a correctness relation between specifications and implemen-
tations, a test driver should be capable of

555

- generating test cases for every possible correctness violation,
- exercising test cases on the target system, at the same t ime simulating proper

environment behaviour,
- detecting every violation of the correctness requirements during test execu-

tion.

To obtain test drivers which are provably correct with respect to these ol~-
jectives, we anMyzed Hennessy's testing theory in the framework of untimed
CSP. Hennessy's test classes are suitable for the detection of safety failures, in-
sufficient requirements coverage, divergence failures and insufficient robustness
in an implementa t ion and characterize the corresponding refinement notions.
As a result of this analysis we determined minimal subsets of Hennessy's test
classes tha t are still sufficient for the detection of safety failures and insufficient
requirements coverage. Furthermore we presented the top-level specification of a
test driver as implemented in the VVT-RT system. It was demonstrated that a
test driver implementing this specification possesses the three capabilities listed
above, with respect to testing safety and requirements coverage.

The work presented in this article reflects a "building block" of a joint enter-
prise of ELPRO LET GmbH, :]P Software-Consulting, Bremen University and
Kiel University in the field of test au tomat ion for reactive real-t ime systems. An
overview of these activities is given in [16].

References

1. E. Brinksma: A theory for the derivation of tests. In P. H. J. van Eijk, C. A. Vissers
and M. Diaz (Eds.): The Formal Description Technique LOTOS. Elsevire Science
Publishers B. V. (North-Holland), (1989), 235-247.

2. ELPRO LET GmbH: Programmablau]plan - Bahniibergang. ELPRO LET GmbH
(1994).

3. Formal Systems Ltd.: Failures Divergence Refinement. User Manual and Tutorial
Version 1.4. Formal Systems (Europe) Ltd (1994).

4. M.-C. Gaudel: Testing can be formal, too. In P. D. Mosses, M. Nielsen and
M. I. Schwartzbach (Eds.): Proceedings of TAPSOFT '95: Theory and Practice
of Software Development. Aarhus, Denmark, May 1995, Springer (1995).

5. M. C. Hennessy: Algebraic Theory of Processes. MIT Press (1988).
6. C.A.R. Hoare. Communicating sequentialprocesses. Prentice-Half International,

Englewood Cliffs NJ (1985).
7. H. M. HSrcher and J. Peleska: The Role of Formal Specifications in Software Test.

Tutorial, held at the FME '94.
8. H. M. H5rcher: Improving Software Tests using Z Specifications. To appear in

J. P. Bowen and M. G. Hinchey (Eds.): ZUM '95: 9th International Conference
of Z Users, LNCS, Springer (1995).

9. E. Mikk: Compilation of Z Specifications into C for Automatic Test Result Eval-
uation. To appear in J. P. Bowen and M. G. Hinchey (Eds.): ZUM '95: 9th In-
ternational Conference of Z Users, LNCS, Springer (1995).

10. R. Milner: Communication and Concurrency. Prentice-Halt International, Engle-
wood Cliffs NJ (1989).

556

11. M. Miillerburg: Systematic Testing: a Means for Validating Reactive Systems.
In EuroSTAR'94: Proceedings of the s European Intern. Conf. on Software
Testing, Analysis~Review. British Computer Society, (1994).

12. J. Peleska: Bahniibergangssteuerung Straflenbahn -- ELPRO LET GmbH: Prlif-
spezifikation fiir forraale Verifikation und automatisierte Testdurehfiihrung. JP
Software-Consulting (1994).

13. J. Peleska: Bahniibergangssteuerung Straflenbahn - - ELPRO LET GmbH: Sicher-
heitsspezifikation und BUE-Spezifikation. JP Software-Consulting (1994).

14. J. Peleska: Trustworthy Tests for Reactive Systems - - Automation of Real- Time
Testing. In preparation, JP Software-Consulting (1995).

15. J. Peleska and M. Siegel: From Testing Theory to Test Driver Implementation.
Technical Report, JP Software-Consulting (1995).

16. J. Peleska: Test Automation for Safety-Critical Systems: Industrial Application
and Future Developments. To appear in Proceedings of the Formal Methods Europe
Conference, FME '96., LNCS, Springer (1996).

17. A. W. Roscoe and G. Barret: Unbounded Nondeterminism in CSP. In MFPS '89,
volume LNCS 298, Springer-Verlag, (1989).

