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Abst rac t .  We examine a generalization of the concept of Feistel net- 
works, which we call Unbalanced Feistel Networks (UFNs). Like conven- 
tional Feistel networks, UFNs consist of a series of rounds in which one 
part of the block operates on the rest of the block. However, in a UFN 
the two parts need not be of equal size. Removing this limitation on 
Feistel networks has interesting implications for designing ciphers secure 
against linear and differential attacks. We describe UFNs and a termi- 
nology for discussing their properties, present and analyze some UFN 
constructions, and make some initial observations about their security. 

It is notable that almost all the proposed ciphers that are based on Feistel 
networks follow the same design construction: half the bits operate on the other 
half. There is no inherent reason that this should be so; as we will demonstrate, 
it is possible to design Feistel networks across a much wider, richer design space. 
In this paper, we examine the nature of the structure of Feistel-based ciphers. 
In particular, we examine the consequences of "unbalanced" structures in which 
different numbers of bits are used as input and output to the F-function in each 
round. 

This paper is organized as follows. Section 2 reviews Feistel networks. Section 
3 provides a taxonomy of Feistel networks, and places some previous Feistel- 
based designs within this taxonomy. Section 3 gives some general analysis of 
unbalanced Feistel networks in relation to linear and differential cryptanalysis. 
Section 4 suggests some open problems and areas for future study. An appendix 
shows a preliminary analysis of a specific block-cipher design based on the general 
structure of Blowfish [Sch94b]. 

1 F e i s t e l  N e t w o r k s  

A Feistel network is a general method of transforming any function (usually 
called an F-function) into a permutation. It was invented by Horst Feistel in 
his design of Lucifer [Fei73], and has been used in many block cipher designs 
since then: DES [NBS77], FEAL [SM88], GOST [GOST89], Khufu and Khafre 
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[Mer91], LOKI [BPS93], CAST [AT93], Blowfish [Sch94b], [Sch94a], and RC5 
[Riv95]. 

The fundamental building block of a Feistel network is the F-function: a key- 
dependent mapping of an input string onto an output string. An F-function is 
always nonlinear and almost always irreversible. 

De f in i t i on  1. The F-function of a conventional Feistel network can be expressed 
a s :  

F : {0, 1} "/2 • {0, 1} k --+ {0, 1} "/2 

In this definition, n is the size of the block. F is a function taking n/2  bits 
and k bits of a key as input, and producing an output of length n/2 bits. 

De f in i t i on2 .  One round of a conventional Feistel network (also called a bal- 
anced Feistel network in this paper) is: 

X~+x = (Fk, (msb~/2 (Xl)) ( ~  lsb,~/2(Xi))llmsb,,/2(XO 

Here, Xi is the input to the round, X~+l is the output of the round, ki is 
the key, n is the block length, lsbu(x) and msb,,(x) select the least significant 
and most significant u bits of x respectively, t~) indicates modulo-2 addition, 
and II indicates concatenation. In each round, msb~/~(X~) operates, via a key- 
dependent non-linear F-function on lsb=/2(X 0. This is often referred to as the 
"left half" operating on the "right half." 

De f in i t i on3 .  A balanced Feistel network consists of j rounds, where: 

= (Fk,  

The keys ki are the round keys, which typically are output from a key schedule 
algorithm on input a key K.  

The security of a Feistel network is based on the iteration of the F-function. 
The number of rounds required for resistance to a given attack is dependent 
on the properties of the function. While  there has been considerable research 
in determining what sorts of F-functions yield secure Feistel networks [Nyb91], 
[Nyb93], [OCo94a], [OCo94b], [OCo94c], [Knu94a], [Knu94b], [Nyb94], [DGV94], 
INK95], little has been written about the underlying Feistel structure. The aim 
of our research is to generalize Feistel networks and show the implications of 
different structures for block-cipher design. 

2 A T a x o n o m y  o f  F e i s t e l  N e t w o r k s  

One of the reasons for a lack of research in the underlying structure of Feistel 
networks is a lack of language to describe them. Here we present a taxonomy of 
generalized Feistel networks. 
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2.1 Unbalanced Feistel  Networks 

An Unbalanced Feistel Network (UFN) is a Feistel network where the "left half" 
and the "right half" are not of equal size. 

Definit ion4.  One round of a s-on-t, or s:t, UFN is: 1 

X,+, = (F (.,sb. (X,), k,) 0 lsbt (X,))[["sb~ (X,) 

The msb , (Xi )  is called the source block. The lsbt(Xi) is called the target block. 

UFNs where s > t are called source heavy, and UFNs where s < t are called 
target heavy. A sub-block, b, is the gcd of s, t, and n. The F-function is a collection 
of 2 k mappings of the s-bit numbers onto the t-bit numbers,  or s/b sub-blocks 
onto t/b sub-blocks. 

2.2 Homogenous  and Heterogenous  U F N s  

Although in most  Feistel ciphers, the F-function is altered only by the round keys 
from round to round, there is no reason why this must  be the case. In Merkle's 
Khufu[Mergl], for example, the F-function changes (the S-boxes change) once 
per "octet." In the hash functions of the MD4 family, the bitwise combining 
operation used in the F-function is changed several times during the operation 
of the compression function[Rivgl]. 

Definit ion5.  A UFN is homogenous when the F-function function is identical 
in each round, except for the round keys. A UFN is heterogeneous when the 
F-function for different rounds is not always identical except for the round keys. 

The advantage of a heterogenous UFN is that,  since its internal properties 
change from round to round, it may be much more difficult to find any kind of 
characteristic that  propogates well through all of the different kinds of round that  
appear in the cipher. However, implementing heterogenous UFNs and analyzing 
them is often much more complicated. Hardware implementat ions are generally 
cheaper, and software implementat ions smaller and easier to correctly code, with 
a homogenous UFN. 

Except where otherwise stated, all formulae and discussion in the remainder 
of this paper  refer only to homogenous UFNs. 

2.3 Incomplete  and Inconsistent  U F N s  

It  is possible that  not all bits in a block are used in every round of a UFN. 

i This definition becomes more complicated for incomplete UFN constructions, as is 
discussed below. 
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D e f i n i t i o n 6 .  A UFN is complete when s + t = n, that  is, when in each round 
every bit in the block is either pa r t  of the source block or par t  of the target block. 
A UFN is incomplete when s + t < n. In an incomplete UFN, the n - s - t = z 
bits that  are not par t  of the source block or part  of the target  block are called 
the null block. 

It  is also possible that  the UFN structure changes from round to round or 
from cycle to cycle. 

D e f i n i t i o n T .  A UFN is consistent when s, t, z, and n remain constant for the 
entire cipher. A UFN in which the sizes of the source and target  block change 
during encryption is called inconsistent. 

Note that  an inconsistent UFN is always heterogenous, but  it is possible for 
a heterogenous UFN to be consistent. 

Unless otherwise noted, discussion and formulae in this paper  refer only to 
complete, consistent, homogenous UFN structures. Note that  many  of the con- 
cepts discussed below (such as rates of confusion and diffusion, cycle length, etc.) 
are made significantly more complex by the use of inconsistent structures. 

2.4 G e n e r a l i z e d  U F N s  

The most  general case of a Feistel network simply requires that  one part  of the 
block being encrypted controls the encryption of another part  of the block. For 
example, given some n-bit  keyed reversible function, Ek(X), we can define a 
block cipher whose rounds look like: 

x +l = Ek, (9 

Further, we need not leave the source block alone in each round-we may 
perform some unkeyed reversible function on it, as well. Additionally, we can 
apply some nonreversible function on the source block to derive the key for the 
keyed reversible function. 

For example, the hash funtions in the MD4 family use addition modulo 232 
as their keyed reversible function. A DES variant replaces the XOR operation 
with Latin squares [CDN95]. The only restriction is that  the combining function 
must be reversible to allow decryption. Also, in SHA, 32 bits undergo an internal 
circular shift during the overall block shift. This is a simple reversible function. 

D e f i n i t i o n 8 .  One round of a s:t n-bit Generalized Unbalanced Feistel Network 
(GUFN) is defined as: 

Xi+I = n(G(ki, msb, (Xi), lsbt (Xi)), msb, (Xi)) 

where R is some reversible function, and G is some reversible function in the 
sense that  there is a function H such that  for all K,  Y, Z: 

H(K, Y, G(K, 3I, Z) = Z 

If  G = H,  then the GUFN is called symmetric. 
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Unless otherwise stated, the discussion and formulae in this paper refer to 
conventional UFNs, rather than the more complicated GUFNs. 

2.5 Cycles and Rotat ions  

D e f i n i t i o n 9 .  A cycle is the number of rounds necessary for each bit in the 
block to have been part of both the source and target blocks at least once. A 
rotation is the number of rounds needed for each bit in the block to return to 
its starting position. 

L e l n m a l 0 .  A cycle, C, of a s:t UFN is 

n 

C = [min(s, t) ]" 

L e m m a l l .  A rotation, G, of an s:t UFN is 

n 
C T - -  - -  

gcd(s, t)" 

D e f i n i t i o n 1 2 .  A UFN is called even if C = G; otherwise it is called odd. A 
UFN is prime when G = n; i.e. when s, t, and n are relatively prime. 

Most of the analyses in this paper focus on even UFNs. Note that a balanced 
Feistel cipher such as DES or Blowfish can be seen as a special case of even 
complete UFN--one  with G = C = 2. 

2.6 T h e  R a t e  o f  C o n f u s i o n  

An observer who knows some information about Xi, but not round key hi, should 
wind up knowing less about Xi+l. The process by which this observer loses 
knowledge of the sequence of Xi values is called confusion [Sha49]. 

Given information about Xi, there should be some Xi+t about which the ob- 
server who knows nothing about the round keys has no knowledge--such values 
should be indistinguishable to this observer from uniformly distributed, random 
n-bit strings. 

In a Feistel network, bit j of the block can be obscured only when bit j 
appears in the target block of a given round. This means that the number of 
times that bit j can be obscured per cycle can be no larger than the number of 
times per cycle that bit j appears in the source block. This is called the rate of 
confusion, denoted as Re. 

D e f i n i t i o n  13. The rate of confusion of a consistent UFN 2 is the minimum 
number of times per cycle that any bit can occur in the target block. 

2 Note that the rate of confusion of an inconsistent UFN may not be the same for 
different cycles. 
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L e m m a  14. For a s:t UFN, the rate of confusion, 

t 
Re < =  - 

n 

1 rounds for an observer to lose all Note that  it can never take fewer than 
information about the block in a UFN: 

T h e  r a t e  o f  c o n f u s i o n  a n d  l i n e a r  c r y p t a n a l y s i s  An increase in Re tends 
to increase resistance to linear cryptanalysis, when all other variables are held 
constant. While we're not yet able to prove this for the general case, we have a 
result for even complete UFNs [Wag95]. 

L e m m a  15. A complete UFN is even if and only if min(s, t)  divides n. 

D e f i n i t i o n l 6 .  An active round in a linear at tack is a round in which there is 
some linear approximation in the  target block. 3 

T h e o r e m  17. I f  an even complete UFN has C rounds per cycle, then the frac- 
tion of rounds per cycle that are active in a linear attack is at least Re = t /n .  

This follows from the fact that  Re measures the minimum number  of times 
per cycle that  any bit or subset of bits may have appeared in the target block.O 

T h e o r e m  18. Let p be the bias ~f the best possible approximation for an ac- 
tive round under a linear attack. Then the output bias of any nontrivial linear 
characteristic propagating through C rounds is at most (2(cR~-l)pc1%). 

From our previous assertions, we can see that  in each C rounds, there are 
at least CRe active rounds under a linear attack. The best possible bias of a 
C-round approximation follows from this, and from the rules for concatenating 
linear characteristics [Bih95].rn 

The rate of confusion also appears  to provide resistance to the extended class 
of linear attacks described in [HKM95]. 

Intuitively, anyt ime a bit string with any uncertainty at all is XORed into the 
bits of an approximation,  that  approximation 's  bias decreases. Assuming that  
there is no perfect approximation of any subset of the F-function's outputs, this 
implies that  a higher rate of confusion leads to a smaller bias for a linear approx- 
imation sent through a full cycle. I t  is important  to note, however, that  a high 
rate of confusion is not enough to guarantee resistance to linear cryptanalysis. 

3 This discussion may be complicated somewhat by multiple linear approximations. 
In this section, we are discussing single linear approximations only. 
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2.7  T h e  R a t e  o f  D i f fus ion  

Any change in Xi should have some chance to change every bit of Xi+t, for some 
t. The process by which one bit in the block has the chance to affect other bits 
in the block is called diffusion [Sha49]. 

In a Feistel cipher, the only time bit j can affect other bits in the block is 
when bit j is in the source block. This leads naturally to the idea of the rate of 
diffusion. 

D e f i n i t i o n l 9 .  The rate of diffusion is the smallest number of times per cycle 
that a given bit can have the chance to affect other bits in the block. 

L e m m a 2 0 .  For a s:t UFN, the rate of diffusion is 

S 

Tt 

As a single bit progresses through a source-heavy even complete UFN it is an 
input into the F-function C -  1 times; after that it is encrypted itself. Each time 
it is used differently; that is, each input into the F-function is unique. Each bit 
is used with n + s - 1 other bits, some more than others. After one cycle, each 
bit is diffused C -  1 times through the block, using C -  1 different applications 
of the F-function. 

The rate of diffusion is the measure of how many times per cycle each bit 
is used to encrypt other bits. It is upwardly bounded by the proportion of the 
block used as input to the F-function. DES has a much slower actual diffusion 
rate, due to the particular characteristics of its F-function. Both Blowfish and 
CAST have the maximum diffusion rate for a conventional Feistel network: ! 

2"  

Note that bits in the same subblock cannot directly affect each other. These 
bits can affect each other only by affecting other bits not in the same subblock, 
which then affect bits in this subblock. 

T h e  r a t e  o f  d i f fus ion  a n d  d i f fe ren t i a l  c r y p t a n a l y s i s  An increase in Rd 
tends to increase resistance to differential cryptanalysis, when all other variables 
are held constant. While we are not yet able to prove this for the general case, 
we have a result for even complete UFN constructions [Wag95]. 

D e f i n i t i o n 2 1 .  An active round under a differential attack is a round in which 
there is a nonzero input difference into the F-function. 

T h e o r e m 2 2 .  I f  an even complete UFN has C rounds per cycle, then the frac- 
tion of rounds per cycle that are active in a differential attack is at least Rd = 
S/?t. 

This follows from the definition of an active round under differential attack, 
and from the definition of the rate of diffusion.O 
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T h e o r e m  23. Let p be the greatest possible probability for a nontrivial character- 
istic to propagate through a round. Then, the probability of any nontrivial char- 
acteristic propagating through C consecutive rounds is at most p(CRd), assuming 
that characteristics can be concatenated by multiplying their probabilities. 4 

A differential characteristic has its probability computed by multiplying all of 
its constituent characteristics' probabilities. No C round characteristic can have 
fewer than CRd active one round characteristics, and inactive round character- 
istics have probability of one. Since no one round active characteristic can have 
probability of more than p, it 's clearly impossible for any C round characteristic 
to have greater than pCRd probability.[:] 

Note that this is related to a result in INK95]. 
Intuitively, each time an input difference appears in the source block, un- 

less the desired output difference happens with probability 1, the differential 
characteristic becomes less likely to successfully pass through a cycle. However, 
it is important  to note that a high rate of diffusion alone is not sufficient to 
ensure resistance to differential a t tack- the differential properties of the cipher's 
F-function must also be taken into account. Additionally, differential attacks on 
source-heavy UFNs (those with realtively high rates of diffusion) are compli- 
cated by the fac t  that inputs into successive rounds are closely related. This is 
discussed below. 

2.8 E x a m p l e s  o f  o ur  F o r m u l a t i o n  

While the great majority of block ciphers designs are conventional Feistel net- 
works, there have been examples of UFNs in the literature. 

M a c G u f l l n  MacGuffin is a 48:16 UFN (b = 16 and n = 64) designed to in- 
troduce the concept of UFNs [BS95]. The F-function closely mirrors DES; it 
consists of a permutation, an XOR of 48 key bits, an S-box substitution (using 
the high-order two bit output of the eight DES S-boxes), and another permu- 
tation. The S-box size, 6-by-2, and contents left it susceptible to a differential 
attack [PR95]. 

B E A R  a n d  L I O N  BEAR and LION are block cipher constructions designed 
by Ross Anderson and Eli Biham, which can be used to build a three-round 
inconsistent heterogenous UFN out of any keyed hash function with an n-bit 
output,  and any stream cipher with an n-bit key [AB96]. BEAR uses the keyed 
hash function as the F-function for the first round, which is generally source 
heavy, and then uses the stream cipher for the second round, which is target 

4 Note that because of the fact that successive f-function inputs are so closely related 
in source-heavy UFNs, there can be more complex miles for concatenating differen- 
tial characteristics. The standard rule for concatenating differential characteristicsis 
based on each characteristic's success being independent. 
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heavy. The third round is another source heavy application of the keyed hash 
function. LION uses the stream cipher for the first and third (target-heavy) 
rounds, and the keyed hash function for the second round. Both apparently 
have the property that  if the hash function and stream cipher are secure (for 
reasonable definitions of "secure"), the resulting block cipher is also secure. 

T h e  M D 4  F a m i l y  o f  H a s h  F u n c t i o n s  The underlying structure of all these 
hash functions is a block algorithm, with a Davies-Meyer feedforward function to 
convert it into a one-way hash function [WinS4]. In SHA [NIST93], for example, 
the block algorithm is an 80-round, 128:32 even complete UFN. There are some 
additional complications making SHA a GUFN: the output  of the F-function is 
combined with the target block using addition modulo 232 instead of XOR, and 
there is an additional cyclic shift of part of the source block in each round. 

Other hash functions in this family include MD4 [Riv91], MD5 [Riv92], RIPE- 
MD [RIPE92], and Haval [ZPS93]. All use the same basic UFN structure: MD4 is 
a 48 round 96:32 UFN, MD5 is a 64 round 96:32 UFN, and Haval is a 224:32 UFN 
with a variable number of rounds. RIPE-MD runs two almost identical copies of 
MD4 in parallel, allows some interaction between the two copies' internal values 
during operations, and combines the outputs together to get the hash value. Its 
internal UFN structure is the same as that of MD4. 

Note that these hash functions' compression functions are source-heavy het- 
erogenous UFNs. 

G D E S  GDES is a variant of DES where the output of the F-function is con- 
catenated with itself multiple times and XORed with a much larger target 
block[Sch83]. It was defined for a variety of parameters, and is a 32:32q UFN. 
However, the number of rounds recommended was too small and the cipher was 
vulnerable to differential cryptanalysis [BS93]. 

K h u f u / K h a f r e  Khufu and Khafre [Mer91] are both even incomplete heteroge- 
nous target-heavy UFNs: s = 8, t = 32, b = 8, and n = 64. One cycle equals 
an oc te t  in Merkle's terminology. Note that in Khufu, the sub-blocks are shifted 
around a little differently than in our notation, and also that  each round's source 
block is taken from the previous round's target block. 

R E D O C  I I I  REDOC III  [Sch94a] is a target-heavy UFN with n = 80, s = 8, 
and t = 72. The notation in the REDOC III  documentation is somewhat different 
than what appears here, because REDOC III isn't designed to shift around the 
source and target blocks. 

N o n - L i n e a r  F e e d b a c k  Shif t  R e g i s t e r s  The most extreme case of a source- 
heavy UFN - -  (n - 1):1 - -  encrypts a one-bit target using the rest of the 
block's bits as source bits. This is essentially a nonlinear feedback shift reg- 
ister (NLFSR). The most extreme case of a target-heavy UFN - -  l :(n - 1) - -  
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encrypts all but one bit of the block, using a value determined by a single source 
bit. This can be viewed as a NLFSR in Galois format. Note that this kind of 
construction is always affine, and thus can be easily, broken [Wag95]. 

3 Compar i sons  of Gener ic  Cons truc t ions  

This section examines differential and linear at tacks against a variety of even 
complete UFN constructions. We try to make as few assumptions about the 
F-function as possible. They are assumed only to be mappings as defined in 
Definition X. We will assume specific linear and differential characteristics in 
order to see how the they propagate through different UFN constructions. 

3.1 Differential  Cryptanalys is  

Consider an F-function where an input difference a produces a 0 output difference 
with probability p. Used in a b:b UFN, this can be used to create a 2-round 
differential characteristic with probability p. (In the following examples, a, b, ?, 
and 0 are all b-bit numbers. In this section, Js --+ Jt is used to show the actual 
differential relationship which is being exploited.) 

Round Input DifferencelJs-+ Jt Output DifferencelProb. 
1 Io- o 
2 (a,0) la O I(0, a) 

If we assume a b:3b UFN, and that  an input difference a produces a zero 
difference, this can be used to create a 4-round characteristic with probability p: 

Round Input Difference[~s --+ ~t IOutput DifferencelProb. 
1 (0,0, 0, a) 10 --+ (0, 0, 0)](a, 0, 0, 0) 11 
2 (a, 0, 0, 0) la --~ (0, 0, 0)l(0 , a, 0, 0) Ip 
3 " (0, a, 0, 0) 10 -+ (0, 0, 0)](0, 0, a, 0) 1 
4 (0, 0, a, 0) I 0 -+ (0, 0, 0)/(0, 0, 0, a) 1 

A similar differential can be used in a b:ub UFN to create an u + 1-round 
characteristic with probability p. 

It is more difficult to exploit this differential with a 3b:b UFN. ~ In order to 
get anywhere, we need to add the assumption that a differential of a in any of 
the three sub-blocks produces an output differential of 0 with probability p. This 
is a 4-round characteristic with probability = p3: 

Round Input Difference J~ --+ 5t Output Differencelprob. 
l (0, 0, 0, a) (0, 0, 0) ---+ 0 (a, 0, 0, 0) [1 
2 I(a,O,O,O) I(a,O,O)---~Ol(O,a,O,O) Ip 
3 I(0, a,0,0) (0, a, 0) --~ 0[(0, 0, a, 0) ]p 
4 I(0,0, a,0) (0, 0, a) -+ 0[(0, 0,0, a) [p 

5 For some F-functions, differential attacks on source-heavy UFNs have additional 
complications, because inputs to successive rounds' F-functions are closely related. 
This is discussed below. 



131 

A similar differential can be used in a ub:b UFN to create an u + 1-round 
characteristic with probability p". In general, the differential can be used in a 
ub:vb UFN to create a (u + v)-round iterative characteristic with probability p~. 
This is another illustration: a 3b:2b UFN: 

Round Input Difference 
(0,0,0, a,0) 
(a,o,o,o,o) 
(o,o,a,o,o)  
(0,o,o,o, a) 
(0, a,0,0,0)  

5s ~ 5t 
(0, 0, 0) ~ (0, 0) 
(a, 0, 0) ~-~ (0, 0) 
(0, 0, a) ~ (0, 0) 
(0, 0, 0) -~ (0, 0) 
(0, a, 0) ~ (0, 0) 

Output  Difference 
(a, 0, 0, 0, 0) 
(o,o,a,o,o)  
(o,o,o,o,  a) 
(0, a ,0,0,0)  
(0,0,0, a,0) 

)rob. 

While at first glance, this seems to imply that  UFNs with a larger Rd are less 
likely to have good multi-round differential characteristics, this is not always the 
case. As b gets smaller, the assumptions required to produce this characteristic 
become more implausible. At the extreme, if b = 1 we would have to assume that  
any time we have a single bit difference somewhere in the input, it always leads 
to the same output difference with some usably high probability. However, as t 
gets smaller, it appears that high-probability differentials become easier to find 
again [OCo94b]. Note that this may lead to situations in which a multi-round 
characteristic is extremely difficult to find, but relatively easy to exploit. 

A second type of differential works with any even construction: a difference 
of a in every sub-block of s produces a difference of 0 in every sub-block of t with 
probability p [Knu95]. This results in a 1-round characteristic with probability 
p. 

Now consider a different type of differential: an F-function where an input 
difference a produces an output difference b with probability pl, and where an 
input difference b produces an output difference a with probability P2. Used in 
a (balanced) b:b UFN, this can be used to create a 3-round characteristic with 
probability PIP2. 

Round Input Difference[~s --~ 5t Output  Difference]prob 

1 (0, a) ]0-+0 ](a, 0) P 12 
2 (a,0) ] a - + b  (b,a) Pl 
3 (b,a) /b--+a (0, b) 

Note that this is not an iterative characteristic, because the differences of the 
inputs and outputs are not equal. However, this is one half of a 6-round iterative 
characteristic: concatenated with itself with rounds 2 and 3 exchanged [Knu93], 
with probability plop22. 

Assume a b:3b UFN, and that an input difference a produces an output  dif- 
ference (0, b, 0) with probability Pl, and an input difference b produces an output  
difference (0, a, 0) with probability P2. These differentiMs can be used to create 
a 6-round characteristic with probability pip2 - -  one that can be concatenated 
with another similar characteristic to create a 12-round iterated characteristic 
with probability pl 2p22: 



132 

Round 
1 
2 
3 
4 

Input Difference 
(0,0,0, a) 
(0,0, a,0) 
(0, a, 0, 0) 
(~, 0, 0, 0) 
(O,b,O,a) 
(b,O,a,O) 

(i, ~ (it 0)1 o-+ (0,0, 
o-+ (o,o,o) 
o - ,  (o,o,o) 
la ~ (O, b, O) 
0 + ( 0 , 0 , 0 )  
b ~ (0, a, 0) 

Output Difference 
(0,0, a,0) 
(0, a,0,0) 
(a,O,O,O) 
(0, b, 0, a) 
(b,0,. ,0) 
(0, 0, 0, b) 

prob. 
1 
1 
1 
p, 
1 

p2 

This kind of differential cannot be exploited in a ub:b UFN, even with the 
added assumptions that  a differential of a in any of the three sub-blocks produces 
an output differential of b with probability Pl, and that a differential of b in any 
of the three sub-blocks produces an output differential of a with probability p2. 
This example shows a 3b:b UFN: 

Round Input Difference[(i8 --+ (it Output Difference[Prob. 
1 (0,0, 0, a) I(0, 0, 0) --+ 0 (a, 0, 0, 0) I1 
2 (a, 0,0,0) ](a, O, O) -+ b (b, a, O, O) ]Pl 
3 (b,~,o,o) I(b,~,o) +',  (?,b,a,o) /7 

C o m p l i c a t i o n s  o f  D i f f e r e n t i a l  A t t a c k s  o n  U F N s  

Related inputs to successive rounds' F-functions Source-heavy UFNs have the 
property that successive rounds have some portions of their inputs in common. 
For example, consider a 3b:b UFN: 

Round Operation 
1 A = A ~ f k l ( B , C , D )  
2 B = B ~ f k 2 ( C , D , A )  
3 C = C ( ~ f k a ( D , A , B )  
4 D = D {~ fk4 (A, B, C) 

It 's clear that  each round's F-function shares two of its three input sub-blocks 
with the previous round, shifted over one sub-block. This is significantly different 
than the situation in a balanced Feistel network, in which the the entire input to 
the F-function was XORed with the output of the previous round's F-function, 
and thus may be assumed to be somewhat random. 

Key-dependent characteristics The notion of key-dependent characteristics is 
discussed in [BB93]. A key-dependent differential characteristic is a differential 
characteristic whose probability is partially a function of the specific round keys 
chosen. In some cases, such as the attacks on RDES and Lucifer in [BB93], 
this provides a generally useful attack on the cipher. In other cases, such as in 
the weak keys of IDEA [Dae95], a rare weak key condition (consisting of an 
interaction between the cipher key, the key schedule, and the round function) 
can lead to relatively high probability differential characteristics. 
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It is natural  to imagine designing a UFN in which the round key material  is 
XORed with the bits in the source block before being fed into the F-function. 
In this case, if a given differential for the F-function is based on a small number  
of specific pairs of inputs, then we will wind up with C round differential char- 
acteristics that  are strongly dependent upon relationships between the subkeys 
for subsequent rounds. Depending on the specific probabilities involved, this can 
lead to a significant vulnerability of the cipher to differential attack, a rare weak 
key condition, or no additional vulnerability. Note that  this occurs because the 
inputs to the F-function for successive active rounds are related to one another, 
based on the round keys. 

Another natural  way to design a UFN might  be to XOR the round key into 
the output  of the F-function for that  round. In this case, the inputs to the F- 
function for successive rounds are very simply related. For some F-functions, 
this can lead to C round differential characteristics with probabili ty p, where p 
is the probabili ty of a single-round differential. 

Thus, we can see that  some issues that  are apparently not very impor tan t  in 
balanced Feistel network design can become impor tant  in UFN design. 

Using multiple key-dependent differential characteristics to learn key information 
When there are many  possible key-dependent differential characteristics, we may 
be able to the fact that  some characteristics pass through the cipher, while others 
do not, as a way to immediately learn quite a bit of internal key information. 

Treating different sub-blocks of the F-function's input differently Good differ- 
ential characteristics seem less likely to exist when different sub-blocks of the 
F-function's input are treated differently enough that  they do not have the same 
differential properties. For example, even if an input XOR of a leads to an output  
XOR of 0 in the first sub-block of the F-function's input, if the same input XOR 
has no such effect when it appears in the second sub-block, then a differential 
characteristic based on (~ cannot pass through a full cycle. This is easy to see in 
the discussion that  appears in the appendix. 

C o n c l u s i o n s  From the discussion in this section, a couple of things should be 
clear: 

1. As a general rule, differential cryptanalysis becomes more difficult as the 
rate of diffusion becomes h igher - - tha t  is, more source-heavy UFNs tend to 
have more inherent resistance to differential attacks. 

2. Determining the susceptibility to differential attack of a UFN is somewhat  
more complex than is suggested by the first section of our discussion, above. 
In particular, source heavy UFNs have related inputs going into successive 
rounds'  F-functions, and in some circumstances, this can lead to new vul- 
nerabilities to differential cryptanalysis. In other circumstances, such UFNs 
can actually be strengthened against some kinds of differential at tack by this 
property. 
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3. F-functions which treat different sub-blocks of input differently are much 
more likely to be resistant to differential cryptanalysis than F-functions 
which treat different sub-blocks identically. 

3.2 Linear Cryptanalys i s  

Consider an F-function with a linear approximation of some output bits, a, based 
on some linear combination of the key bits only. Used in a b:b UFN, this can 
be used to create a 2-round linear characteristic with probability (�89 + Pl). Note 
that, in the tables in this section, A~ --+ At is used to denote the actual linear 
approximation being exploited in a given round. This should be read "the parity 
of A~ (~ the parity of At = 1. 

Round Input Block A8 --+ At Output Block Prob. 
1 (a, ?) a --~? (?, a) 1 
2 (?, a) ? ~ a (a, ?) (1 § Pl) 

In these examples, ? indicates no approximation. 
If we assume a 3b:b UFN, this linear approximation gives rise to a 4-round 

characteristic with probability (�89 + Pl): 

Round Input Block[As --+ At Output Block Prob. 
1 (?,?,?,a) (?, ?, ?) --+ a (a, ?, ?, ?) (�89 + p , )  
2 (a ,? ,? ,? )  (a,?,?)--+?[(?,a,?,?) 1 
3 (?, a, ?, ?) (?, a, ?) --+? (?, ?, a, ?) 1 
4 (?,?,a,?) (7,?,a)-,? (?,?,7, a) 1 

A similar linear approximation can be used in a ub:b UFN to create an u + 1- 
round linear characteristic with probability (�89 + p). 

It is much more difficult to exploit this linear approximation in a b:3b UFN. 
To even begin, we need the additional assumption that  the approximation occurs 
with some useful bias in all of the three output sub-blocks of the F-function. Here 
is a 4-round characteristic with probability (�89 + 4p3): 

Round Input Block A8 ~ At Output Block Prob. 
1 (?, ?, .7, a) ?----~(?,?,a)l(?,?,a,?) ( � 8 9  
2 (?,?,a,?) ?--+(?,a,?)l(?,a,?,? ) l(�89 +p) 
3 (? ,a ,? ,? )  ? -+ (a, ?, ?)/(a, ?, ?, ? ) ( � 89  
4 (a, ?, ?, ?) a----~(?,?,?)l(?,?,?,a) 1 

A similar approximation can be used in a b:ub UFN to create a u § 1-round 
characteristic with probability 1 ~-1 (~§  p ). In general, the linear approximation 
can be used in a ub:vb UFN to create a (u + v)-round iterative characteristic 
with probability (�89 § 2V-lp~). 

While at first glance, this seems to imply that UFNs with a larger Re are less 
likely to have good multi-round linear characteristics, this is not always the case: 
as t gets larger with respect to s, we are more likely to have linear relationships 
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[Bih95]. There would appear to be an optimal s:t ratio for resistancc to lincar 
cryptanalysis, but we are not yet able to determine that ratio. 

Now consider a different linear approximation: an F-function with a two 
useful linear approximations: First, there is a linear relationship between the 
input bits in a and the output  bits in b with bias pl.  Second, there is a linear 
relationship between the input bits in b and the output  bits in a with bias P2- 

Used in a b:b UFN, this can be used to create a 3-round characteristic with 
probability (�89 + 2pip2). 

Round Input Block As --+ At Output  Block Prob. 
1 (a, 7) a -+? (b, a) 1 
2 (b, a) b --+ a (a, b) (�89 -t- P2) 
3 (a,b) a-+b (b,?) ](�89 -t- pl) 

Note that this is not an iterative characteristic, because the inputs and out- 
puts are not equal. However, this is one half of a 6-round iterative characteristic: 
concatenated with itself with rounds 2 and 3 exchanged [Knu94a]. 

Assume a 3b:b UFN. There are two linear approximations: a linear combina- 
tion of input bits (0, a, 0) produces a linear combination of output  bits b with 
probability (�89 + pl), and where an linear combination of input bits (0, b, 0) pro- 
duces a linear combination of output bits a with probability (�89 + P2)- This can 
be used to create a 5-round characteristic with probability (1 + 2pip2): 

Round Input Block 
1 (? ,a ,? ,? )  
2 (b, 7, a, ?) 
3 (7, b, 7, a) 
4 
5 (7, a, 7, b) 

As ~ At 
(7, a, ?) -+? 
(b, 7, a) -+7 
(?,b,7) 
(a, ?, b) 
(?, a, ?) -4 b 

Output Block 
(b, 7, a, ?) 
(?,b, 7, a) 
(a ,? ,b ,?)  
(7 , . ,  ?, b) 
(?,b,?, ?) 

P r o b .  

1 
1 
(! + 

2 
1 
(�89 + pl) 

This characteristic be concatenated with another similar characteristic to 
create a 12-round iterated characteristic. 

This kind of characteristic is more complicated in a b:3b UFN. More assump- 
tions about the linear characteristic are required, and the probabilities drop 
much faster. 

Another type of linear relation works with any construction: a linear combi- 
nation of input bits a in every sub-block produces a linear combination of output  
bits a in every sub-block of t with probability (1 + p) [Knu95]. This results in a 
1-round iterative characteristic with probability (�89 + p)i 

C o m p l i c a t i o n s  o f  L i n e a r  C r y p t a n a l y s i s  in U F N s  There are some com- 
plications that  need to be dealt with in linear cryptanalysis of UFNs. First, an 
n-round b:3b UFN has an F-function output which has three times as many 
output bits as input bits. This appears to make linear relationships between 
the input and output  bits, or simply between output bits, more likely to occur. 
Second, in a source-heavy UFN, the inputs to successive rounds' F-functions 
are closely related--depending upon the definition of the F-function, this may 
further complicate linear cryptanalysis of this kind of UFN. 



136 

C o n c l u s i o n s  While this analysis is by no means exhausting, it strongly suggests 
that  resistance to linear cryptanalysis is tied directly to Re: as the size of t grows 
with respect to s, linear attacks become more difficult. However, the larger the 
target block, the more likely it is to have some useful linear approximations.  
Extremely target-heavy UFNs (such as an 8:1024 UFN) are certain to have 
some strong linear approximations in the outputs  of their F-functions [Bih95, 
Bih95]. 

4 C o n c l u s i o n s  a n d  O p e n  P r o b l e m s  

Our research suggests that  the structure of the Feistel network affects the security 
of the block cipher. This is surprising, given how sensitive Feistel networks are 
to the choice of F-function. Modifying the ratio of s and t can systematically 
affect the security of the cipher, when all other variables are held constant. 
Additionally, such issues as how the round keys are combined into the cipher 
can become impor tant  in UFN design--much more so than in balanced Feistel 
cipher design. 

The goal of block cipher design is not so much to create a strong algorithm, 
but to create a strong algorithm that  runs in a reasonable t ime on currently 
available hardware, that  is reasonably easy to implement,  etc. As such, UFN 
designs may  allow us to design faster and bet ter  block ciphers than we could if 
we limited ourselves to balanced Feistel structures. 

Most of this paper  consisted of laying the foundations for future discussion 
and making some initial observations. Much work remains to be done in this 
area. Some of the open problems that  we feel are impor tant  are: 

- It  seems that  source-heavy UFNs have some inherent resistance to differential 
attacks. Assuming some basic number  of cycles, perhaps four, is there an 
opt imal  s:t ratio for resistance to differential attacks? 

- A target-heavy UFN seems to have some inherent resistance to linear attacks. 
Clearly, a UFN with t very large and s very small is going to have some linear 
characteristics that  happen with certainty [Bih95], and any l : ( n -  1) U FN 
will be affine [Wag95]. Assuming some basic number of cycles, again perhaps 
four, is there an opt imal  s:t ratio for resistance to linear attacks? 

- Is it possible to use the design of the F-function to provide some resistance 
against linear attacks, and the UFN structure to provide some resistance 
against differential attacks? For example,  F-functions that  XOR the results of 
their S-box lookups together to form their outputs make linear attacks more 
difficult, but XORing S-box entries together adds no difficulty to differential 
attacks. Would combining an F-function with natural  resistance to linear 
attacks with a UFN structure with natural  resistance to differential attacks 
give us a cipher resistant to both  linear and differential attack? 

- We have discussed UFN security primari ly in the context of number of cycles 
rather  than number  of rounds. However, this may  not be as useful as we 
would like, because extremely source- or target-heavy UFNs are likely to 
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have very large numbers of rounds per cycle. For example, a 63:1 UFN would 
require 64 rounds per cycle, and probably at least four cycles (256 rounds) 
for good security. Most other useful ways to measure UFN security appear  
to be very dependent on the specific F-function (such as gate count and 
latency for hardware implementations,  and number  of sequential operations 
and memory  accesses for software implementations).  Is there a bet ter  way 
to compare security of generic UFN constructions? 

- Is it reasonable to alternate several rounds of source-heavy UFN for resis- 
tance to differential attacks, followed by several rounds of target-heavy UFN 
for resistance to linear attacks? What  would differential and linear at tacks 
against such structures look like? 

- Do incomplete UFNs have any advantages over complete UFNs? Khufu is 
similar to Blowfish in that  an 8-bit sub-block becomes the input to an 8-by- 
32 S-box. While in Blowfish four such S-box outputs are combined together 
and XORed with t, in Khufu only one is XORed per round. In some software 
implementat ions four rounds of Khufu is no slower than one round of Blow- 
fish: one cycle takes the same amount  of processing time. Is one construction 
preferable to the other? 
The design of Khufu hints at a useful design principle for incomplete UFN 
structures--one which is naturally adhered to in even complete UFNs: The 
source block for round i should be taken from part  or all of the target  block 
for round i -  1. Wha t  other useful design principles should be adhered to 
when designing incomplete UFNs? 

- Do odd UFNs have important  advantages over even UFNs? The interesting 
thing about odd UFNs is that  one rotat ion (the t ime it takes for all bits in 
the block to return to their original positions) takes more than one cycle. 
For example, in a 40:24 UFN, one cycle takes three rounds, but one rotat ion 
takes eight rounds: 

Block(showing bytes) l 
(a,b,c,d,e,f,g,h) 
(f,g,h,a,b,c,d,e) 
(c,d,e,f,g,h,a,b) 
(h,a,b,c,d,e,f,g) 
(e,f,g,h,a,b,c,d) 
(b,c,d,e,f,g,h,a) 
(g,h,a,b,c,d,e,f) 
(d,e,f,g,h,a,b,c) 
(a,b,c,d,e,f,g,h) 

- For prime UFNs, n rounds are 

Round Cycle 
1 1 
2 1 
3 1 
4 2 
5 2 
6 2 
7 3 
8 3 
9 3 

Rotat ion 
1 
1 
1 
1 
1 
1 
1 
1 
2 

required before the same bit positions en- 
ter the F-function in the same way. One rotation takes n rounds, i.e. 64 
for a 64-bit block cipher. This construction seems to make it extremely dif- 
ficult to find differential and linear characteristics in F-functions tha t  use 
S-boxes. Differential characteristics keep getting split between S-box entries 
from round to round; similarly linear characteristics keep getting different 
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S-box outputs XORed into them. While this intuitively suggests that prime 
UFNs with randomly generated S-boxes should have a very low probability 
of being susceptible to differential or linear attacks, we aren' t  yet able to 
prove or disprove this. (It is possible that prime UFN construction simply 
makes differential and linear characteristics harder to find. Also, it looks like 
this kind of design may add strength to UFNs with some kinds of F-function, 
but not to others.) 

- UFNs with a ub:b structure can be viewed as simple NLFSRs with a block 
size u and length n. This observation provides a theoretical link between 
block- and stream-cipher cryptanalysis. Average cycle length of this NLFSR 
tells us important  things about the group properties of the underlying cipher. 
Worst-case cycle length tells us important  things about weak keys or special 
input values that may demonstrate weaknesses in the cipher. Are there other 
stream-cipher techniques that  could be applied to block ciphers of this type? 
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A Prel iminary Cryptanalysis  of a Source-Heavy U F N  
Construction 

A.1 I n t r o d u c t i o n  

This appendix discusses a preliminary a t t empt  at cryptanalysis of a conceptually 
simple 48:16 UFN. The discussion that  follows is not meant  to be an exhaustive 
discussion of the merits of this c ipher- - ra ther  it is intended to demonstrate  in a 
more concrete form the complications that  can occur in at tacking and designing 
a UFN. 

A.2 T h e  C o n s t r u c t i o n :  A S o u r c e - H e a v y  B lowf i sh  V a r i a t i o n  

D e s c r i p t i o n  o f  t h e  C o n s t r u c t i o n  s This is a 48:16 even complete source- 
heavy UFN. 

e Note that tbJs construction is also closely related to CAST. A real implementation 
of this kind of cipher with key-dependent S-boxes might alternate addition modulo 
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D e f i n i t i o n 2 4 .  Let X = (x0, xl,  ..., xs), and K~ = (kr,0, k~,l, ..., kr,5). Then the 
r th  round's  F-function is 

s /8 -1  

F(x, K,) = G 
i=0 

D i f f e r e n t i a l  C r y p t a n a l y s i s  Serge Vaudenay pointed out a kind of differential 
characteristic that can occur in a Blowfish-like F-function with known, weak 
S-boxes [Vau96]. A very powerful one-round differential involves having two or 
more identical entries in the same S-box. For example, if there exists q ~ r such 
that  S[q] = Sir[ for an S-box, d = q (~ r can be used an the input difference to 
this S-box, yielding an output difference of zero with probability 2 -7 . 

For the 48:16 construction, the characteristic does not extend past two rounds 
unless there is a rare, special situation with three of the six S-boxes used. Oth- 
erwise, the progression of the differential attack based on this one-round char- 
acteristic looks like this: 

Round Input Difference 6~ --+ 6t Output DifferencelProb. 
1 (0,0,0,  d) I(0, 0, 0) -+ 0 (d, 0, 0,0) 1 
2 (d, 0,0,0) (d, 0, 0) -+ 0 (0, d, 0, 0) p 
3 (0,d,0,0) (0, d,0) -+? (7,0, d,0) ? 

While the probability of existence of an internal collision in an 8:16 random 
S-box is greater than half (by the birthday paradox), the existence of three 
such collisions (necessary to extend this attack to a 3b:b UFN) is considerably 
less likely, and it is still less likely that such collisions will all have the same 
d = q ~ r value. However, further analysis shows that even this highly unlikely 
condition is not sufficient to generally allow differential attacks on this structure. 

Consider an input pair, X and X*. Suppose that  we have a 48:16 UFN with 
S0[0] = 5701128], Sa[1] = 5711129], and S~[2] = S~[130]. To simplify this attack, 
assume that we XOR the round keys into the outputs of the S-boxes instead of 
the inputs. The values of X, X*, and X' are shown as 8-tupples of bytes. 

X IX* I X ' =  X (~1 X* [Comments 
(O,a,b,c,d,e,f,g)I(lZS;a,b,e,d,e,f,g)l(128,0, O,O,O,O,O,O)JWe get our zero 

I [output delta. 
(h,i,O,a,b,c,d,e)l(h,i,O,a,b,c,d,e) 1(0, 0,128, 0, 0, 0, 0, 0)JWe cannot get a 

]zero output  delta. 

In words: It isn't enough to have the same characteristic to attack three S- 
boxes. We must actually have the same S-box inputs in X and X* (and thus the 
same q and r values) give us identical S-box outputs for all S-boxes involved in 
the attack. For a 48:16 UFN, there are three S-boxes involved. 

216 and XORing to combine S-box outputs. This appears to have no effect on our 
differential analysis, but would probably make linear cryptanalysis less effective in 
most cases. 
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If S-boxes with identical input pairs leading to identical output  pairs are 
installed, and the F-function is modified to XOR the round keys after the S- 
box entries, a 4-round iterative characteristic exists with probability 2 -7 for the 
48:16 construction, and any such ub:b Blowfish variant has a (u + 1)-round itera- 
tive differential characteristic with probability 2 -7. However, if the F-function's 
definition is left so that the round key is XORed into the input before being fed 
into the S-boxes, then this differential characteristic is not even possible except 
in very rare weak-key conditions. In the vast majori ty of the cases, the round 
keys make it impossible for this characteristic to make it through even a single 
cycle. This happens because, for the differential to make it through two consec- 
utive active rounds, it must be possible for the input t o  the active S-box in Xi 
and Xi+l to be either q or r in both rounds. This means that the corresponding 
byte of Ki XORed with the corresponding byte of Ki+lmust  be either 0 or d. If 
the round keys are random, the probability of such a differential characteristic 
being possible for a given cycle is 2 -21. 

Lessons from the analysis There seem to be a few design principles that allow 
us to design source-heavy UFNs which will be highly resistant to differential 
cryptanalysis. 

1. Design the F-function so that  different sub-blocks of input are treated dif- 
ferently. This ruins most possible multi-round differential characteristics im- 
mediately. 

2. Design the UFN so that the round key's effect on the F-function output is 
nonlinear. For many constructions, this means XORing the round key into 
the F-function input before passing it through the S-boxes or other nonlinear 
components. 

3. Analyze the F-function to see what the effects of having successive inputs be 
related in the way that they are for source-heavy UFNs. For many UFNs, this 
seems likely to lead to differential characteristics that are strongly related to 
subkeys. 

4. For such UFNs, analyze the key schedule to verify that it is either impossible 
or extremely unlikely for any key to provide round keys related in such a 
way that any such differential attack is possible. For UFNs in which such 
round keys can possibly occur, those cipher keys that lead to such round 
keys form a class of weak keys for the cipher. Getting a given characteristic 
through the cipher detects the weak key condition, as well as revealing some 
information about the last round key. 

Example 1. We can use our 48:16 Blowfish variant as an example of these de- 
sign principles. Assuming independent round keys XORed into the input of the 
F-function each round, the probability of getting the round-key relations neces- 
sary for making it through two consecutive active rounds is 2 -7 . Assuming four 
round iterative characteristics with three active adjacent rounds each, we appear 
to have a probability of only 2 -21 of having the special round key relationships 
needed to allow this differential attack against each cycle. The probability of 
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the round key relationships needed to get a characteristic through three cycles 
is 2 - 6 3  . This implies that  with randomly chosen round keys, the probabil i ty of 
getting a set of round keys that  makes the four-cycle version cipher vulnerable 
to a differential at tack is 2 -84, and such an at tack can have a three-cycle charac- 
teristic with probabili ty 2 -21 . Because of the F-function construction, even this 
rare special case requires an extremely unlikely set of conditions to be true of 
the S-boxes. 

L i n e a r  C r y p t a n a l y s i s  While the source-heavy UFN structure of this cipher 
makes linear cryptanalysis potentially more effective, the F-function's construc- 
tion appears to offer some protection against high-bias linear approximations.  In 
this F-function, as is discussed above, six randomly-generated S-boxes' outputs  
are XORed together. We generated and tested three sets of 8:16 S-boxes. From 
this limited sample, the best approximation had a bias of about  0.1758. As we 
expected, there was no apparent tendency for the S-boxes to share a similar 
high-probability approximation.  

For a linear approximation to be useful with this F-function, it must  occur 
in all six S-boxes with some useful bias. It  appears to be extremely unlikely 
that  there will be any linear approximation in all six S-boxes simultaneously 
with bet ter  than 2 -3. We can therefore consider this the worst case. If  we XOR 
the linear approximations from all six S-box outputs together, we get a linear 
approximation with a bias of 2 -13. This leads to a four-round iterative linear 
characteristic for this cipher with bias 2 - 1 3  

Round 
1 
2 
3 
4 

Input  Block 

(?, ?, ?, 

a s ---). a t 

(a, 7,7) --+? 
(7, ?) 

Output  Block ]Prob. 
(�89 + O.2) 

il 
]1 

Using Matsui 's  rule of thumb, we can determine how many known plain- 
texts we expect to need to carry out a linear at tack based on this worst-case 
assumption.  

Cycles Bias Known Plaintexts 
2 2 -25 25a 
3 2 -37 277 
4 2 -49 298 

Note that  a slightly different worst-case assumption can lead to much more 
risk of successful attack. For example, if we assume that  the worst case is for all 
six S-boxes to have the same approximation with bias of 2 -2 , then we get an 
F-function approximation with bias 2 -7 , which leads to the following situation: 
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Cycles Bias Known Plaintexts 
2 2 -13 229 
3 2 -19 241 
4 2 -25 253 
5 2 -31 265 
6 2 -37 277 
7 2 -43 289 

Lessons  f r o m  t h e  ana lys i s  

1. Even though a given UFN structure may be inherently susceptible to lin- 
ear attacks, its F-function may still provide enough resistance to prevent 
successful linear cryptanalysis. 

2. For this kind of F-function, it makes sense to try to find the worst-case one- 
cycle linear approximation based on an extremely unlikely set of S-boxes 
with the same linear approximation, all with reasonably high probability. 


