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Abstrac t .  We present the new block cipher SHARK. This cipher com- 
bines highly non-linear substitution boxes and maximum distance sepa- 
rable error correcting codes (MDS-codes) to guarantee a good diffusion. 
The cipher is resistant against differential and linear cryptanalysis after 
a small number of rounds. The structure of SHARK is such that a fast 
software implementation is possible, both for the encryption and the de- 
cryption. Our C-implementation of SHARK runs more than four times 
faster than SAFER and IDEA on a 64-bit architecture. 

1 Introduction 

The best known and most used block cipher today is the DES [FIPS46]. The 
operation of the DES can be described in the following way: the message input 
X is divided into two halves X1 and X2. These halves are then processed in 16 
rounds. The odd-numbered rounds perform the following transformation: 

r l  = x l  �9 F(K, X2) 

Y 2 = X 2 ,  

while in even-numbered rounds: 

I/1 = X1 

Y2 = X2 $ F(g,  X1). 

After the last round, both halves are swapped. This structure is called the 
"Feistel structure" [F73]. Many proposed alternatives for the DES use the same 
structure, which has the nice feature that it is invertible for all choices of the 
F-function. An important weakness however is that  each round transformation 
always keeps one half of the block constant. This fact is used in many attacks, 
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including differential and linear cryptanalysis. This structure is generalized in 
[SB95] to a "generalized unbalanced Feistel network," where the fraction of the 
round input that always equals the output is made variable. 

The round transformation of SHARK,  which we describe in this paper, is 
more uniform: 

Y = F(g ,  X ) ,  

where F(K, X)  is an invertible function. This structure is similar to a substitution- 
permutation network [FNS75] and is also used in MMB [DGV93], SAFER [M94, 
M95], and 3-WAY [DGV94b]. Each round transforms the whole round input. 
The combination of strong diffusion and uniform non-linearity allows the reduc- 
tion of the number of rounds, but, compared with a Feistel cipher, the amount 
of work per round increases. 

An important  design criterion for an encryption algorithm is its performance. 
Designers search for round functions that  allow to reduce the number of rounds 
in order to get maximal performance. CAST [AT95] and SAFER [M94] can be 
seen as at tempts in this direction. The lurking danger is that a small number of 
rounds makes a whole range of new attacks possible, e.g., the differential-linear 
attack on eight rounds of the DES [LH94], truncated differentials in SAFER 
[K95, K96], and imbalance of the round function in CAST [RP95]. We believe 
S H A R K  is resistant against these attacks. 

In Sect. 2 we explain our design strategy and select components for SHARK.  
Section 3 gives some cryptanalytic benchmarks. In Sect. 4 we make some remarks 
about the implementation, and Sect. 5 discusses further work. 

2 D e s i g n  S t r a t e g y  

In our design strategy the round transformation is composed of three distinct 
building blocks: 

- a non-linear layer (e.g., substitution boxes); 
- a diffusion layer; 
- a key scheduling to produce round keys from the key. 

The design strategy assigns to each of these components a function. The com- 
ponents are selected to fulfill this function in an optimal way. 

By considering each building block separately, we get a robust cipher. We 
select a diffusion layer with uniform and good diffusion properties. The non- 
linear layer has uniform nonlinear properties, such that  when measuring the 
resistance of the cipher against cryptanalysis we don' t  have to take the details 
of the interaction between the non-linear and the diffusion layer into account. 
If, for example, the S-boxes are replaced by other S-boxes, with equivalent non- 
linearity properties, the resistance of the cipher remains constant. This strategy 
is a variant of the wide trail strategy [D95]. Since each building block is selected 
and examined separately, it is not a t tempted to compensate weaknesses of the 
non-linear layer by additional properties of the linear layer. 
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In the remainder of this section we define a dear  criterion for each of the 
building blocks and make design decisions. The S-boxes are m - b i t  permutations.  
The number ofparaUel S-boxes is denoted with n, and the number of rounds with 
R. Fig. I shows the general structure of SHARK. Note that this figure represents 
the conceptual structure, which differs slightly from the actual implementation. 

The figure shows that SHARK consist of R rounds with a key addition, non- 
linear substitution, and a diffusion layer. This is followed by an extra key addition 
and an extra diffusion layer, which is the inverse of the round diffusion layers. 
The purpose of the extra key addition is to prohibit an attacker from peeling off 
the last round. The extra diffusion layer is needed for an easy implementation 
of the decryption. This will be explained in Sect. 4. 

P L A I N T E X T  
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Fig. 1. Structure of SHAKK. 
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2.1 Diffusion Layer 

For the design of the diffusion layer, we consider the m-bit  outputs of the S-boxes 
as elements of GF(2m).  The diffusion layer takes n m-bit  values as input, and 
gives n m-bit  outputs.  

The PUrpose of the diffusion layer is to provide an avalanche effect, both in 
the context of differences and linear approximations. In the linear context this 
means that  there should be no correlations between linear combinations of a 
small set of (m-bit) inputs and linear combinations of a small set of (m-bit) 
outputs.  In the differential context this means that  small input changes should 
cause large output  changes, and conversely, to produce a small output  change, 
a large input change should be necessary (where we consider again m-bit  values 
as inputs and outputs).  For an invertible linear mapping 0, this effect can be 
quantified by its branch number B [D95]. 

Denote by wh(a) the Hamming weight of a, i.e., the number of non-zero 
components of a. These components can be bits, as in [D95], or elements from 
GF(2  '~) as here. Then 

= m  (wh(a) + wh(o(a))).  

B gives a measure for the worst case diffusion: it is a lower bound for the num- 
ber of active S'boxes in two consecutive rounds of a linear trail or a differential 
characteristic (we will define the term active S-bozes in Sect. 3). Since a cryptan- 
alyst will always exploit the worst case, this is a good measure for the diffusion 
property. Note that  wh(a) < n, for every choice of 0; if wh(a) = 1, this implies 
that  B < n + 1. We call an invertible linear mapping 7 for which B = n + 1 
optimal. 

The framework of linear codes over the field GF(2  '~) gives us an elegant way 
to construct a diffusion layer with optimal  branch number. A linear code C of 
length n, dimension k, and with minimum distance d between the codewords 
is denoted as an (n, k, d)-code. An (n, k, d)-code is a k-dimensional subspace of 
the vector space of n-tuples over GF(2 '~) .  The Hamming distance between two 
codewords is equal to the number of elements in which they differ. 

A linear code can be represented by a generation matriz Gkx,~. This matrix 
has dimensions k x n, and is always of full rank. C is formed by the subspace of 
dimension k that  is spanned by the rows of G. 

C = { a .  X I X  E GF(2"~)k}. 

The generation matr ix  of a code is not unique. I f  G is a generation matr ix  of C, 
then every matr ix  G1 = Tkxk" G, where Tkxk is of full rank, is also a generation 
matr ix  of C. The matr ix  Ge = T .G  = [Ikxk Bkx(,~-k)] is called the echelon form 
of G. 

Codes with d = rt - k + 1 are called mazimal distance separable codes. A 
well-known example of MDS-codes are the Reed-Solomon codes. RS-codes can 
have lengths up to q + 1, where q is the number of elements in the finite field in 
which the codes are defined (here q = 2 '~) [MS77, pp. 294-306]. 
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P r o p o s i t i o n  1 Let C be a (2n, n, n + 1)-code over the Galois field GF(2 '~) .  Let 
Ge be the generator matrix of C in echelon form: 

c e  = 

Then C defines an optimal invertible linear mapping ~[ : 

~/: GF(2 '~)  '~ --+ GF(2 '~)  '~ : X ~+ Y = B .  X .  

P r o o f :  First we show that  B = n + 1. The definition of B gives: 

: + 

= 

I t  follows from the definition of 7 that  all the 2n-tuples  (X, 7(X))  are codewords 
of the code C. The minimum of the Hamming weights of the non-zero codewords 
is by definition equal to d = n + 1. 
We prove by contradiction that  7 is invertible. Suppose 7 is not invertible. This 
means there are two vectors a, b such tha t  a # b and "~(a) = -y(b). Since ~ is 
linear, 7(a - b) = 7(a) - 7(b) = 0. Then 

B = m i n w h  c +w~(7(c) ) )  <Wh(a  b ) + w h ( 7 ( a  b ) ) < n + 0 < n + l  
c r  ( ( )  - _ . 

This is in contradiction with B = n + 1. �9 

The branch number of a diffusion layer is very important .  In [K96], Knudsen 
breaks five rounds of SAFER, making use of the low branch number of its dif- 
fusion layer (the Pseudo Hadamard  Transform). The low diffusion of the DES 
is used by Matsui [M93] to construct a linear approximation of the cipher with 
high correlation. 

2 . 2  S u b s t i t u t i o n  B o x e s  

Non-linear S-boxes provide resistance against linear and differential cryptanal-  
ysis. A large amount  of criteria, which are sometimes conflicting, have been 
published (see, for example, [C94, DT91, KMI91, N91, N94]). 

The exor table E of a mapping "7 is defined as follows [BS90]: 

High entries in the exor table can lead to differential characteristics with a high 
probability making the cipher susceptible to a differential attack. 

In [N94] Nyberg proposes several classes of non-linear substitution boxes. For 
S H A R K ,  we choose an S-box that  is based on the mapping F(=) -- x -1 over 
GF(2"~). This class of S-boxes has the following properties (when m is even): 

- Differentially 4-uniform. This means that  the highest value in the exor table 
equals 4. In fact, every row of the exor table contains exactly one 4, the other 
possible values are 2 and 0. 
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- Minimal distance to an afl]ne function is 2 m/2. 
- The non-linear order of every linear combination of output bits equals r a -  1. 

This is the only class of mappings of [N94] that can be used for boxes with 
dimensions 2 'n x 2 'n, w i t h  m even. In order to remove the fixed points 0 --+ 0, 
and 1 --+ 1, we apply an invertible affine transformation to the output bits. 

The disadvantage of these boxes is that  they have a simple description in 
GF(2"~), which is also the field in which the diffusion layer is linear. This may 
create uneasy feelings, but  we are not aware of any vulnerability caused by 
this property. For the time being we challenge cryptanalysts to demonstrate 
any vulnerability caused by this property. Should such a vulnerability exist, one 
can always replace the S-boxes by S-boxes with similar properties, that are not 
algebraic over GF(2"~). 

2 . 3  K e y  S c h e d u l i n g  

The key scheduling expands the key K to the round keys Ki. A good key schedul- 
ing produces round keys with maximal entropy. 

First we present two alternative ways to introduce the round key in the round 
function: one is a simple exor of the round key with the input, the second is a key 
controlled affine transform. Then we explain how these subkeys are generated 
from the key. 

E x o r  The nm input bits of the round are exored with n m  key bits. This method 
is fast and uniform: there are no keys that  are stronger or weaker in the sense 
that  the diffusion and the non-linear layer have the same properties for all keys. 
This notion of weak keys is the same as in [DGV94]. A disadvantage of the simple 
scheme is that  the entropy of the round key is at most nm. 

AfRne T r a n s f o r m a t i o n  Let ~ be a key dependent invertible (n • n) -matr ix  
over GF(2n~). Define the key operation as: 

Y = ~ . X  ~K~.  

This operation is still linear and thus it introduces no weak keys. Each round now 
introduces more key material, raising the entropy of the round keys to O(mnS). 
The computational overhead of this operation is very large. We can restrict ~i 
to a certain subspace, for instance let ~i be a diagonal matrix. The entropy of 
the round keys then becomes close to 2ran. in Sect. 4 it will be explained how 
to implement this variant in an efficient way. 

S u b k e y  g e n e r a t i o n  Many attacks on iterated ciphers first recover (part of) 
a round key. This knowledge is subsequently used to recover other round keys 
and/or  the key. To make these attacks less efficient, one can generate the round 
keys by hashing the key with a preimage resistant function, like in Blowfish [$94] 
or CAST [AT95]. 
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In S H A R K ,  the round key generation is as follows. The R q- 1 ran-bit  values 
Ks are initialized with the first R +  1 entries of the substitution table To, which is 
defined in Sect. 4. The matrices ~;i are initialized to the unit matr ix  I .  The  user 
selected key is then concatenated with itself until it has a length of 2(R + 1)ran 
bits. This is used as input of S H A R K  in 64-bit CFB mode [ISO10116]. The 
2(R + 1)ran output  bits are used as the actual round keys for the encryption 
of the message: the first (R + 1)mn bits are the values Ki, the next bits are 
interpreted as (R + 1)n elements of GF(2  TM) and form the diagonal elements 
of the hl. I f  one of these elements is zero, it is discarded. Subsequently all the 
following values are shifted down one place and an extra encryption of the all- 
zero string is added at the end. 

While this mechanism for subkey generation in principle makes it possible to 
use a key of 2(R + 1)ran bits, we suggest that  the key length should not exceed 
128 bits. 

3 R e s i s t a n c e  A g a i n s t  D i f f e r e n t i a l  a n d  L i n e a r  

C r y p t a n a l y s i s  

In a differential characteristic, S-boxes tha t  have a non-zero input exor are called 
active S-bozes; these S-boxes produce the required output  exor with a certain 
probability. The S-boxes of S H A R K  are chosen such that  this probabili ty is 
at most 22-'~. Inactive S-boxes have a zero input exor and consequently they 
have always a zero output  exor. The diffusion layer ensures that  two consecutive 
rounds have in total  at least B -- n q- 1 active S-boxes. 

In a linear attack, the cryptanalyst  tries to find correlations between linear 
combinations of input bits and linear combinations of output  bits. S-boxes from 
which some input bits and some output  bits are involved in the linear combi- 
nations, are called active S-boxes. S-boxes from which no input or output  bits 
are involved in the linear combinations, are called inactive S-boxes. Assuming 
that  the inputs to different S-boxes are independent, we can calculate the cor- 
relation by multiplying the correlations for the active S-boxes. The correlations 
in S H A R K ' s  S-boxes are at most 21-m/2, which means that  every active S-box 
increases the amount  of needed texts by a factor of at least 2 m-2 [M93]. 

The dimension of the S-boxes m, and the number of parallel S-boxes n have 
both been chosen equal to eight. This means tha t  the resulting cipher works on 
message blocks of 64 bits. We propose the cipher with six rounds. For applications 
that  require only 40 bits security, four rounds may suffice. 

Table 1 gives some numerical values for the probabilities of the best possible 
differential characteristics and squared correlations for the best linear approxi- 
mations as a function of the number of rounds R, compared with the values for 
the DES. Not tha t  since the DES is a Feistel cipher, the number of rounds has 
to be doubled to obtain a fair comparison. 

Note that  a cryptanalyst  who attacks an R-round scheme doesn' t  need an 
R-round approximation or characteristic. One can assume that  for S H A R K  an 
( R -  2)-round characteristic or approximation can be used. Also, the probabili ty 
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of the best differential can be several times higher than the probability of the 
best characteristic. Equivalently, the correlation between input bits and output  
bits of the cipher is only approximated by the product  of the correlations in 
each round. It is clear that  for a 64-bit cipher with a fixed key the probability 
of a differential is larger than 2 -63, or it is equal to zero. Also the correlations 
between input and output  bits are multiples of 2 -63. More specific, in a 64- 
bit block cipher the expected value for the probability of a differential is upper 
bounded by 1 2 8 . 2  -64 [094]. The probabilities and correlations in the table 
were calculated by assuming independent and variable round keys; they are 
probabilities over the input and round key space. These values give only an 
indication of the safety margin against linear and differential attacks. When the 
probability of a characteristic or the correlation of a linear approximation drops 
below 2 -63 , it can be considered as irrelevant. 

For applications where a conservative security margin is much more impor- 
tant  than encryption speed, one can use more rounds. If  one uses the "prob- 
abilities" and "correlations" of table 1 as a measure, eight rounds of S H A R K  
give a security level equivalent to triple-DES. More conservative people could 
use S H A R K  with eight or ten rounds, and with a 128-bit key. 

R 
2 
4 
6 

SHARK 
p (de)  c ~ ( k )  
2-54 2-54 
2-*08 2-1o8 
2-*62 2-*62 

DES 
R p (dc) c ~ (Ic) 
4 2-9"6 2-8 
8 2 -s~ 2 -19"5 

12 2 -46.2 2-sl.5 
48 2 - n s  2 -*4s 

Table 1. Probabilities for the best differential characteristics and linear approxima- 
tions as a function of the number of rounds. We give the values for R-round character- 
istics/approximations. 

4 I m p l e m e n t a t i o n  C o n s i d e r a t i o n s  

First we show how to combine the S-boxes and the diffusion layer in one oper- 
ation. Then we show how the structure of S H A R K  enables us to exploit this 
feature both in the encryption and the decryption mode. Let X1, . . . ,  X,~ denote 
the input of a round, after the key addition, and let Y1, . . . ,  Yn denote the output.  
We have: 

Y2 A .  = | S2 [X2] 
< 'LSi  4 
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r:,,1 [:,,1 [:,:1 
/ I ] l ,  l l l  

: . . .  " / : : : /  
L anl J L anl J L ann J 

Here tlie S~ are the m x m substitution tables, "~" and "-" denote addition and 

multiplication in GF(2'~), and A is the matrix that defines the diffusion layer. 
We can write this as follows: 

= i:::: ] ,'ra  ,X,a S ,xl 
7;= L<~,,~-s~[x,l] L~,,~ .'s~[x2] 

With the expanded m x n m  substitution tables T~: 

T,[X] = 

the combined operation becomes: 

Y2 

[ a l i "  S~[z~]" 
a2i. S~ [x~] 

~n,-'SI[X,] 

~ . . . ~  

= T~[X~] e) T2[X2] ~ . . .  �9 T, [X, , ] .  

[ a l . .  s . { x j  
a ~ .  s . [ x . ]  

a ~  "S :  [Xn] 

This operation needs only n table lookups and n -  1 bitwise additions and shifts 
(of rim-bit values). 

The key addition can be incorporated into the S-boxes as well. Addition with 
a fixed key before a substitution table is equivalent to a simple rearrangement of 
the rows of the table. In the case of the key dependent affine transform it is even 
more important  for the performance to incorporate the key operation into the 
substitution tables. If ~ is a diagonal matrix, this operation is again equivalent 
to a rearrangement of the rows of the substitution table. 

A nice property of the Feistel structure is that  encryption mode and decryp- 
tion mode of the block cipher are very similar: only the order of the round keys 
has to be reversed. For S H A R K  the conversion from encrypting mode to de- 
crypting mode is a bit more involved. We explain now how the round keys and 
the combination of the S-boxes and the diffusion layer have to be modified for 
the decrypting mode. The function of the inverse diffusion layer at the end of 
the cipher becomes clear. 

Consider a two-round version of SHARK.  Denote by I the linear operation, 
by s the non-linear substitution, and by ak~ the key addition with key kl. The 
encryption function is then: 

Y = (1 - ~  o a ~  o I o s o ak2 o ~ . ~ o a k , ) ( X ) ,  (1) 
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where r denotes the combined S-box-diffusion operation. Since the key addition 
and the diffusion layer are both linear operations, we can interchange their order: 

(l o ak ) ( X )  = B . (~ . X ~ K )  = (B . tc . X )  (D (B  . K )  

= ( ( B . ~ . B - 1 )  �9 ( B .  X ) )  @ ( B .  K )  

= ( .~,  o O ( x ) ,  (2) 

with 

a k , ( X )  = ~' . X (9 K '  

= ( B . ~ . B - 1 ) . X ~ ( B . K )  

By applying (2) to 1-1 o ak~ the encryption becomes: 

Y = (aks' o1-1  o l  o s oak2 o r o ak~) (X)  

= (ak~, o s o ak2 o r o a k , ) ( X ) .  

(3) 
(4) 

The last equation is actually implemented. The equation contains R table lookups 
and R + I key additions; R key additions can be incorporated into the table 
lookups. By inverting (1), we obtain the decryption operation: 

X = ( a k ~  o s" 1 o1 -1  oak;~  o s -1  o1-1  oak:~  o l ) ( Y ) .  

By interchanging key addition and diffusion we obtain: 

X = (ak ; ,  o s -1  o ak ; l ,  o 1-1 o s - l .  o a k : ~ , ) ( Y ) .  

1, t 

This equation has the same structure as the encryption operation, as given by 
(4). 

5 P e r f o r m a n c e  

Since SHARK operates on 64-bit words, it will benefit from a 64-bit archi- 
tecture. Table 2 compares the performance of C-implementations of SHARK, 
SHARK* (SHARK with key dependent S-boxes), SAFER, IDEA, and MD5 on 
a 266 MHz DEC-ALPHA and on a 90 MHz Pentium. On a Pentium SHARK 
runs at approximately the same speed as SAFER. Experiments with smaller S- 
boxes showed that this degradation of performance is due to the limited on-chip 
cache size; doubling this size will probably result in a speedup from 0.80 Mbyte/s 
to 2.3 Mbyte/s. 
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SHARK* 
SAFER 
IDEA 
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ALPHA Pentium 
6.30Mbyte/s 
5.10Mbyte/s 
1.03Mbyte/s 
1.53Mbyte/s 

16.00Mbyte/s 

0.800 Mbyte/s 

0.725 Mbyte/s 

7.500 Mbyte/s 

Table 2. Performance of SHARK, SAFER, IDEA, and MD5 on a 64-bit workstation, 
and on a Pentium. 

6 F u r t h e r  work  

With the same building blocks, one could also construct a Feistel cipher. I f  one 
considers the combination of non-linear and diffusion layer as the S-boxes, this 
cipher would have about  the same form as CAST. Both ciphers use S-boxes 
with small inputs and large outputs,  but the F-function of the Feistel variant 
of S H A R K  has a guaranteed diffusion and non-linearity. Also, because it is 
invertible, the round function is balanced, which is a desirable property for the 
round function of a Feistel cipher with a small number of rounds [RP95]. 

If  one incorporates the key addition into the S-boxes, key-dependent S-boxes 
are the result. However these key-dependent S-boxes have no "weak keys" where 
one can find differentials with high probability [V96]. 

Because of the guaranteed diffusion, there are no good characteristics or 
linear relations. Therefore we expect to obtain a higher resistance against linear 
and differential cryptanalysis with a smaller number of rounds. 

The modular  design allows for easy extension of the cipher to a 128-bit cipher. 
This can be done by doubling the number  of parallel S-boxes n, or by doubling 
the input size of the boxes m. A simple calculation shows that  the resistance 
against cryptanalysis is higher for the scheme with doubled m. However, S-boxes 
with input size 16 impose high memory  requirements, and therefore a doubled 
number of boxes n seems a better  choice. For both  schemes it is easy to find an 
RS-code that  can be used in the diffusion layer. 
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A C o n s t r u c t i o n  of  G 

We explain in more detail the construction of a (2n, n, n + 1)-Reed-Solomon code 
over the Gaiois field GF(2 TM) and the calculation of G, the echelon form of the 
generation matrix.  

Let a be a primitive element in GF(2m).  Then the polynomial 

g(z) = (x + a ) .  (x + a2 ) . . . . .  (~ + a~) 

generates a (2n, n, n +  1)-Reed-Solomon code. The code words are formed by the 
polynomials of degree < 2n that  are multiples of g(x). G can be constructed in 
the following way [PW72]. Let b~(x) be the remainder after dividing x ~ by g(x): 

x i = g (x ) .  q(x) + b~(x). 

Then 
�9 ' + = 

is a code word. We take these code words, for i = 2n - 1, 2n - 2 , . . . ,  n, as rows 
of G. Then 

G = [&•  B.•  

is the echelon form of the generation matr ix  of C. 

B R e f e r e n c e  I m p l e m e n t a t i o n  

A reference implementat ion of S H A R K  can be retrieved by anonymous ftp from 
f t p .  e s a t .  k u l e u v e n ,  ac .be/pub/COS I C / r i j  men. 


