
ISAAC

Robert J. Jenkins Jr.

Abst rac t . A sequence of new pseudorandom number generators are de-
veloped: IA, IBAA, and ISAAC. No efficient method is known for deduc-
ing their internal states. ISAAC requires an amortized 18.75 instructions
to produce a 32-bit value. There are no cycles in ISAAC shorter than
24~ values. The expected cycle length is 2 s295 values. Tests show that
scaled-down versions of IBAA are unbiased for their entire cycle length.
No proofs of security are given.

1 I n t r o d u c t i o n

The purpose of this paper is to introduce the new random number generators
IA, IBAA, and ISAAC. IA (Indirection, Addition) is slightly biased but it ap-
pears to be secure. It is immune to Gaussian elimination. IBAA (Indirection,
Barrelshift, Accumulate and Add) eliminates the bias in IA without damag-
ing security. ISAAC (Indirection, Shift, Accumulate, Add, and Count) is faster
than IBAA, guarantees no bad seeds or short cycles, and makes orderly states
disorderly faster.

IA was designed to satisfy these goals:

- Deducing the internal state from the results should be intractable.
- The code should be easy to memorize.
- It should be as fast as possible.

More requirements were added for IBAA:

- It should by cryptographicaUy secure [1] [12].
- No biases should be detectable for the entire cycle length.
- Short cycles should be astronomically rare.

A generator was found that had the appropriate levels of bias. It used an ac-
cumulator and barrelshifts. IBAA was formed by combining it with IA without
introducing bias or reducing the security of IA. (Any unbreakable unbiased gen-
erator which has long cycles must be cryptographically secure.)

ISAAC took away the requirement of easy memorization but added more:

- The C code should be optimized for speed.
- Orderly states should become disorderly quickly.
- There should be no short cycles at all.

ISAAC is similar in form and function to the alleged RC4 [11], although
the generators were developed independently. ISAAC is three times faster, less
biased, and has longer minimum and average cycle lengths. ISAAC requires an

42

amort ized 18.75 machine instructions to produce a 32-bit value. ISAAC should
be useful as a s t ream cipher, for simulations, and as a general purpose pseudo-
r andom number generator.

The sections of this paper describe IA, IBAA, test results for IBAA, and
ISAAC.

2 IA

The new generator IA was designed to be secure, fast and easy to memorize. C
code for IA is given in figure 1.

Fig. 1. C code r or IA

t y p e d e f unsigned i n t u4; /* unsigned fou r b y t e s , 32 b i t s */
d e f i n e ALPHA (8) /* log o f number o f t e r m s i n m */
#define SIZE (I<<ALPHf) /* I time 2 to the 8, 256 */
d e f i n e ind(x) (xk(SIZE-1)) /* l o . order 8 b i t s of x */

s t a t i c void i a (m, r ,bb)
u4 *m; /* Memory: a r r a y o f SIZE M..PEl-bit terms */
u4 *r ; /* R e s u l t s : t h e s e q u e n c e , same s i z e a s m */
u4 *bb; /* the p rev ious r e s u l t */
{

r e g i s t e r u4 b , x , y , i ;

b ffi *bb;
for (iffi0; i<SIZE; ++i)
{

x = m[i] ;
m[i] ffi y = m[ind(x)] + b;
r [i] = b = m[ind(y>>ELPHA)] + x;

}
*bb = b;

/ * s e t m * /
/ * s e t r * /

IA operates on a secret ar ray m of 256 values. The values in m should contain at
least 2ALPHA bits. IA uses pseudorandom indirection to determine its results.
The results given by IA are the sum of values in m, not ac tual values in it. IA does
not swap values in m, instead it walks th rough the ar ray adding pseudorandomly
chosen terms to the old terms.

IA is reversible: every internal state has exactly one predecessor. The aver-
age cycle length of all elements in all reversible mappings of s states is about
s/2, while the average cycle length of all elements in all irreversible mappings
is about v/~ [5] [9]. In addit ion to having every internal state on some cycle,

43

reversible generators tend to have over half the states on the same cycle, giving
the sequences a very uniform distribution.

Notice that when x is added into r [i] = b , x is no longer in m. Therefore x
came from a different pool of values than the pseudorandom term tha t is added
in with it. I f this were not the case, IA would not be reversible and the results
would be biased in favor of even values.

The two indirections bracket the user's result, r [i] is the old value of ra [•
but with a pseudorandomly chosen value added. The new value of re[i] is the
user's previous result, but with a different pseudorandomly chosen value added.
There is no equation which does not contain a new pseudorandomly chosen value.
I f the pseudorandom values are treated as unknowns, this is enough to thwart
Gaussian elimination. Guessing what the choice was means guessing 8 bits of
information per value.

There are windows into the internal state of IA. The relationship i nd (m[i]) =
ind(r[i] - i) is 1/256 too probable, as is i n d (m [i - S I Z E] > > 8) = ind((r[i] > >
8) - i). They happen when a pseudorandom indirection chooses itself. Each
relationship holds 1/128 of the time.

It is possible to avoid these windows by limiting each pseudorandom choice to
the half of the array which does not include the value used for the pseudorandom
choice (x or y). This would leave only 128 values for each pseudorandom choice,
giving 256 relationships that are correct 1/128 of the time (as opposed to the
two relationships we have now). The proposed modification also makes the code
slower, more complicated, and more biased, so it was not done.

Biases can be detected in IA using the correlated gap test. These biases are
similar in nature to those seen in lagged-Fibonacci and add-with-carry generators
[7]. The biases are smaller than the previously noted windows into the internal
state.

No efficient a t tack is known against IA. The guess-and-generate attack, which
applies the equations of IA to an arbitrary initial guess but sets b to the real
results of IA, converges to the true state of IA after about 21~ values when
A L P H A -- 3. The at tack cannot be extended to A L P H A = 4, let alone
A L P H A --- 8. Attacks on the alleged RC4 [11] usually can be applied to IA,
and vice versa.

Proving the security of IA would require showing that no algorithm could
efficiently deduce its internal state. No algorithm examined so far can deduce its
internal state, and Gaussian elimination is one of the algorithms that has been
examined. This is not a proof by any means, but it is a start.

3 I B A A

IA was extended to IBAA. In addition to being fast, easy to memorize, and
immune to Gaussian elimination, IBAA was required to have no detectable bias
for the entire cycle length. Short cycles must be very rare. C code for IBAA is
given in figure 2. The next section gives the results of statistical tests on IBAA;
it does seem to be unbiased.

44

F ig . 2. C code for IBAA

/ *

* " means XOR, k means b i t w i s e AND, a<<b means s h i f t a by b .
* b a r r e l (a) s h i f t s a 19 b i t s t o t h e l e f t , and b i t s wrap a ro u n d
* i n d (x) i s (x AND 2 5 5) , o r (x mod 256)
*/

t y p e d e f u n s i g n e d i n t u4; / * u n s i g n e d f o u r b y t e s , 32 b i t s * /
d e f i n e ALPHA (8)
#define SIZE (I<<ALPHA)

d e f i n e i n d (x) ((x)k(SIZE-I))

#define barrel(a) (((a)<<19)'((a)>>13)) /* beta=32,shift=19 */

s t a t i c v o i d i b a a (m , r , a a , b b)
u4 *m; / , Memory: a r r a y of SIZE ALPHA-bit t e r m s * /
u4 * r ; / * Results: the sequence, same size as m * /

U4 *aa ; / * A c c u m u l a t o r : a s i n g l e v a l u e * /
u4 *bb; / * the previous result * /

r e g i s t e r u4 a , b , x , y , i ;

a = *aa; b = *bb;

for (i=O; i<SIZE~ ++i)
(

x = re[i] ;
a = barrel(a) + m[ind(i+(SIZE/2))] ;

re[i] -- y -- m [i n d (x)] + a + b ;
r[i] = b = m[ind(y>>ALPHA)] + x;

}

*bb = b ; *aa = a ;

/ , s e t a * /
/* s o t m */
/* s e t r , /

The lack of bias in IBAA comes from the accumulator a. The term added to
a is m [i n d (i + (S I g E / 2))] . Why were x or y not used instead, seeing how they
are already in registers? This decision was made based on a single series of tests.
(See the testing section for more detailed descriptions of the terms and methods
here.) The tests were on IBAA, except m[ind (x)] and m[ind(y>>ALPHA)] were
replaced with 0 and 0. The generator was scaled down to have 8 terms (not 256)
of 3 bits apiece (not 32). With a total of 30 bits of state, it had a maximum
cycle length of 230 calls, i n d (i + (S I Z E / 2)) was replaced with i n d (i + j), for each
j E 0 . . . 7 . Each of these eight generators produced a sequence of 227 calls, or
2 ~~ values. No cycles were detected. The low-order bit was removed from each
value, leaving sequences of 2-bit values. The gap test was applied to each of
these sequences, tracking gaps of length 0 . . . 63. The expected X 2 result was 63,
but the actual results (ordered by j) were 684, 412, 208, 201,212, 203, 682, and
13584. The difference from 63 is proportional to the amount of bias detected. In

45

all cases the first bad gap was of length 10. No other tests detected significant
amounts of bias, so the decision had to be based on this alone. I t appears that the
bias decreases with the distance from either endpoint, so m [i n d (i + (S I Z E / 2))]
was chosen.

b a r r e l (a) is a permutat ion of a, and is nonlinear when combined with ad-
dition. Permutat ions help assure that all values are equally likely. Nonlinear
systems are less prone than linear systems to mixing values then spontaneously
unmixing them after they have been churned for awhile. The security of IBAA,
however, does not depend upon this nonlinearity. The security depends upon the
indirections m [i n d (x)] and m[ind(y>>ALPHA)].

If re[i] , m [i n d (x)] and m[ind(y>>ALPHA)] are treated as separate unknowns,
then every set of equations has at least 4/3 as many unknowns as equations. Let a
set of 3n equations (n setting a, n setting m, and n setting r) be given. It will pro-
duce at least 4n unknowns: n each of a, m i l l , m [i n d (x)] , and m [ind(y>>ALPHA)].
Eliminating any subset of these equations only increases the ratio of unknowns
to equations.

I f an arbi trary reversible mapping has N possible values, then the chance of
an arbi trary starting point being on a cycle of length N / x or less is 1/x. The
number of internal states of IBAA is 2 s2c4, so the chances of arbitrarily choosing
a cycle shorter than 240 are about 2 -8224. About 2140 protons could fit in the
known universe [10]. The state of all zeros forms a cycle of length 256 though;
after i passes through 0 . . . 255 the state maps back to all zeros.

4 T e s t s

Tests run against random number generators with 256-term internal states often
will not fail no mat te r how long they are run. The cycle lengths of such random
number generators are more than astronomical. In order for statistical tests to
be of use, generators need to be sca led down . The number of terms in the array
and the size of the terms must be reduced. This has a number of advantages.

- Flaws are magnified because boundary cases occupy a larger percentage of
the total number of states.

- The tests run faster because the arrays are shorter.
- I f the internal state is small enough, all internal states can be enumerated

and cycle lengths can be reached. There is clearly no point in running tests
longer than the cycle length.

The tests run were Knuth ' s frequency, gap, and run tests [3]. The frequency
test counts how many times each value appears. The gap test measures the gaps
between occurances of values in the results. For example, the sequence "abcdeaf"
has a gap of 4 between occurances of "a". The gap test measured gaps up to
four times the length of the internal array. The run test counts the lengths of
strictly increasing subsequences. The expected distribution of values for a truly
random sequence is known for each of these tests, and was compared against the
sample distributions using the s tandard X 2 formula [3].

46

Two types of values were used, "normal" and "correlated". Random number
generators are designed to produce lots of random values. These are the "normal"
values. "Correlated" values were derived from groups of normal values. There
is one correlated value per call to the generator; it has as many bits as the
normal values but is composed of the low-order bit of the first few normal values.
Correlated values could identify patterns tha t occurred between calls.

The initial seed in all cases was m [i] - - i , a = l , b=l. Each generator was
warmed up by making ten calls before statistics were gathered. ALPHA (a) is
the log of t h e length of m, BETA (b) is the number of bits in each value, and
SHIFT (s) is the amount of the barrelshift (relevant only to IBAA). The normal
values are either the whole values in r or the low-order ALPHA bits of each r
value.

In the scaled-down versions of IBAA, SHIFT was chosen to be the integer
closest to the golden ratio (.618) times BETA [4]. These shift values seem to work
well. No reason is known for why they should work well. The scaled-down versions
still are not quite IBAA, because the values usually had fewer than 2 A L P H A
bits. Many bits of ind(y>>ALPHA) were always zero, so the pseudorandom choices
were very restricted.

Test results are given in figure 3. I f a test would have taken more than a day
to run and tests on smaller generators had failed to detect any bias, then the
test was not run.

A common requirement of cryptographically secure random number genera-
tors is tha t all detectable biases b decrease exponentially with some polynomial
function f of the size s of the internal state: b < 2-/(') [1] [12]. No significant
bias was detected in IBAA, so it might satisfy this requirement or it might not.

Tests suggest that all consecutive 256-value strings are equally likely results
from IBAA, 256 being the number of terms in r. No tests on samples of that
size or smaller ever fmled, even for IA which has known biases. The gap and run
tests in particular only fail if they look at subsequences of more than 2 ALPHA
values [3]. All 8192-bit strings are equally likely in m; there are 264 such states
for every string (one for each possible value of a and b).

George Marsaglia's DIEHARD test suite [8] was found shortly before this
paper went to print. Two samples each from full-scale IBAA and ISAAC were
tested. Although each sample had some test return questionable results, no test
had questionable results for both samples for either generator. Separate exper-
iments have seen IBAA develop small biases that fade away as sequences grow
longer. Bias peaked in subsequences with about 221 values. ISAAC does not seem
to have this problem with short term bias.

5 ISAAC

IBAA was extended to be leaner, meaner, and have no short cycles at all - at
the expense of being easy to memorize. The result is ISAAC, shown in figure 4.
I f the initial internal state is all zero, after ten calls the values of aa, bb, and cc
in hexadecimal will be d4d3f473, 902c0691, and 0000000a.

47

Fig. 3. Test results for IBAA

IBAA c o r r e l a t e d n o r m a l c o r r e l a t e d n o r m a l n o r m a l number
frequency frequency gap gap run of calls

.

alblsl 1:0 I:0 7:4 7:13 1:2 5

alb2sl 3:2 3:1 7:4 7:3 3:0 12

alb3s2 3:0 3:0 7:5 7:11 3:7 3164

alb4s2 3:3 3:6 7:6 7:3 3:0 10441

albSs3 3:0 3:0 7:14 7:5 3:6 235491

alb6s4 3:5 3:7 7:5 7:2 3:3 1869951

albTs4 3:0 3:0 7:1 7:7 3:0 221862935

a2b2sl 3:0 3:1 15:7 15:11 3:1 1407

a2b3s2 7:6 7:7 15:21 15:8 7:3 29382

a2b4s2 15:9 15:11 15:16 15:7 7:9 6146999

a2bSs3 15:12 15:12 15:15 15:12 7:7 9507107

a3b3s2 7:3 7:0 31:44 31:49 7:5 886828921

a8b32s19 255:238 255:215 1023:949 1023:1016 7:5 2*26

A resu l t 15:9 means expected 15, ac tua l ly got 9. A t e s t is said
to pass if the actual result differs from the expected result by

less than four times the square root of the expected result.

The normal gap test .as questionable for IBAA a3b3s2.

The number of ca l l s was the cycle length, except fo r a3b32s19.
The cycle length for IBAA a2b5s3 was unusually short.

r n g s t e p () The macro r n g s t e p () is essentially the inner loop of IBAA. Repeat-
ing it four times (unrolling the loop) reduced the loop overhead. This does
not affect the results.

*m- t -+ Replacing ra[i] with *m++, r [i] with *r++, and m[i (S IZE/2)] with
*m2++ reduced the cost of looking up terms in predictable array positions, m
is a pointer, * gets the term it points at, and ++ moves the pointer up one
to the next term. This does not affect the results.

a i m i x) The barrelshifts of IBAA were replaced with a sequence of four func-
tions: a" (a<<13), a" (a>>6), a" (a<<2), and a ~ (a>>16). ~ means XOR and
<< and >> are shifts. Each call to r n g s t e p () does one of these functions.
When machines have no barrelshift instruction, this saves one instruction
per r n g s t e p () . This sequence of functions also cause a to achieve avalanche
[6] in twelve r n g s t e p () s . That causes orderly states to become disorderly
faster, reducing short term biases. It should be noted that each of these
functions is a permutation of a.

48

Fig. 4. C code for ISAAC

/ * k i s b i t w i s e AND, " i s b i t w i s e XOR, a<<b s h i f t s a by b * /
/ * i nd (mm,x) i s b i t s 2 . . 9 of x , o r (f l o o r (x / 4) mod 2 5 6) * 4 * /
/ * in rnEste p barrel(a) was r e p l a c e d with a'(a<<13) o r such * /
t y p e d e f u n s i g n e d i n t u4 ; / * u n s i g n e d f o u r b y t e s , 32 b i t s * /
t y p e d e f u n s i g n e d c h a r u l ; / * u n s i g n e d one b y t e , 8 b i t s * /
d e f i n e i nd (mm,x) (* (u 4 *) ((u l *)(mm) + ((x) k (2 5 5 < < 2))))
d e f i n e r n g s t e p (m i x , a , b , m m , m , m 2 , r , x) \
(\

x = *m; \
a = (a ~ (m i x)) + *(m2++) ; \
*(m++) = y = i nd (mm,x) + a + b ; \
* (r + +) = b = ind(mm,y>>8) + x ; \

}

u4 * r r ;
u4 *aa ;
u4 *bb ;
u4 * c c ;
(

s t a t i c v o i d i s a a c (n u u , r r , a a , b b , c c)
u4 *nun; / * Memory: a r r a y of SIZE f L P H A - b i t t e r m s * /

/ * Results: the sequence, same size as m */

/* Accumulator: a single value */

/ * t h e p r e v i o u s r e s u l t * /
/ * C o u n t e r : one A L P H f - b i t v a l u e * /

r e g i s t e r u4 a , b , x , y , * m , * m 2 , * r , * m e n d ;
m--r~; r = r r ;
a = * a a ; b = * b b + (+ + * c c) ;

for (m = mm, mend = m2 = m+128; m<mend;)
{

rngstep(a<<13, a, b, mm, m, m2, r, x);

rngstep(a>>6 , a, b, ram, m, m2, r, x);

rngstep(a<<2 , a, b, mm, m, m2, r, x);

rngstep(a>>16, a, b, nun, m, m2, r, x);
}

for (m2 = ~; m2<mend;)
{

rnEstep(a<<13, a, b, nun, m, m2, r, x);

rngstep(a>>6 , a, b, ~n, m, m2, r, x)

rnEstep(a<<2 , a, b, ram, m, m2, r, x);

rngstep(a>>16, a, b, nun, m, m2, r, x);
}

*bb = b; *aa = a;

ce A counter was included which is used (and incremented) only once per call.
This was suggested by Bill Chambers [2]. cc and i together guarantee a min-
imum cycle length of 2 4o values. No cycles are known which are that short.
No bad initial states exist, not even the state of all zeros. Tests have shown
that adding independent things to b does not greatly affect the generator's
bias or security.

49

i n d (x) The indirection bits used in ISAAC axe 2 . . . 9 for x and 10 . . . 17 for y.
(IBAA used 0 . . . 7 and 8 . . . 15.) This shaved another instruction off each
indirect lookup. Scaled-down tests suggest tha t the choice of indirection bits
does not affect security or bias, providing no bit is used twice.

All told, ISAAC requires an amortized 18.75 instructions to produce each
32-bit value. (With the same optimizations, IA requires an amortized 12.56 in-
structions to produce each 32-bit value.) There are no cycles in ISAAC shorter
than 240 values. There are no bad initial states. The internal state has 8288 bits,
so the expected cycle length is 282s~ calls (or 2 s295 32-bit values). Deducing the
internal state appears to be intractable, and the results of ISAAC axe unbiased
and uniformly distributed.

6 S u m m a r y

A sequence of new pseudorandom number generators were developed: IA, IBAA,
and ISAAC. Their speed and lack of bias should make them useful for simulations
and cryptography. The reader is invited to prove their security (or lack thereof).

Thanks go to Colin Plumb for rephrasing an early version of IBAA, and
Niels Jorgen Kruse who found a horrible flaw in a slightly later irreversible
version. Thanks go to Hal Finney, Paul Crowley, Peter Boucher, John Kelsey,
and the other readers of sci.crypt. Thanks go to Bill Chambers for reviewing a
preliminary draft and suggesting a way to guarantee cycle lengths. Thanks go to
Manuel Blum for introducing me to cryptography in the first place. All mistakes
are my own.

R e f e r e n c e s

1. M. Blum and S. Micali. How to generate cryptographically strong sequences of
pseudo-random bits. SIAM J. Comput., 13:850-864, 1984.

2. W. G. Chambers. private communication, udee205@bay.cc.kcl.ac.uk.
3. D. Knuth. Seminumerieal Methods, volume 2, chapter 3. Addison Wesley, 1981.
4. D. Knuth. Seminumerleal Methods, volume 3, chapter 5. Addison Wesley, 1981.
5. V. F. Kolchin. Random mappings. Optimization Software Inc., 1986.
6. S. Lloyd. Counting binary functions with certain cryptographic properties. Jour-

nal o] Cryptology, 5:107-131, 1992.
7. G. Marsaglia. A new class of random number generators. The Annals o] Applied

Probability, 1:462-480, 1991.
8. G. Marsaglia. Diehard. ftp stat.fsu.edu/pub/diehard/diehard.zip, 1995.
9. A. M. Odlyzko P. Flajolet. Random mapping statistics. Lecture Notes in Com-

puter Science, 434:329-354, 1990.
10. W. Poundstone. Labyrinths of Reason. Anchor Press, 1988.
11. AnOnYmOUs UsEr. Rc4 ? sci.crypt, 1994.
12. A. Yao. Theory and applications of trapdoor functions. In Proceedings of the 23rd

IEEE Symposium on Foundations of Computer Science, pages 80-91, 1982.

