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Abst rac t .  A sequence of new pseudorandom number generators are de- 
veloped: IA, IBAA, and ISAAC. No efficient method is known for deduc- 
ing their internal states. ISAAC requires an amortized 18.75 instructions 
to produce a 32-bit value. There are no cycles in ISAAC shorter than 
24~ values. The expected cycle length is 2 s295 values. Tests show that 
scaled-down versions of IBAA are unbiased for their entire cycle length. 
No proofs of security are given. 

1 I n t r o d u c t i o n  

The purpose of this paper is to introduce the new random number generators 
IA, IBAA, and ISAAC. IA (Indirection, Addition) is slightly biased but it ap- 
pears to be secure. It is immune to Gaussian elimination. IBAA (Indirection, 
Barrelshift, Accumulate and Add) eliminates the bias in IA without damag- 
ing security. ISAAC (Indirection, Shift, Accumulate, Add, and Count) is faster 
than IBAA, guarantees no bad seeds or short cycles, and makes orderly states 
disorderly faster. 

IA was designed to satisfy these goals: 

- Deducing the internal state from the results should be intractable. 
- The code should be easy to memorize. 
- It should be as fast as possible. 

More requirements were added for IBAA: 

- It should by cryptographicaUy secure [1] [12]. 
- No biases should be detectable for the entire cycle length. 
- Short cycles should be astronomically rare. 

A generator was found that had the appropriate levels of bias. It used an ac- 
cumulator and barrelshifts. IBAA was formed by combining it with IA without 
introducing bias or reducing the security of IA. (Any unbreakable unbiased gen- 
erator which has long cycles must be cryptographically secure.) 

ISAAC took away the requirement of easy memorization but added more: 

- The C code should be optimized for speed. 
- Orderly states should become disorderly quickly. 
- There should be no short cycles at all. 

ISAAC is similar in form and function to the alleged RC4 [11], although 
the generators were developed independently. ISAAC is three times faster, less 
biased, and has longer minimum and average cycle lengths. ISAAC requires an 
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amort ized 18.75 machine instructions to produce a 32-bit value. ISAAC should 
be useful as a s t ream cipher, for simulations, and as a general purpose pseudo- 
r andom number  generator.  

The sections of  this paper  describe IA, IBAA, test results for IBAA, and 
ISAAC. 

2 IA 

The new generator  IA was designed to be secure, fast and  easy to memorize. C 
code for IA is given in figure 1. 

Fig.  1. C code r  or IA 

t y p e d e f  unsigned i n t  u4; /* unsigned fou r  b y t e s ,  32 b i t s  */ 
# d e f i n e  ALPHA ( 8 )  /*  log  o f  number  o f  t e r m s  i n  m */ 
#define SIZE (I<<ALPHf) /* I time 2 to the 8, 256 */ 
# d e f i n e  ind(x)  (xk(SIZE-1)) /* l o .  order  8 b i t s  of x */ 

s t a t i c  void  i a (m, r ,bb)  
u4 *m; /* Memory: a r r a y  o f  SIZE M..PEl-bit terms */  
u4 *r ;  /*  R e s u l t s :  t h e  s e q u e n c e ,  same  s i z e  a s  m */  
u4 *bb; /* the  p rev ious  r e s u l t  */  
{ 

r e g i s t e r  u4 b , x , y , i ;  

b ffi *bb; 
for (iffi0; i<SIZE; ++i) 
{ 

x = m[i]  ; 
m[i] ffi y = m[ind(x)] + b; 
r [ i ]  = b = m[ind(y>>ELPHA)] + x; 

} 
*bb = b; 

/ *  s e t  m * /  
/ *  s e t  r * /  

IA operates on a secret ar ray  m of  256 values. The  values in m should contain at 
least 2ALPHA bits. IA uses pseudorandom indirection to  determine its results. 
The results given by IA are the sum of  values in m, not  ac tual  values in it. IA does 
not swap values in m, instead it walks th rough  the ar ray  adding pseudorandomly 
chosen terms to the old terms. 

IA is reversible: every internal state has exactly one predecessor. The aver- 
age cycle length of  all elements in all reversible mappings  of  s states is about  
s/2, while the average cycle length of  all elements in all irreversible mappings  
is about  v/~ [5] [9]. In addit ion to having every internal state on some cycle, 
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reversible generators tend to have over half the states on the same cycle, giving 
the sequences a very uniform distribution. 

Notice that  when x is added into r [ i ] = b ,  x is no longer in m. Therefore x 
came from a different pool of values than the pseudorandom term tha t  is added 
in with it. I f  this were not the case, IA would not be reversible and the results 
would be biased in favor of even values. 

The two indirections bracket the user's result, r [ i ]  is the old value of ra [• 
but with a pseudorandomly chosen value added. The new value of re[i]  is the 
user's previous result, but with a different pseudorandomly chosen value added. 
There is no equation which does not contain a new pseudorandomly chosen value. 
I f  the pseudorandom values are treated as unknowns, this is enough to thwart  
Gaussian elimination. Guessing what  the choice was means guessing 8 bits of 
information per value. 

There are windows into the internal state of IA. The relationship i nd (m[ i ] )  = 
ind(r[i]  - i) is 1/256 too probable, as is i n d ( m [ i  - S I Z E ]  > >  8) = ind((r[ i]  > >  
8) - i). They happen when a pseudorandom indirection chooses itself. Each 
relationship holds 1/128 of the time. 

It is possible to avoid these windows by limiting each pseudorandom choice to 
the half of the array which does not include the value used for the pseudorandom 
choice (x or y). This would leave only 128 values for each pseudorandom choice, 
giving 256 relationships that  are correct 1/128 of the time (as opposed to the 
two relationships we have now). The proposed modification also makes the code 
slower, more complicated, and more biased, so it was not done. 

Biases can be detected in IA using the correlated gap test. These biases are 
similar in nature to those seen in lagged-Fibonacci and add-with-carry generators 
[7]. The biases are smaller than the previously noted windows into the internal 
state. 

No efficient a t tack is known against IA. The guess-and-generate attack, which 
applies the equations of IA to an arbitrary initial guess but  sets b to the real 
results of IA, converges to the true state of IA after about  21~ values when 
A L P H A  -- 3. The at tack cannot be extended to A L P H A  = 4, let alone 
A L P H A  --- 8. Attacks on the alleged RC4 [11] usually can be applied to IA, 
and vice versa. 

Proving the security of IA would require showing that  no algorithm could 
efficiently deduce its internal state. No algorithm examined so far can deduce its 
internal state, and Gaussian elimination is one of the algorithms that  has been 
examined. This is not a proof  by any means, but it is a start.  

3 I B A A  

IA was extended to IBAA. In addition to being fast, easy to memorize, and 
immune to Gaussian elimination, IBAA was required to have no detectable bias 
for the entire cycle length. Short cycles must be very rare. C code for IBAA is 
given in figure 2. The next section gives the results of statistical tests on IBAA; 
it does seem to be unbiased. 
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F ig .  2. C code for IBAA 

/ *  

* " means XOR, k means b i t w i s e  AND, a<<b means s h i f t  a by b .  
* b a r r e l ( a )  s h i f t s  a 19 b i t s  t o  t h e  l e f t ,  and b i t s  wrap a ro u n d  
* i n d ( x )  i s  (x AND 2 5 5 ) ,  o r  (x mod 256) 
*/  

t y p e d e f  u n s i g n e d  i n t  u4;  / *  u n s i g n e d  f o u r  b y t e s ,  32 b i t s  * /  
# d e f i n e  ALPHA (8) 
#define SIZE (I<<ALPHA) 

# d e f i n e  i n d ( x )  ((x)k(SIZE-I)) 

#define barrel(a) (((a)<<19)'((a)>>13)) /* beta=32,shift=19 */ 

s t a t i c  v o i d  i b a a ( m , r , a a , b b )  
u4 *m; / ,  Memory: a r r a y  of  SIZE ALPHA-bit t e r m s  * /  
u4 * r ;  / *  Results: the sequence, same size as m * /  

U4 *aa ;  / *  A c c u m u l a t o r :  a s i n g l e  v a l u e  * /  
u4 *bb;  / *  the previous result * /  

r e g i s t e r  u4 a , b , x , y , i ;  

a = *aa; b = *bb; 

for (i=O; i<SIZE~ ++i) 
( 

x = re[ i ]  ; 
a = barrel(a) + m[ind(i+(SIZE/2))] ; 

re[ i ]  -- y -- m [ i n d ( x ) ]  + a + b ;  
r[i] = b = m[ind(y>>ALPHA)] + x; 

} 

*bb = b ;  *aa  = a ;  

/ ,  s e t  a * /  
/*  s o t  m */  
/*  s e t  r , /  

The lack of bias in IBAA comes from the accumulator a. The term added to 
a is m [ i n d ( i + ( S I g E / 2 ) ) ] .  Why were x or y not used instead, seeing how they 
are already in registers? This decision was made based on a single series of tests. 
(See the testing section for more detailed descriptions of the terms and methods 
here.) The tests were on IBAA, except m[ ind (x ) ]  and m[ind(y>>ALPHA)] were 
replaced with 0 and 0. The generator was scaled down to have 8 terms (not 256) 
of 3 bits apiece (not 32). With a total  of 30 bits of state, it had a maximum 
cycle length of 230 calls, i n d ( i + ( S I Z E / 2 ) )  was replaced with i n d ( i + j  ), for each 
j E 0 . . . 7 .  Each of these eight generators produced a sequence of 227 calls, or 
2 ~~ values. No cycles were detected. The low-order bit was removed from each 
value, leaving sequences of 2-bit values. The gap test was applied to each of 
these sequences, tracking gaps of length 0 . . .  63. The expected X 2 result was 63, 
but  the actual results (ordered by j )  were 684, 412, 208, 201,212, 203, 682, and 
13584. The difference from 63 is proportional to the amount of bias detected. In 
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all cases the first bad gap was of length 10. No other tests detected significant 
amounts  of bias, so the decision had to be based on this alone. I t  appears  that  the 
bias decreases with the distance from either endpoint, so m [ i n d ( i + ( S I Z E / 2 ) ) ]  
was chosen. 

b a r r e l ( a )  is a permutat ion of a, and is nonlinear when combined with ad- 
dition. Permutat ions help assure that  all values are equally likely. Nonlinear 
systems are less prone than linear systems to mixing values then spontaneously 
unmixing them after they have been churned for awhile. The security of IBAA, 
however, does not depend upon this nonlinearity. The security depends upon the 
indirections m [ i n d ( x ) ]  and m[ind(y>>ALPHA)]. 

If  re[ i ] ,  m [ i n d ( x ) ]  and m[ind(y>>ALPHA)] are treated as separate unknowns, 
then every set of equations has at least 4/3 as many  unknowns as equations. Let a 
set of 3n equations (n setting a, n setting m, and n setting r )  be given. It  will pro- 
duce at least 4n unknowns: n each of a, m i l l ,  m [ i n d ( x ) ] ,  and m [ind(y>>ALPHA)]. 
Eliminating any subset of these equations only increases the ratio of unknowns 
to equations. 

I f  an arbi trary reversible mapping has N possible values, then the chance of 
an arbi trary starting point being on a cycle of length N / x  or less is 1/x. The 
number of internal states of IBAA is 2 s2c4, so the chances of arbitrarily choosing 
a cycle shorter than 240 are about  2 -8224. About 2140 protons could fit in the 
known universe [10]. The state of all zeros forms a cycle of length 256 though; 
after i passes through 0 . . .  255 the state maps back to all zeros. 

4 T e s t s  

Tests run against random number generators with 256-term internal states often 
will not fail no mat te r  how long they are run. The cycle lengths of such random 
number generators are more than astronomical. In order for statistical tests to 
be of use, generators need to be sca led  down .  The number of terms in the array 
and the size of the terms must be reduced. This has a number  of advantages. 

- Flaws are magnified because boundary cases occupy a larger percentage of 
the total  number of states. 

- The tests run faster because the arrays are shorter. 
- I f  the internal state is small enough, all internal states can be enumerated 

and cycle lengths can be reached. There is clearly no point in running tests 
longer than the cycle length. 

The tests run were Knuth ' s  frequency, gap, and run tests [3]. The frequency 
test counts how many times each value appears. The gap test measures the gaps 
between occurances of values in the results. For example, the sequence "abcdeaf" 
has a gap of 4 between occurances of "a". The gap test measured gaps up to 
four times the length of the internal array. The run test counts the lengths of 
strictly increasing subsequences. The expected distribution of values for a truly 
random sequence is known for each of these tests, and was compared against the 
sample distributions using the s tandard X 2 formula [3]. 
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Two types of values were used, "normal" and "correlated". Random number 
generators are designed to produce lots of random values. These are the "normal" 
values. "Correlated" values were derived from groups of normal  values. There 
is one correlated value per call to the generator; it has as many  bits as the 
normal values but  is composed of the low-order bit of the first few normal values. 
Correlated values could identify patterns tha t  occurred between calls. 

The initial seed in all cases was m [ i ] - - i ,  a = l ,  b=l.  Each generator was 
warmed up by making ten calls before statistics were gathered. ALPHA (a) is 
the log of t h e  length of m, BETA (b) is the number of bits in each value, and 
SHIFT (s) is the amount  of  the barrelshift (relevant only to IBAA). The normal 
values are either the whole values in r or the low-order ALPHA bits of each r 
value. 

In the scaled-down versions of IBAA, SHIFT was chosen to be the integer 
closest to the golden ratio (.618) times BETA [4]. These shift values seem to work 
well. No reason is known for why they should work well. The scaled-down versions 
still are not quite IBAA, because the values usually had fewer than 2 A L P H A  
bits. Many bits of ind(y>>ALPHA) were always zero, so the pseudorandom choices 
were very restricted. 

Test results are given in figure 3. I f  a test would have taken more than a day 
to run and tests on smaller generators had failed to detect any bias, then the 
test was not run. 

A common requirement of cryptographically secure random number genera- 
tors is tha t  all detectable biases b decrease exponentially with some polynomial 
function f of  the size s of the internal state: b < 2-/(') [1] [12]. No significant 
bias was detected in IBAA, so it might satisfy this requirement or it might not. 

Tests suggest that all consecutive 256-value strings are equally likely results 
from IBAA, 256 being the number of terms in r. No tests on samples of that 
size or smaller ever fmled, even for IA which has known biases. The gap and run 
tests in particular only fail if they look at subsequences of more than 2 ALPHA 
values [3]. All 8192-bit strings are equally likely in m; there are 264 such states 
for every string (one for each possible value of a and b). 

George Marsaglia's DIEHARD test suite [8] was found shortly before this 
paper went to print. Two samples each from full-scale IBAA and ISAAC were 
tested. Although each sample had some test return questionable results, no test 
had questionable results for both samples for either generator. Separate exper- 
iments have seen IBAA develop small biases that fade away as sequences grow 
longer. Bias peaked in subsequences with about 221 values. ISAAC does not seem 
to have this problem with short term bias. 

5 ISAAC 

IBAA was extended to be leaner, meaner, and have no short cycles at all - at  
the expense of being easy to memorize. The result is ISAAC, shown in figure 4. 
I f  the initial internal state is all zero, after ten calls the values of aa, bb, and cc 
in hexadecimal will be d4d3f473, 902c0691, and 0000000a. 
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Fig. 3. Test results for IBAA 

IBAA c o r r e l a t e d  n o r m a l  c o r r e l a t e d  n o r m a l  n o r m a l  number  
frequency frequency gap gap run of calls 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

alblsl 1:0 I:0 7:4 7:13 1:2 5 

alb2sl 3:2 3:1 7:4 7:3 3:0 12 

alb3s2 3:0 3:0 7:5 7:11 3:7 3164 

alb4s2 3:3 3:6 7:6 7:3 3:0 10441 

albSs3 3:0 3:0 7:14 7:5 3:6 235491 

alb6s4 3:5 3:7 7:5 7:2 3:3 1869951 

albTs4 3:0 3:0 7:1 7:7 3:0 221862935 

a2b2sl 3:0 3:1 15:7 15:11 3:1 1407 

a2b3s2 7:6 7:7 15:21 15:8 7:3 29382 

a2b4s2 15:9 15:11 15:16 15:7 7:9 6146999 

a2bSs3 15:12 15:12 15:15 15:12 7:7 9507107 

a3b3s2 7:3 7:0 31:44 31:49 7:5 886828921 

a8b32s19 255:238 255:215 1023:949 1023:1016 7:5 2*26 

A resu l t  15:9 means expected 15, ac tua l ly  got 9. A t e s t  is  said 
to pass if the actual result differs from the expected result by 

less than four times the square root of the expected result. 

The normal gap test .as questionable for IBAA a3b3s2. 

The number of ca l l s  was the cycle length,  except fo r  a3b32s19. 
The cycle length for IBAA a2b5s3 was unusually short. 

r n g s t e p ( )  The macro r n g s t e p ( )  is essentially the inner loop of IBAA. Repeat- 
ing it four times (unrolling the loop) reduced the loop overhead. This does 
not affect the results. 

*m- t -+  Replacing ra[i] with *m++, r [ i ]  with *r++, and m[ i (S IZE/2 ) ]  with 
*m2++ reduced the cost of looking up terms in predictable array positions, m 
is a pointer, * gets the term it points at, and ++ moves the pointer up one 
to the next term. This does not affect the results. 

a i m i x  ) The barrelshifts of IBAA were replaced with a sequence of four func- 
tions: a" (a<<13), a" (a>>6), a" (a<<2), and a ~ (a>>16). ~ means XOR and 
<< and >> are shifts. Each call to r n g s t e p ( )  does one of these functions. 
When machines have no barrelshift instruction, this saves one instruction 
per r n g s t e p ( ) .  This sequence of functions also cause a to achieve avalanche 
[6] in twelve r n g s t e p ( ) s .  That  causes orderly states to become disorderly 
faster, reducing short term biases. It should be noted that each of these 
functions is a permutation of a. 
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Fig. 4. C code for ISAAC 

/ *  k i s  b i t w i s e  AND, " i s  b i t w i s e  XOR, a<<b s h i f t s  a by  b * /  
/ *  i nd (mm,x )  i s  b i t s  2 . . 9  of  x ,  o r  ( f l o o r ( x / 4 )  mod 2 5 6 ) * 4  * /  
/ *  in rnEste p barrel(a) was r e p l a c e d  with a'(a<<13) o r  such * /  
t y p e d e f  u n s i g n e d  i n t  u4 ;  / *  u n s i g n e d  f o u r  b y t e s ,  32 b i t s  * /  
t y p e d e f  u n s i g n e d  c h a r  u l ;  / *  u n s i g n e d  one b y t e ,  8 b i t s  * /  
# d e f i n e  i nd (mm,x )  ( * ( u 4  * ) ( ( u l  *)(mm) + ( ( x )  k ( 2 5 5 < < 2 ) ) ) )  
# d e f i n e  r n g s t e p ( m i x , a , b , m m , m , m 2 , r , x )  \ 
( \  

x = *m; \ 
a = (a  ~ ( m i x ) )  + *(m2++) ; \ 
*(m++) = y = i nd (mm,x )  + a + b ;  \ 
* ( r + + )  = b = ind(mm,y>>8)  + x ;  \ 

} 

u4 * r r ;  
u4 *aa ;  
u4 *bb ;  
u4 * c c ;  
( 

s t a t i c  v o i d  i s a a c ( n u u , r r , a a , b b , c c )  
u4 *nun; / *  Memory: a r r a y  of  SIZE f L P H A - b i t  t e r m s  * /  

/ *  Results: the sequence, same size as m */ 

/* Accumulator: a single value */ 

/ *  t h e  p r e v i o u s  r e s u l t  * /  
/ *  C o u n t e r :  one A L P H f - b i t  v a l u e  * /  

r e g i s t e r  u4 a , b , x , y , * m , * m 2 , * r , * m e n d ;  
m--r~; r = r r  ; 
a = * a a ;  b = * b b  + ( + + * c c ) ;  

for (m = mm, mend = m2 = m+128; m<mend; ) 
{ 

rngstep( a<<13, a, b, mm, m, m2, r, x); 

rngstep( a>>6 , a, b, ram, m, m2, r, x); 

rngstep( a<<2 , a, b, mm, m, m2, r, x); 

rngstep( a>>16, a, b, nun, m, m2, r, x); 
} 

for (m2 = ~; m2<mend; ) 
{ 

rnEstep( a<<13, a, b, nun, m, m2, r, x); 

rngstep( a>>6 , a, b, ~n, m, m2, r, x) 

rnEstep( a<<2 , a, b, ram, m, m2, r, x); 

rngstep( a>>16, a, b, nun, m, m2, r, x); 
} 

*bb = b; *aa = a; 

ce A counter was included which is used (and incremented) only once per call. 
This was suggested by Bill Chambers [2]. cc and i together guarantee a min- 
imum cycle length of 2 4o values. No cycles are known which are that short. 
No bad initial states exist, not even the state of  all zeros. Tests have shown 
that adding independent things to b does not greatly affect the generator's 
bias or security. 
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i n d ( x )  The indirection bits used in ISAAC axe 2 . . .  9 for x and 10 . . .  17 for y. 
(IBAA used 0 . . . 7  and 8 . . .  15.) This shaved another instruction off each 
indirect lookup. Scaled-down tests suggest tha t  the choice of indirection bits 
does not affect security or bias, providing no bit is used twice. 

All told, ISAAC requires an amortized 18.75 instructions to produce each 
32-bit value. (With the same optimizations, IA requires an amortized 12.56 in- 
structions to produce each 32-bit value.) There are no cycles in ISAAC shorter 
than 240 values. There are no bad initial states. The internal state has 8288 bits, 
so the expected cycle length is 282s~ calls (or 2 s295 32-bit values). Deducing the 
internal state appears  to be intractable, and the results of ISAAC axe unbiased 
and uniformly distributed. 

6 S u m m a r y  

A sequence of new pseudorandom number generators were developed: IA, IBAA, 
and ISAAC. Their speed and lack of bias should make them useful for simulations 
and cryptography. The reader is invited to prove their security (or lack thereof). 
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version. Thanks go to Hal Finney, Paul Crowley, Peter Boucher, John Kelsey, 
and the other readers of sci.crypt. Thanks go to Bill Chambers  for reviewing a 
preliminary draft and suggesting a way to guarantee cycle lengths. Thanks go to 
Manuel Blum for introducing me to cryptography in the first place. All mistakes 
are my own. 
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