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A b s t r a c t .  Cryptographic primitives are usually based on a network 
with boxes. At EUROCRYPT'94, Schnorr and the author of this pa- 
per claimed that all boxes should be multipermutations. Here, we inves- 
tigate a few combinatorial properties of multipermutations. We argue 
that boxes which fail to be multipermutations can open the way to un- 
suspected attacks. We illustrate this statement with two examples. 
Firstly, we show how to construct collisions to MD4 restricted to its first 
two rounds. This allows one to forge digests close to each other using 
the full compression function of MD4. Secondly, we show that variants 
of SAFER are subject to attack faster than exhaustive search in 6.1% 
cases. This attack can be implemented if we decrease the number of 
rounds from 6 to 4. 

In [18], multipermutatwns are introduced as formalization of perfect diffusion. 
The aim of this paper is to show that the concept of mult ipermutation is a basic 
tool in the design of dedicated cryptographic functions, as functions that  do not 
realize perfect diffusion may be subject to some clever cryptanalysis in which 
the flow of information is controlled throughout the computat ion network. We 
give two cases of such an analysis. 

Firstly, we show how to build collisions for MD4 restricted to its first two 
rounds 2. MD4 is a three rounds hash function proposed by Rivest[17]. Den Boer 
and Bosselaers[2] have described an attack on MD4 restricted to its last two 
rounds. Another unpublished attack on the first two rounds has been found by 
Merkle (see the introduction of [2]). Here, we present a new attack which is 
based on the fact that  an inert function is not a multipermutation. This attack 
requires less than one tenth of a second on a SUN workstation. Moreover, the 
same attack applied to the full MD4 compression function produces two different 
digests close to each other (according to the Hamming distance). This proves the 
compression function is not correlation-free in the sense of Anderson[l]. 
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Secondly, we show how to develop a known plaintext attack to a variant of 
SAFER K-64, in which we replace the permutat ion exp45 by a (weaker) one. 
SAFER is a six rounds encryption function introduced by Massey[9]. It uses a 
byte-permutat ion (namely, exp45 in the group of nonzero integers modulo 257) 
for confusion. If we replace exp45 by a random permutat ion P (and log45 by P -  1), 
we show that  in 6.1% of the cases, there exists a known plaintext attack faster 
than exhaustive search. Furthermore, this attack can be implemented for the 
function restricted to 4 rounds. This attack is based on the linear cryptanalysis 
introduced by Matsui[10] and recently gave way to the first experimental attack 
of the full DES function[i l l .  

1 M u l t i p e r m u t a t i o n s  

In [18], mult ipermutat ions with 2 inputs and 2 outputs are introduced. Here, we 
propose to generalize to any number of inputs and outputs. 

D e f i n i t i o n .  A (r, n)-mult ipermutat ion over an alphabet Z is a function f from 
Z" to Z n such that  two different (r + n)-tuples of the form (x, f (x ) )  cannot 
collide in any r positions. 

Thus, a (1, n)-mult ipermutat ion is nothing but a vector of n permutations over 
Z. A (2, 1)-multipermutation is equivalent to a latin square 3. A (2, n)-multi- 
permutat ion is equivalent to a set of n two-wise orthogonal latin squares 4. Latin 
squares are widely studied by Ddnes and Keedwell in [3]. 

An equivalent definition says that  the set of all (r + n)-tuples of the form 
(x, f (x ) )  is an error correcting code with minimal distance n + 1, which is the 
maximal  possible. In the case of a linear function f ,  this is the definition of 
MDS codes: codes which reach Singleton's bound (for more details about MDS 
codes, see [15]). More generally, a (r, n)-mult ipermutat ion is equivalent to a 
( ( ~ Z )  r, r + n, ~ Z ,  r)-orthogonal array 5 . 

A mul t ipermutat ion performs a perfect diffusion in the sense that  changing t of 
the inputs changes at least n - t + 1 of the outputs. In fact, it corresponds to the 
notion of perfect local randomizer introduced by Maurer and Massey[13] with the 
optimal  parameter.  If a function is not a mult ipermutation,  one can find several 
values such that  both few inputs and few outputs are changed. Those values can 
be used in cryptanalysis as is shown in two examples below. This motivates the 
use of mult ipermutat ions in cryptographic functions. 

3 a latin square over a finite set of k elements is a k x k matrix with entries from this 
set such that all elements are represented in each column and each row. 

4 two latin squares A and B are orthogonal if the mapping (i,j) ~-~ (A~,j, B~,j) gets all 
possible couples. 

5 a (M, r + n, q, r)-orthogonal array is a M • (r + n) matrix with entries from a set of 
q elements such that any set of r columns contains ail q~ possible rows exactly q~ 
times. 



288 S. Vaudenay 

The design of mult ipermutations over a large alphabet is a very difficult 
problem, as the design of two-wise orthogonal latin squares is a well-known 
difficult one. The only powerful method seems to use an MDS code combined 
with several permutations at each coordinate. 

In the particular case of 2 inputs, it is attractive to choose latin squares based 
on a group law: if we have a group structure over Z, we can seek permutat ions 
a,  8, 7, 5, e and ( such that  

y) 

is a permutation,  as it will be sufficient to get a mult ipermutat ion.  Unfortunately, 
it is possible to prove that  such permutations exist only when the 2-Sylow sub- 
group of Z is not cyclic 6, using a theorem from Hall and Paige[7]. More precisely, 
they do not exist when the 2-Sylow subgroup is cyclic. They are known to exist 
in all solvable groups in which the 2-Sylow subgroup is not cyclic, but  the exis- 
tence in the general case is still a conjecture. Hence, Z should not have a cyclic 
group structure. For instance, we can use the 2Z~ group structure for n > 1. 
Such multipermutations are proposed in [18]. 

In MD4, the group structure of ~32 is used, but  some functions are not 
multipermutations.  On the other hand, in SAFER, the group structure of 2g~6, 
which is cyclic, is used, so without multipermutations.  

2 C r y p t a n a l y s i s  o f  M D 4  

2.1 Description of  MD4 

MD4 is a hash function dedicated to 32-bit microprocessors. It hashes any bit 
string into a 128-bit digest. The input is padded following the Merkle-Damgs 
scheme[4, 12] and cut into 512-bit blocks. Then, each block is processed iter- 
atively using the Davies-Meyer scheme[5, 14] i.e. with an encryption function 
C in a feedforward mode: if B 1 , . . . ,  B,~ is the sequence of blocks (the padded 
message), the hash value is 

where vi is an Initial Value, and ha(v) is C~(v) + v (x is the key and v is the 
message to encrypt). 

Here we intend to build a single block collision to h(vi), that  is to say two 
blocks x and x' such that C~(vi) = C,,(vi). It is obvious that  this can be used 
to build collisions to the hash function. So, we only have to recall the definition 
of the function C~(v). 

we agree the trivial group is not cyclic. Actually, x ~ x 2 is an orthomorphism in all 
groups with odd order, in which the 2-Sylow subgroup is trivial. 
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The value v is represented as 4 integers a, b, c and d (coded with 32 bits), and 
the key x is represented as 16 integers Z l , . . . ,  x16. The initial definition of C 
uses three rounds i = 1, 2, 3. The figure 1 shows the computat ional  graph of a 
single round i. It uses a permutat ion (ri and some boxes B j .  B j is fed with a 
main input,  a block integer Xa~(j ) and three side inputs. If p is the main input 
and q, r and s are the side inputs (from top to bot tom),  the output  is 

where R is the right circular rotation, ai,j and ki are constants and fi is a 
particular function. In the following, we just have to know that  f2 is the bit-wise 
major i ty  function, crl is the identity permutation,  and 

/ ' 1 2 3 4  56  7 8 9 10 11 12 13 14 1516"~ 
~r~= ~ 1 5 9 1 3 2 6 1 0 1 4 3  7 1115 4 8 1216 J 

2.2 A t t a c k  o n  t h e  f i r s t  t w o  r o u n d s  

If we ignore the third round of C, it is very easy to build collisions. We notice 
that  no B~ are multipermutations: if p = 0, x = -k 2  and two of the three 

integers q, r and s are set to zero, then B~(z,p,  q, r, s) remains zero (the same 
remark holds with - 1  instead of 0). So, we can imagine an attack where two 
blocks differ only in x16, the other integers are almost all set to - k 2  and such 
that  almost all the outputs of the first round are zero. This performs a kind of 
corridor where the modified values are controlled until the final collision. 

More precisely, let X l , . . . ,  x l l  equal -k2 ,  x12 be an arbitrary integer (your 
phone number for instance) and z13, x14 and Xl~ be such that  the outputs  a, c 
and d of the first round are zero. The computat ion of x13, x14 and x15 is very 
easy from the computat ional  graph. Thanks to the previous remark, we can show 
that  the outputs  a, c and d of the second round do not depend on x16 as the 
modified information in x16 is constrained in the register b. Thus, modifying z16 
does not modify a, c and d. 

Letting the b output  be a function of x16, we just have to find a collision to a 
32 bits to 32 bits function. This can be done very efficiently using the bir thday 
paradox or the p method. An implementation on a Sparc Station uses one tenth 
of second. 

If we use the same attack on the full-MD4 function, since cr~1(16) = 16, the 
only modified x occurs in the very last computat ion in the third round. So, if this 
round is fed with a collision, it produces a collision on the a, c and d output.  The 
digests differ only in the second integer b. Hence, the average Hamming distance 
between both digests is 16. This proves the compression function of MD4 is not 
correlation-free, according to Andersons's definition[l]. 
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3 Cryptanalysis of SAFER 

3.1 Description of  SAFER 

SAFER is an encryption function dedicated to 8-bit microprocessors. It en- 
crypts a 64 bits message using a 64-bit key. The key is represented as 8 integers 
kl, �9 �9 ks. A key scheduling algorithm produces several subkeys k~ , . . . ,  k~. In the 
following, we just  have to know that  k~. is a simple function of kj (and kJ = kj). 

The encryption algorithm takes 6 rounds and a half. The ith round is sum- 
marized on figure 2. It uses the subkeys k y  -1 and k~. i. After the 6th round, the 

half round simply consists of xoring/adding the subkeys kJ 3 as we would do in 
a 7th round. 

�9 + + G G + + �9 q k 2i-1 

+ | @ + + �9 �9 + q k ~i 

Fig.  2. The ith round of SAFER 

| represents the xor operation on 8 bits integers. + is the addition modulo 
256. P is a permutat ion over the set of all 8-bits integers defined in the SAFER 
design. Q is the inverse permutat ion of P.  L is a linear permutat ion over the 
algebraic structure of the ring 7Z,~56, as 

L ( x , y ) = ( 2 x + y , x + y )  (mod256) .  

In the original design, P is the exponentiation in base 45 modulo 257: all integers 
from 1 to 256 can be coded with 8 bits (256 is coded as zero) and represent the 
group of all invertible integers modulo 257.45 is a generator of this group. 

In practical implementations, we have to store the table of the permutat ion 
P.  So, there is no reason to study SAFER with this particular permutat ion.  
Here, we will show that  this choice is a very good one, as for 6.1% of all possi- 
ble permutations,  there exists a known plaintext attack faster than exhaustive 
search. 
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3.2 L i n e a r  c r y p t a n a l y s i s  o f  S A F E R  

I have many times used the discrete exponential or the discrete logarithm 
as nonlinear cryptographic functions and they have never let me down. 
James Massey 

The permutation L is not a multipermutation, as we have 

Ll(x  + 128, y) = Ll(x ,  y) 

for all x and y (where L1 denotes the first output of L). So, we have pairs 
of 4-tuples (x, y, L(x,  y)) at Hamming distance 2. Actually, there are no (2, 2)- 
multipermutations which are linear over 2Z256 as its 2-Sylow subgroup is cyclic 
(it is itself here). We can use this property of L1 by a dual point of view noticing 
that  some information about L1 (x, y) only depends on y. Namely, we have 

L l ( x , y )  . 1 = y .  1 

where �9 is the inner product over (g2) s, so, y .  1 is the least significant bit of y. 
Similarly, we have 

( L I ( x , y ) .  1) G ( L 2 ( x , y ) .  1 ) = x .  1 

Let F denote the function defined by the three bottom layers on figure 2 
(layers which uses L in a round). If xl . . . .  , xs are the inputs of a round, the 
outputs are F ( y l , . . . , y s )  where Yl = P ( x l  @ k~) + k~, ... We notice that  if 
F ( y l , . . . ,  Ys) = ( z l , . . . ,  zs), we have a 2-2 linear characteristic 

(z3" 1)@(z4.1)  = (Y3" 1) O(y4 .1 )  

(this means there is a linear dependence using 2 inputs and 2 outputs of F) .  
There are 5 other 2-2 linear characteristics: 

(z2 .1)@(z6-1)  = ( y 2 . 1 ) ~ ( y 6 . 1 )  

(zh. 1) O(z7 .1 )  = (Yh" 1) O(y7 .1 )  

(z3 .1)@(z~.  1) = (yh" 1 ) |  

(z~. 1 ) |  = (Y2" 1)@(y4.1)  

(z2" 1)@(z4.1)  = (Y3" 1 ) ~ ( y 7 . 1 ) .  

If L were a multipermutation, the smallest characteristics would be a-b ones such 
that  a + b = 6. This property is similar to the well-known Heisenberg's inequality 
which states we cannot have any precise information on both the input and the 
output  of the Fourier transform. This means more information would be required 
in a cryptanalysis. 
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Let q denote Prob,[x.  1 = P(x).  1]-  �89 the bias which measures the dependence 
between the least significant bits of P(x) and x. We get the same bias with Q 
in place of P.  If ( x l , . . . ,  xs) is a plaintext, if yl = P(xl  ~ kl), y2 = Q(x= + k2), 
�9 .., ys = P(x8 @ ks), and if ( z l , . . . ,  zs) is the ciphertext, let us write 

b(x,z) = (Y3" 1) @ (Y4" 1) @ (z3.1) @ (z4- 1). 

Lemma i in appendix A states that b(x, z) = r with probability �89 + (2q) 1~ 
where r denotes the exclusive or of all least significant bits of k~ and k~ for 
i = 2 , . . . ,  13. For a given (x, z), to compute b(x, z), we only have to know k3 
and k4. Lemma 1 states that it occurs with probability roughly equal to �89 (the 

1 difference with $ is negligible against (2q) 1~ when wrong k3 and k4 are used in 
the computation of b(x, z). Thus, trying all the possible (ka, k4), it is possible to 
distinguish the good one from the other candidates by a statistical measure. 

Let us recall the central limit theorem (see [6] for instance): 

T h e o r e m .  I f  B is the arithmetic mean of N independent random variables with 
the same probability distribution with average It and standard deviation ~r, we 
have 

Prob 

Let B(k3, k4) be the average of b(x, z) over all the N available couples (x, z). 
Lemma 1 proves that the standard deviation of b(x, z) is close to �89 Let 

3`1 + 3,2 = v/-N'(2q) 1~ 

The central limit theorem states that if (k3, k4) is wrong, 

[ ~ 2-~3`1 ] ~ i  f ~1 ,~ Prob B(ka, k 4 ) -  < --* j_ ) . l e -Td t ;  

and if (k3, k4) is good, 

[ 1 3`1' I f ~2+2;~1 '2 ~- -~  ] --+ e- T dt. Prob B(ka, k4) -- < ~ J,X= 

The statistical test consists in accepting any (k3, k4) such that 

B(k3, k4) ~1 A1 Test(k3, k4) : - > 2---~" 

If 3`1 -- 3`2 = 2 the good (ka, k4) is accepted with probability 98% and the bad 
ones are rejected with probability 95%. So, the number of plaintexts/ciphertexts 
required to distinguish the good (k3, k4) is 

16 
N,~ - -  (2q) 2~ 

If ]q] is greater than 2 -4, this is faster than exhaustive search. 
For only 4 rounds in SAFER, we have N ,,~ ~ .  So, for all permutations 

P which are biased (q ~ 0), this attack is faster than exhaustive search. For 
]ql -> 2-4, the attack can be implemented. 
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The analysis of the distribution of q shows that  we have Jql -> 2-4 for 6.1% of the 
possible permutations P (see appendix B). We have q = 0 for only 9.9% of the 
permutations.  Unfortunately (or fortunately),  for the P chosen by Massey, we 
have q = 0, so, the weakness of the diffusion phase is balanced by the strength of 
the confusion phase. Actually, q = 0 is a property of all exponentiations which 
are permutations (see appendix C). This analysis illustrates how Massey was 
right in context with his quotation. 

Further analysis can improve this attack. It is possible to use tighter compu- 
tations. We can look for a better tradeoff between the workload and the prob- 
ability of success. It is also possible to use several characteristics to decrease N 
(for more details, see [8]). At least, it is possible to decrease N by a factor of 64. 
Actually, we believe it is possible to improve successfully this attack for all the 
90.1% biased permutations. 

Conclusion 

In MD4, we have shown that  the fact that  f2 is not a mult ipermutat ion allows 
one to mount  an attack. Similarly, in SAFER, the diffusion function is not a 
mult ipermutat ion.  This allows one to imagine another attack. This shows that  we 
do need mult ipermutat ions in the design of cryptographic primitives. Research 
in this area should be motivated by this general statement.  
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A Linear characterist ic  

L e m m a  1. I f  r denotes the least significant bit of the sum of all ki3 and ki4 
for i = 2 , . . . ,  13, let us denote Ya = Q(xa + ka), y4 = P(x4 ~ k4) and 

b(x,z)  = (Ya" 1) @ (Y4" 1) @ (za. 1) @ (z4.1)  

where z is the encrypted message 4 using an unknown key. z) = r 
holds with probability 

(1 4- (2q) 1~ 

where e is the number of wrong integers in (k3, k4) (e = 0 if  both are good and 
e = 2 in most of cases). The standard deviation of b(x, z) is 

i v / 1  _ (2q)2o+ o. 
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the Proof. Thanks to the property of the linear characteristic, if we denote by tj 
xor of the least significant bit of the input and the output of the P / Q  box in 
position j in round # i ,  it is easy to se that 

6 4 ,  

+ r b(z , z )  = (Y3" 1) + (Y4" 1) + (y~. 1) + (y~. 1) + E E t j  
i = 2  i = 3  

(mod 2) 

where r denotes the real r and y~ (resp. y~) denotes the real y3 (resp. 
y4). Under the heuristic assumption that all inputs to P / Q  boxes are uniformly 
distributed and independent, it is easy to prove that 

Prob E t } = O  -- (lq-(2q) 1~ 
i=2 i=3 

using the piling-up lemma pointed out by Matsui[10]. This finishes the case 
where k3 and k4 are good. 

If k3 or k4 are wrong, let us denote e = 2 if both are bad, and e = 1 if only 
one is bad. Assume k3 is bad without loss of generality. We have 

Prob [(y3" 1) @ (y~. 1) = 0] = 1(1 + 2q). 

The -t- comes from whether r = r or not. This finishes the computation 
of the probability. 

The standard deviation comes from the following formula which holds for all 
0/1 random variables : 

~(b) = ~ /E(b)(1  - E @ ) .  

17 

B D i s t r i b u t i o n  o f  t h e  b i a s  

L e m m a 2 .  I f  q = Prob[x.  1 = P ( z )  . 1 ] -  1 where P is a permutation over 
{ 0 , . . . , n -  1} (we assume that n is a multiple of 4), nq is always an even 
integer and for  all integers k 

= 

.~ ((~ - k)~) 2 ( ( ~  + k)!)  ~ 

for  a uniformly distributed permutation P d. 

All those kind of distribution has been studied by O'Connor, but we give here 
and independant study in this particular case [16]. 
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n denotes the number of even integers x such that  P(x)  is even, Proof. If k + 
2k So, we just  have to enumerate the number of permutat ions for we have q = ~ .  

a given k + n 
'~ elements: the We have to choose 4 sets with k + { elements in sets with 

set of even integers which are mapped on even integers, the set of their images, 
the set of odd integers which are mapped on odd integers and the set of their 
images. We also have to choose 2 permutations over a set of k + ~ integers (how 
to connect even to even integers and odd to odd integers) and 2 permutat ions 
over a set of - k  + ~ integers (how to connect even to odd integers and odd to 
even integers). So, the number of permutations is 

) • _ 

[] 

This allows one to compute 

Prob [Iql > 2 6.1% 

for n = 256 and 
Prob [q = 0] "" 9.9%. 

C B i a s  o f  t h e  e x p o n e n t i a t i o n  

L e m m a 3 .  For any generator g of Z~257, lhe permutation x ~-+ g~ is unbiased 
( i .e .  q = O). 

Proof. We have (g12S)2 _- g256 _~ 1 (mod 257) so gl2S is 1 or - 1 .  As the 
exponentiat ion in base g is a permutat ion and gO __ 1, we have g12s _~ 1 

(mod 257). 
We have g~+12s = _g~ = 257 - g~ (rood 257), so, we can part i t ion all the 

integers into pairs {x, x + 128} of integers with the same least significant bit. 
The  image of this pair by the exponentiation has two different least significant 
bits, so the bias q is 0. [] 


