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Abs t rac t .  In this paper we introduce the correlation matrix of a Boolean 
mapping, a useful concept in demonstrating and proving properties of 
Boolean functions and mappings. It is argued that correlation matrices 
are the "natural" representation for the proper understanding and de- 
scription of the mechanisms of linear cryptanalysis [4]. It is also shown 
that the difference propagation probabilities and the table consisting of 
the squared elements of the correlation matrix are linked by a scaled 
Walsh-Hadamard transform. 
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1 Introduction 

Most components in encryption schemes are Boolean mappings. In this paper, 
we establish a relation between Boolean mappings and specific linear mappings 
over real vector spaces. The matrices that  describe these mappings are called 
correlation matrices. The elements of these matrices consist of the correlation 
coefficients associated with linear combinations of input bits and linear combi- 
nations of output  bits. 

Correlation matrices describe correlation properties of Boolean mappings in 
a direct way and are therefore the natural representation for the description 
and understanding of the mechanisms of linear cryptanatysis [4]. Moreover, they 
provide a useful tool for theoretical derivations and proofs. 

After giving some preliminary definitions, we describe the Walsh-Hadamard 
transform of Boolean functions. Subsequently, we introduce the concept of cor- 
relation matrices and show how to calculate elements of this matr ix  for some 
particular types of mappings. This is followed by a t reatment  of the correlation 
properties of i terated transformations. We conclude with deriving the relations 
between the table of difference propagation probabilities of a mapping and its 
correlation matrix.  For a more thorough treatment  of difference propagation and 
additional properties of correlation matrices we refer to [6]. 
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2 Prel iminaries  

A binary vector consists of an array of binary-valued components, that  are in- 
dexed starting from 0. A binaryvector  a with dimension (or equivalently length) 
n has components a0, a l , . . . ,  an-1. The set of all binary vectors with dimension 
n is denoted by 7/~. 

A Boolean function f (a)  is a two-valued function with domain 7]~ for some 
n. A Boolean mapping h(a) maps Z~ to 7/~ n for some n, m and can be seen as the 
parallel application of m Boolean functions: (hi(a), h2(a), . . . ,  hm-l(a)) .  If m = 
n, the Boolean mapping is called a transformation of 7]~ n. This transformation 
is called invertible if it is a bijection. 

The addition modulo 2 of two binary variables c~ and/~ is denoted by a + ft. 
Hence a + f i  is 0 if a = fi and i otherwise. The bitwise addition, sum or difference 
of two binary vectors a and b is denoted by a + b and consists of a vector c with 
components ci = ai + bi. If the plus sign is used to denote arithmetic addition, 
it will be clear form the context. A Boolean mapping h is linear (with respect 
to bitwise addition) if h(a + b) = h(a) § h(b) for all a, b E Z~. 

3 The Walsh-Hadamard transform 

Linear cryptanalysis can be seen as the exploitation of correlations between lin- 
ear combinations of bits of different intermediate encryption values in a block 
cipher calculation. The correlation between two Boolean function can be ex- 
pressed by a correlation coefficient that  ranges between - 1  and 1: 

D e f i n i t i o n  1. The correlation coefficient associated with a pair of Boolean func- 
tions f (a)  and g(a) is denoted by C(f ,  g) and given by 

C(f ,g)  -- 2 - p r o b ( f ( a )  = g(a) ) - 1 . 

From this definition it follows that C(f ,  g) = C(g, f ) .  If the correlation coefficient 
is different from zero the functions are said to be correlated. 

A selection vector w is a binary vector that  selects all components i of a 
vector that  have wi -- 1. Analogous to the inner product of vectors in linear 
algebra, the linear combination of the components of a vector a selected by w 
can be expressed as wta where the t suffix denotes transposition of the vector 
w. A linear Boolean function wta is completely specified by its corresponding 
selection vector w. 

Let ](a) be a real-valued function that  is - 1  for f (a)  = 1 and +1 for f (a)  = O. 
This can be expressed by ](a) = ( -1 )  ](a). In this notation the real-valued 
function corresponding to a linear Boolean function wta becomes ( -1 )  wta. The 
bitwise sum of two Boolean functions corresponds to the bitwise product of their 
real-valued counterparts, i.e., 

f (a)  +~g(a) = ](a)#(a) . (1) 
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We define an inner product for real-valued functions, not to be confused with 
the inner product of vectors, by 

< ](a),[7(a) >--: E ?(a)~(a) , (2) 
a 

It can easily be shown that  

C(f(a) ,  g(a)) = 2-" < f(a), ~(a) > (3) 

The real-valued functions corresponding to the linear Boolean functions form an 
orthogonal basis with respect to the defined inner product: 

< ( -1)  ~%,(-1)  ~ta > =  2"5(u + v) , (4) 

with 5(w) the real-valued function that  is equal to 1 if w is the zero vec- 
tor and 0 otherwise. The representation of a Boolean function with respect to 
this basis is called its Walsh-Hadamard transform [5, 1]. The link between the 
Walsh-Hadamard transform of a Boolean function and its correlation with lin- 
ear Boolean functions was first established in [2]. If the correlation coefficients 
C(f(a), wta) are denoted by F(w) we have 

?(a) = E /~ (w) ( -1 )w~a  (5) 
w 

and dually 

summarized by 

F ( w ) - - - 2  - n E f ( a ) ( - 1 ) w t a  ' (6) 
a 

P(w) = w(f(a)) .  (7) 
Hence a Boolean function is completely specified by the set of correlation coef- 
ficients with all linear functions. 

The Walsh-Hadamard transform of the sum of two Boolean functions f(a) + 
g(a) can be derived using (5). If h = f + g, we have 

H(w) = # (v  + (8) 
1) 

Hence, addition modulo 2 in the Boolean domain corresponds to convolution 
in the transform domain. If the convolution operation is denoted by | this is 
expressed by 

}V(f + g) ----- W(f)  | W(g) . (9) 

The subspaee of 7]~ generated by the vectors w such that /~(w)  ~ 0 is called 
its support space Vy. The support space of the sum of two Boolean functions is a 
subspaee of the (vector) sum of their corresponding support spaces: V$+g C V! q- 
~;g. This follows directly from the convolution property. Two Boolean functions 
are called disjunct if their support spaces are disjunct, i.e., if the intersection of 
their support spaces only contains the origin. A vector v E ~;]+g with f and g 
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disjunct, can be decomposed in only one way into a component u E 1~! and a 
component w E Vg. In this case the transform values of h = f + g are given by 

H(v)  = F(u )&(w)  with v = u + w and u E 12l,w E 13g . (10) 

Pairs of Boolean functions that  depend on non-overlapping sets of input bits are 
a special case of disjunct functions. 

4 Correlation matrices 

A mapping h : 7]~ ~ 7/~ n can be decomposed into m component Boolean func- 
tions: ( h 0 , h l , . . . ,  hm-1). Each of these component functions hi has a Walsh- 
Hadamard transform Hi. The vector function with components /{ i  is denoted 
by /~ and can be considered the Walsh-Hadamard transform of the mapping 
h. As-in the case of Boolean functions, H completely determines the Boolean 
transformation h. The Walsh-Hadamard transform of any linear combination of 
components of h is specified by a simple extension of (9): 

W(uth)  = @ Hi �9 (11) 
u i = l  

All correlation coefficients between linear combinations of input bits and that  of 
output  bits of the mapping h can be arranged in a 2 m x 2 n correlation matrix 
C h. The element C=w in row u and column w is equal to C(uth(a),  wta). The 
rows of this matr ix  can be interpreted as 

( - 1 )  ~th(a) = ~ ch~(--1)  ~ta (12) 

w 

A matr ix  C A defines a linear mapping with domain IR 2" and range ll~ 2m. 
Let 7~ be a mapping from the space of binary vectors to the space of real vec- 
tors, where a binary vector of dimension n is depicted onto a real vector with 
dimension 2 n. 7~ is defined by 

T~: Z~ ~-~ lR2~: cr = 7~(a) : ~u = ( -1 )  ~ta (13) 

Since Tt(a+b) = Ti(a)T~(b), Tr is a g roup-homomorph i smfrom < 7]~, + > to < 
IR2",. >, with �9 denoting the componentwise product. From (12) it can easily 
be seen that  

GATe(a) = n (h (a ) )  . (14) 

Consider the composition of two Boolean mappings h = h2 o hi or h(a) = 
h2 (hi (a)), with hi mapping n-dimensional vectors to p-dimensional vectors and 
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with h2 mapp ing  p-dimensional vectors t o  m-dimensional vectors. The correla- 
tion ma t r ix  of h is determined by the correlation matrices of the component  
mappings.  We have 

(--1)u'h(a) = ~ ch~ (--1) ~thl(~) 

v 
h~ 

= Z 

h2 hi -- Z ( Z  CuvCvw)(-1)wta " 

w IJ 

Hence, 
C h~~ = C h~ x C hi , (15) 

with x denoting the mat r ix  product.  The input-output  correlations of h = h2ohl 
are given by 

C(uth(a) '  wta) = Z C(uth l  (a), vta)C(vth2(a), wta) . (16) 
71 

If  h is an invertible t ransformat ion in 7]~, we have (with b -- h - l (a ) )  

c ( ~ t h  - l ( a ) , w t a )  : C(u tb ,  wth(b) )  • C ( w t h ( b ) , u t b )  . (17) 

Using this fact and C h x C (h-l) = C h~ = I = C h • (ch)  -1 we obtain 

(ch) -I  = C (h~-~) = (ch) t , (18) 

hence, C h is an orthogonal matrix. 
This can be used to give an elegant proof of the following proposition: 

P r o p o s i t i o n 2 .  Every linear combination of output bits of an invertible trans- 
formation is a balanced Boolean function of its input bits. 

P r o o f :  If  h is an invertible t ransformation,  its correlation mat r ix  C is or- 
thogonal.  Since Coo = 1 and all rows and columns have norm 1, it follows 
tha t  there are no other elements in row 0 or column 0 different f rom 0. Hence, 
C(uth(a) ,  0) -- (~(u) or equivalently, uth(a) is balanced for all u # 0. [] 

A mapping  from 7]~ to 77~ n is converted into a mapping  from 7/~ -1 to 77~ n by 
fixing a single component  of the input. More generally, a component  of the input 
can be set equal to a linear combination of other input components,  possibly 
complemented.  Such a restriction is of the type 

v t a =  e , (19) 

with e E 7/2. Assume that  vs r 0. The restriction can be seen as the result 
! of a mapp ing  a ! = hr(a) f rom 7/~-1 to 7/~ specified by a i = ai for i r s and 

! a s ---- E + v t a  -t- a s .  The nonzero elements of the correlation mat r ix  of hr are 

hr h. C~,,~ = 1 and C(~+~)~ --- ( - 1 )  ~ for all w with ws --- 0 . (20) 
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It can be seen that  columns indexed by w with w, = 0 have exactly two nonzero 
entries with magnitude 1 and those with w, = 1 are all-zero. Omitt ing the latter 
gives a 2 n • 2 n-1 correlation matr ix  C h" with only columns indexed by the 
vectors with ws = 0. 

The transformation restricted to the specified subset of inputs can be seen 
as the consecutive application of h~ and the transformation itself. Hence, its 
correlation matr ix  C'  is given by C x C h~. The elements of this matr ix  are 

E C'uw = Cuw + (-i) C,,(w+v) , (21) 

if w~ = 0 and 0 if w~ = 1. 

5 Specific types of mappings 

Consider the transformation that  consists of the bitwise addition of a constant 
vector k: h(a) - a + k. Since uth(a)  = uta + u tk  the correlation matr ix  is a 
diagonal matr ix  with 

Cuu = ( -1 )  u'k (22) 

Therefore the effect of bitwise addition of a constant vector before (or after) 
a mapping h on its correlation matrix ' is  a multiplication of some columns (or 
rows) b y - 1 .  

Consider a linear transformation h(a) = M a  with M a m • n binary matrix.  
Since uth(a)  = u t M a  = ( M t u ) t a  the elements of the corresponding correlation 
matr ix  are given by 

C~,o = ~ ( M t u  + w) . (23) 

If M is an invertible square matrix, the correlation matr ix  is a permutat ion 
matrix. The single nonzero element in row u is in column M t u .  The effect of 
applying an invertible linear transformation before (or after) a transformation h 
on the correlation matr ix  is only a permutation of its columns (or rows). 

Consider a mapping from 7]~ to 7]~ n that consists of the parallel applica- 
tion of g component mappings (S-boxes) from 7/~ ~ to 7]~ TM with )-~i n{ = n 
and ~ i  mi = m. We will call such a mapping a boxed mapping. We have 
a = (a(0) ,a(1) , . . . ,a(~- l ) )  and b = (b(0), b(~), . . . ,b(t_l))  with the a({) vectors 
of dimension ni and the b(i) vectors with dimension mi. The mapping b = h(a) 
is defined by b(i) = h(i)(a(i)) for 0 < i < L With every S-box h(i) is associated 

a 2 ~ x 2 "~ correlation matr ix  denoted by C (i). Since the h(i) are disjunct, (10) 
can be applied and the elements of the correlation matr ix  of h are given by 

C ~  = 1-I c~'~ (24) u ( i ) w ( o  �9 

i 

with u = (u(0), u(~) , . . . ,  u(~_~)) and w = (w(0), w o ) , . . . ,  w(~_l)). In words this 
can be expressed as: the correlation coefficient associated with input selection w 
and output  selection u is the product of its corresponding S-box input-output  
correlations c7(i) v u ( 0 w ( i  ) �9 
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6 A p p l i c a t i o n  t o  i t e r a t e d  t r a n s f o r m a t i o n s  

Correlation matrices can be easily applied to express correlations in iterated 
transformations such as most block ciphers. The studied transformation is 

/~ = p q  o . . . o p 2  op l  , (25) 

with the p~ selected from a set of invertible transformations {p[b]lb e 7/~ ~} by 
round keys ~(i): Pi = Pin (i)] The round keys n(i) are derived from the cipher key 
n by the key schedule. 

6.1 F i x e d  key 

In the transform domain, a fixed succession of round transformations corresponds 
to a 2 n x 2 '~ correlation matr ix  that  is the product of the correlation matrices 
corresponding to the round transformations. We have 

C = C  pq x . . . x C  p2 x C  #1 . (26) 

Linear cryptanalysis exploits the occurrence of large elements in product matri- 
ces corresponding to all but  a few rounds of a block cipher. 

A q-round linear trail Y2, denoted by 

I? = (~0 ~pl  ~col ~p~ ~ 4 . . . ~ % _ 1  ~pi  ~ '%) , (27) 

is obtained by chaining q single-round correlations C(co~tpi (a), wi_ it a). With this 
linear trail is associated a correlation contribution coefficient Cp ranging between 
- 1  and +1. 

% ( ~ )  = 1-[ C2w (28) 
J . J .  i i - 1  " 

i 

From this definition and (26) we have 

C(utg(a), wta) = cp( ) (29) 
O)o~WlWq~ 

and wta is the sum of the correlation Hence the correlation between ut~(a) 
contribution coefficients of all q-round linear t ra i ls /?  with initial selection vector 
w and terminal selection vector u. 

6.2 V a r i a b l e  k e y  

In cryptanalysis, the succession of round transformations is not known in advance 
but  is governed by an unknown key or some input-dependent value. In general, 
the elements of the correlation matr ix  of p~ depend on the specific value of the 
round key ~(i). 

For some block ciphers the strong round-key dependence of the correlation 
and propagation properties of the round transformation have been cited as a 
design criterion. The analysis of correlation or difference propagation would have 
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to be repeated for every specific value of the cipher key, making linear and 
differential analysis infeasible. A typical problem with this approach is that the 
quality of the round transformation with respect to LC or DC strongly depends 
on the specific value of the round key. While the resistance against LC and DC 
may be very good on the average, specific classes of cipher keys can exhibit linear 
trails with excessive correlation contribution coefficients. 

These complications can be avoided by designing the round transformation 
in such a way that the amplitudes of the elements of its correlation matrix are 
independent of the specific vMue of the round key. As was shown in Sect. 4, 
this is the case if the round transformation consists of a fixed transformation p 
followed (or preceded) by the bitwise addition of the round key ~(i). 

The correlation matrix C p is determined by the fixed transformation p. The 
correlation contribution coefficient of the linear trail J2 becomes 

Cp(#2) ] - [ { - 1 ~ ( ' )  (7,P 
= 1 1 ,  , = " 

i 

( 3 0 )  

with da equal to 1 if YL C~,_1  is negative and 0 otherwise. IC~(~)l is indepen- 
dent of the round keys, and hence only the sign of the correlation contribution 
coefficient depends on the round keys. 

The correlation coefficient between ut#(a) and wta can be expressed in terms 
of the correlation contribution coefficients of linear trails: 

C(ut#(a)' wta) ---- E (-1) ~'+E'~(~ IC ( )l �9 

090 ~W ~ODq ~t 

(31) 

The amplitude of this correlation coefficient is no longer independent of the 
round keys since the terms are added or subtracted depending on the value of 
the round keys. 

6.3 Matsu i ' s  l inear  c ryp tana lys i s  of  D E S  

The multiple-round linear expressions described in [4] correspond with what we 
call linear trails. The probability p that such an expression holds corresponds 
with �89 + Cp(f2)), with Cp(f2) the correlation contribution coefficient of the 
corresponding linear trail. This implies that the considered correlation coefficient 
is assumed to be dominated by a single linear trail. This assumption is valid 
because of the large amplitude of the described correlation coefficients on the 
one hand and the structure of the DES round transformation on the other. 

The correlation contribution coefficient of the linear trail is independent of 
the key and consists of the product of the correlation coefficients of its single- 
round components. In general, the elements of the correlation matrix of the DES 
round transformation are not independent of the round keys. In the linear trails 
described in [4] the independence is caused by the fact that the single-round 
correlations of the described linear trail only involve bits of a single S-box. 
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7 Difference propagation 

Say we have two n-dimensional vectors a and a* with bitwise difference a + a* = 
a'. Let b = h(a), b* = h(a*) and b' = b + b*. Hence, the difference a' propagates 
to the difference b ~ through h. This is denoted by (a ~ H h f- b~), In general b ~ is 
not determined by a ~ but depends on the value of a (or a*). 

D e f i n i t i o n 3 .  The prop ratio Rp of a difference propagation (a ~ -~ h t- b ~) is 
given by 

Rp(a' ~ h ~- b') = 2-n E S(b' + h(a + a') + h(a)) . (32) 
a 

The prop ratio ranges between 0 and 1 and must be an integer multiple of 
21-". The difference propagation (a ~ -t h F- b') restricts the values of a to a 
fraction of all possible inputs. This fraction is given by Rp(a' -~ h F- b'). It can 
easily be seen that  

Rp(a' h b') = 1 .  (33) 
b' 

Differential cryptanalysis [3] can be seen as the exploitation of large prop ratios. 
The prop ratios of the difference propagations of Boolean functions and map- 

pings can be expressed respectively in terms of their Walsh-Hadamard transform 
values and their correlation matrix elements. Analogous with (8), it can be shown 
that  the components of the inverse transform of the componentwise product of 
two spectra 6]g = W-I (FG)  are given by 

~]g(b)=2-nE?(a)[7(a+b)=2-nE(-1) f (a)+g(a+b)  (34) 
a a 

~fg(b) is not a Boolean function. It is generally referred to as the cross correlation 
function of f and g. If g = f it is called the autocorrelation function of f and 
denoted by ~/. The components of the spectrum of the autocorrelation function 
consist of the squares of the spectrum of f ,  i.e., 

F(w) 2 = W(~f (a)) . (35) 

This is generally referred to as the Wiener-Khintchine theorem [5]. 
The difference propagation in a Boolean function f can be expressed easily in 

terms of the autocorrelation function. The prop ratio of difference propagation 
(a' -~ f ~- 0) is given by 

Rp(a' -~ I t -  0) = 2 - n E S ( f ( a ) + f ( a - t - a ' ) )  

= 2-"  E ~(1 + ](a)](a + a')) 
6 

= ~ ( l + ~ f ( a ' ) )  

= l ( ' l + E ( - 1 ) ~ t ~ ' ~ 2 ( w ) )  . 
w 

(36) 
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The component of the autocorrelation function § (a') corresponds to the amount 
that Rp(a'  -~ f i- 0) deviates from 1/2. 

For mappings from 7/3 to Z~ n, let the autocorrelation function of uth(a)  be 
denoted by ~u(al), i.e., 

~'u(a') -- 2 -n  Z ( - - 1 )  u'h(a)+&h(a+a') �9 (37) 
a 

The prop ratio of difference propagation (a ~ -~ h ~- b ~) is given by 

Rp(a' 4 h t- b') = 2 -n Z 5(h(a)  + h(a + a') + b') 
a 

= 2-n Z H  l((--1)h'(a)+a'(a+a')+b: + 1) 

a i 

= 2-" Z 2  -m Z ( - I )  "~n(a)+~'~h(~+'V)+''b' 
a 

= 2 -m Z ( - 1 )  ~tb' 2-n Z ( _ I  ) uth(a)+uCh(a- l -a  ' ) 

u a 

= 2-m ~--~(--1)~t6'~ (a ' ) 

~ , , , d  k - -  ,' ~ U W  

W 

-- 2 -m_V~(  1] wta'+u%'('72 . (38) ~..~x-- J vuw 

Hence the array containing the prop ratios is the (scaled) two-dimensional Walsh- 
Hadamard transform of the array that contains the squares of the elements of 
the correlation matrix. Inverting the transform gives the dual expression: 

C2o = 2-,~ w " (  ,, ,~w+~,w~, , , L_, - l )  n.pta ~ h ~- b') . (39) 
a ~ , b  ~ 

8 C o n c l u s i o n s  

The correlation matrix of a Boolean mapping is an alternative representation 
that  reveals properties of a more global nature. Correlation matrices are the 
"natural" representation for the description and understanding of linear crypt- 
analysis. 
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