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Abst rac t .  This paper studies the task of inferring a binary vector s 
given noisy observations of the binary vector t = As modulo 2, where A 
is an M x N binary matrix. This task arises in correlation attack on a 
class of stream ciphers and in the decoding of error correcting codes. 
The unknown binary vector is replaced by a real vector of probabilities 
that are optimized by variational free energy minimization. The derived 
algorithms converge in computational time of order between WA and 
NWA, where WA is the number of ls in the matrix A, but convergence 
to the correct solution is not guaranteed. 
Applied to error correcting codes based on sparse matrices A, these al- 
gorithms give a system with empirical performance comparable to that 
of BCH and Reed-Muller codes. 
Applied to the inference of the state of a linear feedback shift register 
given the noisy output sequence, the algorithms offer a principled version 
of Meier and Staffelbach's (1989) algorithm B, thereby resolving the open 
problem posed at the end of their paper. The algorithms presented here 
appear to give superior performance. 

1 The problem addressed in this paper 

Consider three binary vectors: s with components s~, n = 1 . . .  N, and r and n 
with components rm, nm,  m = 1 . . .  M, related by: 

(As + n )  mod2 = r (1) 

where A is a binary matrix. Our task is to infer s given r and A, and given 
assumptions about the statistical properties of s and n. 

This problem arises, for example, in the decoding of a noisy signal transmitted 
using a linear code A. As a simple illustration, the (7,4) Hamming code takes 
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N = 4 signal bits, s, and transmits them followed by three parity check bits. 
The M = 7 transmitted symbols are given by t = As mod2,  where 

~ 
11000 
00 1 

A-= 000 
Ol 
lO 
11 

The noise vector n describes the corruption of these bits by the communication 
channel. The received message is r = t + n mod 2. The receiver's task is to infer 
s given r and the assumed noise properties of the channel. For the Hamming 
code above, this is not a difficult task, but as N and M become large and as the 
number of ls in the matr ix  A increases, the inference of s in a t ime less than 
exponential in N becomes more challenging, for general A. Indeed, the general 
decoding problem for linear codes is NP-complete (Berlekamp, McEliece and van 
Tilborg 1978). 

The problem defined in equation (1) also arises in the inference of the se- 
quence of a linear feedback shift register (LFSR) from noisy observations (Meier 
and Staffelbach 1989, Mihaljevi5 and Golid 1992, Mihaljevid and Goli5 1993, An- 
derson 1995). 

This paper presents a fast algorithm for at tempting to solve these tasks. The 
algorithm is similar in spirit to Gallager's (1963)soft  decoding algorithm for 
low-density parity check codes. 

Assumptions 

I assume that  the prior probability distribution of s and n is separable, i.e., 
P(s, n) = P ( s ) P ( n )  = l~I~ P(s~) 1-Irn P(n,~). Defining the transmission t(s)  = 
As mod 2, the probability of the observed data  r as a function of s (the 'likelihood 
function') can be written: 

P(rls' A)= H etm(s)(1 - em)(1-tm(s))' 
m 

where e is a vector of probabilities indexed by m given by e,~ = P(n,~ = 1) if 
rm = 0 and e m : P(nrn = 0) if rm = 1. This likelihood function is fundamental  to 
any probabilistic approach. The log likelihood can be written: 

e~ +const. (2) log P(r l s ,  A) = ~ t,~ (s)log 1 - e-----~ 
m 

-- E tm(s) grn(em) + const. (3) 

where g.~(em) - log[e.~/(1 - e~)]. Thus the natural norm for measuring the 
distance between t and e is ~-~mt~gm(e.~). 
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The task is to infer s given A and the data  r. The posterior distribution of 
s is, by Bayes's theorem: 

P(slr ,  A) = P(r[s,  A)P(s)  
P(r[A) (4) 

I assume our aim is to find the most probable s, i.e., the 's  that  maximizes the 
expression (4) over s. I assume however that  an exhaustive search over the 2 N 
possible sequences s is not permitted. One way to attack a discrete combinato- 
rial problem is to create a related problem in which the discrete variables s are 
replaced by real variables, over which a continuous optimization can then be per- 
formed [see for example (Hopfield and Tank 1985, Aiyer, Niranjan and Fallside 
1990, Durbin and Willshaw 1987, Peterson and Soderberg 1989, Gee and Prager 
1994, Blake and Zisserman 1987)]. In the present context, the question then is 
'how should one generalize the posterior probability (4) to the case where s is 
replaced by a vector with real components?' An appealing way to answer this 
question is to derive the continuous representation in terms of an approximation 
to probabilistic inference. 

2 F r e e  E n e r g y  M i n i m i z a t i o n  

The variational free energy minimization method (Feynman 1972) takes an 'awk- 
ward' probability distribution such as the one in (4), and attempts to approxi- 
mate it by a simpler distribution Q(s; 0), parameterized by a vector of parame- 
ters 0. For brevity in the following general description I will denote the complex 
probability distribution P(s lA , r) by P(s).  The measure of quality of the ap- 
proximating distribution is the variational free energy, 

F(e) Q(s;e) lo- e) = 

The function F(O) has a lower bound of zero which is attained only by a 0 such 
that  Q(s; 0) = P(s)  for all s. Alternatively, if P(s) is not normalized, and we 
define Z = Y~'~s P(s),  then F has a lower bound of - l o g Z ,  attained only by 
such that  Q = P/Z.  The variational method used in this paper is traditionally 
used in statistical Physics to estimate log Z, but here, log Z is just an additive 
constant which we ignore. 

When Q has a sufficiently simple form, the optimization of F over 0 may 
be a tractable problem, even though F is defined by a sum over all values of 
s. We find a 0* that  minimizes F((9) in the hope that  the approximating distri- 
bution Q(s; ~*) will give useful information about P(s).  Specifically, we might 
hope that  the s that  maximizes Q(s; 0") is a good guess for the s that  maximizes 
P(s).  Generically, free energy minimization produces approximating distribu- 
tions Q(s; ~*) that  are more compact than the true distribution P(s).  
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3 F r e e  E n e r g y  M i n i m i z a t i o n  f o r  E q u a t i o n  ( 4 )  

I take Q to be a separable distribution, 

Q(s; 0) - rIqn(s~;O,~) 
n 

with On defining the probabilities qn thus: 

1 1 
q ~ ( s n = l ; O n ) - -  l + e  -8" -- q~; qn(sn=O;On)--  l + e  ~ ----q0" 

This is a nice parameterization because the log probability ratio is On = log(qn/qn).l o 
The variational free energy is defined to be: 

O ( ;  0) 

s 

I now derive an algorithm for computing F and its gradient with respect to 0 in 
a time that is proportional to the weight of A, wa (i.e., the number of ones in 
A). The free energy separates into three terms, F(O) = EL(O) + Ep(O) - S(O), 
where the 'entropy' is: 

S(O) - - ~ Q(s; 0) log Q(s; 0) = - y ~  [q0 log qO + q~ log q~], 
S n 

with derivative: o-~S(O) = o 10 --qnqn ,~; the 'prior energy' is: 

Ep(O) - - E Q(s; 0)log P(s )  = - E b,~q~ 
S n 

where bn = log[P(sn=l ) /P ( sn  =0)] ,  and has derivative o-~Ep(O) = -q,~q,b,~,~ 1 . 
and the 'likelihood energy' is: 

EL (0) -- -- y ~  Q(s; 0)log P( r l s  , A) = - y]~ g,~ ~ Q(s; 0) t,~ (s) + const. 
s rn  s 

The additive constant is independent of 0 and will now be omitted. To evaluate 
EL, we need the average value of tin(s) under the separable distribution Q(s; 0), 
that  is, the probability that ~ n  Amnsn mod2 = 1 under that  distribution. 

F o r w a r d  a l g o r i t h m .  We can compute this probability for each m by a recur- 
sion involving a sequence of probabilities 1 0 Pm,u and Pm,u for u = 1 . . . N .  These 
are defined to be the probabilities that the partial sum t~  u -- ~"]~=1 Amnsn rood 2 
is equal to 1 and 0 respectively. These probabilities satisfy: 

1 0 1  1 0  "] 
Pm,u = %Pm,~,- 1 ~- q~Pm,~'-- 1 ~ if Am~ 1 ; 

0 0 0  1 1  
Pm,u quPrn,u- Z + quPm,v- Z 

(5) 

} Prn,u = Pro,u-1 
pOrn,u _ _ pO re,u-1 if Ainu = O. 
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The initial condition is P~,0 0 = O,Pm,o = 1. The desired quantity is obtained in 
a time that  is linear in the weight of row m of A: 

E Q(s; O) tin(s) 1 ~- Pro,N" 
S 

The quantity 1 P,~,N is a generalization to a continuous space of the product 
tm = Ares rood 2, with the satisfying property that  if any one of the contributing 
terms ql is equal to 0.5, then the resulting value of p~,N is 0.5. 

The energy EL is then given by: 

1 z (o) = -  2gmPm,N" 
m 

R e v e r s e  a l g o r i t h m .  To obtain the derivative of the energy EL with respect to 
0,~ it is necessary to perform the same number of computations again. We intro- 
duce another 'reverse' sequence of probabilities rm, u z  and r,~,u~ for u -- N .  .. l, 

defined to be the probabilities that  the partial sum t~n N N = }-~-n=~ Amnsn  mod2 is 
equal to 1 and 0 respectively. These can be computed by a recursive procedure 
equivalent to that  in equation (5). Now note that  pl m,N can be written thus, for 
any n: 

i 0 ..0 rl ~ i i I 0 r0  \ plm, N = q~ (Pm,n_lrm,n+l -4- Pro,n-1 rn,n+l) Jr- qn (Prn,n-lrm,n+l "Jr" Pro,n-1 rn,n+l) " 

Having pulled out the On dependence" (in the two factors qO and qnZ), it is easy 
to obtain the derivative: 

0 
--qnqn E gmdmn OOn EL(O) -- o 1 

m 

I 1 0 0 1 0 0 1 where dmn = (Pm,n_irrn,n+i + pm,n_ i r~ ,~ i )  -- (Pm,n_lrm,n+l -I- Prn,n_lrrn,n+l). 

T o t a l  d e r i v a t i v e  

The derivative of the free energy is: 

CgOn = qnqn On -- bn - gmdmn (6)  

O p t i m i z e r s  

This derivative can be inserted into a variety of continuous optimizers. I have 
implemented both conjugate gradient optimizers and 'reestimation' optimizers 
and found the latter, which I now describe, to be superior. The reestimation 
method is motivated by the form of the derivative (6); setting it to zero, we 
obtain the iterative prescription: 

0N := bn + E g m d , ~ n ,  
m 
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which I call the reestimation optimizer. It can be implemented with either syn- 
chronous or sequential dynamics, that  is, we can update all 0,~ simultaneously, 
or one at a time. The sequential reestimation optimizer is guaranteed to reduce 
the free energy on every step, because everything to the right of 0~ in equation 
(6) is independent of 0n. The sequential optimizer can be efficiently interleaved 

1 is evaluated from r~_ 1 for with the reverse recursion; the reverse probability r u 
each m after 0u has been updated. The synchronous optimizer does not have an 
associated Lyapunov function, so it is not guaranteed to be a stable optimizer, 
but empirically it sometimes performs better. 

Optimizers of the free energy can be modified by introducing 'annealing ~ 
or 'graduated non-convexity' techniques (Blake and Zisserman 1987, Van den 
Bout and Miller 1989), in which the non-convexity of the objective function F 
is switched on gradually by varying an inverse temperature parameter/~ from 
0 to 1. This annealing procedure_ is intended to prevent the algorithm running 
headlong into the minimum that  ~the initial gradient points towards. We define: 

F(o,,e)  = ZEL(O) + ZpE (O) - S(O), (7) 

and perform a sequence of minimizations of this function with successively larger 
values of/3, each starting where the previous one stopped. If we choose/~p _ 
then fl influences both the likelihood energy and the prior energy, and if/~p _-_- 1 
then/~ influences just the likelihood energy. The gradient of F(0,/~) with respect 
to 0 is identical to the gradient of F in equation (6) except that  the energy terms 
are multiplied by/~p and/~. This annealing procedure is deterministic and does 
not involve any simulated noise. 

C o m m e n t s  

None of these algorithms is expected to work in all cases, because a) there may 
be multiple free energy optima; b) the globally optimal s might not be associated 
with any of these free energy optima; c) the task is a probabilistic task, so even 
an exhaustive search is not guaranteed always to identify the correct vector s. 

Any particular problem can be reparameterized into other representations 
s I -- sU with new matrices A ~ = U-1A.  The success of the algorithms is 
expected to depend crucially on the choice of representation. The algorithms are 
expected to work best if A is sparse and the true posterior distribution over s 
is close to separable. 

C o m p u t a t i o n a l  c o m p l e x i t y  

The gradient of the free energy can be calculated in time linear in WA. The 
algorithms are expected to take of order 1, or at most N, gradient evaluations 
to converge, so that  the total time taken is of order between WA and WAN. 

The space requirements of the sequential reestimation optimizer are the most 
demanding (but not severe): memory proportional to WA is required. 
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F i g .  1. Performance of synchronous reestimation algorithm without and with anneal- 
ing: N=50  

Horizontal axis: average number of ls  per row of A.  Vertical axis: noise level fn. Three 
experiments were conducted at a grid of values. Outcome is represented by: box : 
'correct ' ;  s tar  = 'ok'; dot : 'wrong'.  Two points in each triplet have been displaced so 
that  they do not overlap. The horizontal line on each graph indicates an information 
theoretic bound on the noise level beyond which the task is not expected to be soluble. 

4 D e m o n s t r a t i o n  o n  R a n d o m  S p a r s e  C o d e s  A 

Mock d a t a  were c rea ted  as follows. The  first N lines of  A were set to  the  i den t i t y  
m a t r i x ,  and  of  the  r e m a i n i n g  bi ts ,  a f rac t ion  fA were r a n d o m l y  set to  1. Th i s  
m a t r i x  can be  viewed as def ining a sy s t ema t i c  error  cor rec t ing  code in which 
the  s ignal  s is t r a n s m i t t e d ,  fol lowed by  ( M  - N)  sparse  p a r i t y  checks. Each  
c o m p o n e n t  of  s was set to 1 wi th  p r o b a b i l i t y  0.5. The  vector  t = A s m o d 2  
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was calculated and each of its bits was flipped with noise probability f~. Four 
parameters were varied: the vector length N, the number of measurements M, 
the noise level f,~ of the measurements, and the density fA of the matrix A. 

When optimizing 0 the following procedure was adopted. The initial condi- 
tion was On = O, Yn. If annealing was used, a sequence of 20 optimizations was 
performed, with values of ~ increasing linearly from 0.1 to 1.0. Without anneal- 
ing, just a single optimization was performed with ~ = 1. The optimizers were 
iterated until the gradient had magnitude smaller than a predefined threshold, 
or the change in F was smaller than a threshold, or until a maximum number 
of iterations was completed. At the end, s was guessed using the sign of each 
element of ~ .  

We can calculate a bound on the noise level f,~ beyond which the task is 
definitely not expected to be soluble by equating the capacity of the binary 
symmetric channel, (1 - H2(f,~)), to the rate of the code, N/M.  Here H2(fn) is 
the binary entropy, H2(fn) = -f,~ log2 f~ - (l - fn)log2(1 - f~). This bound 
is indicated on the graphs that  follow by a solid horizontal line. For noise levels 
significantly below this bound we expect the correct solution typically to have 
significantly greater likelihood than any other s. 

Results  

For the results reported here, I set N to 50 and M to 500, 1000 and 2000, and 
ran the synchronous reestimation algorithm multiple times with different seeds, 
with density fA varying from 0.05 to 0.50, and error probability fn varying from 
0.05 to 0.45. In each run there are three possible outcomes: 'correct', where the 
answer is equal to the true vector s; 'wrong', where the answer is not equal to the 
true vector, and has a smaller likelihood than it; and 'ok', where the algorithm 
has found an answer with greater likelihood than the true vector (in which case, 
one cannot complain). 

Annealing helps significantly when conjugate gradient optimizers are used, 
but does not seem to make much difference to the performance of the reestima- 
tion algorithms. As was already mentioned, the reestimators work much better 
than the conjugate gradient minimizers (even with annealing). 

Figure 1 shows the outcomes as a function of the weight of A (x-axis) and 
error probability (y-axis). There seems to be a sharp transition from solvability 
to unsolvability. It is not clear whether this boundary constitutes a fundamental 
bound on what free energy minimization can achieve; performance might possi- 
bly be improved by smarter optimizers. Another idea would be to make a hybrid 
of discrete search methods with a free energy minimizer. 

Experiments with larger values of N have also been conducted. The success 
region looks the same if plotted as a function of of the average number of ls per 
row of A and the noise level. 
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T a b l e  1. Error rates of error correcting codes using free energy minimization. 

a) Sparse random code matrix (section 4). These results use N = 100 and fA = 0.05, 
and various noise levels fn and M = 400, 1000, 2000. The synchronous reestimation op- 
timizer was used without annealing, and with a maximum of 50 gradient evaluations. 
For every run a new random matrix, signal and noise vector were created. One thou- 
sand runs were made for eax:h set of parameters. The capacity of a binary symmetric 
channel with f,~ = 0.1, 0.15, 0.2 is 0.53, 0.39, 0.28 respectively. 
b)  LFSR code (section 5). The number of taps was 5, selected at random. The syn- 
chronous reestimation optimizer was used with the annealing procedure described in 
section 5. 

a) b)  
f~ N M Number Information 

of errors rate 
0.1 100 400 14/1000 0.25 
0.1 100 1000 0/1000 0.1 
0.15 100 1000 3/1000 0.1 
0.2 100 1000 54/1000 0.1 
0.2 100 2000 11/1000 0.05 

~ i 5  k N Number Information 
of errors rate 

. 100 400 69/1000 0.25 
100 1000 1/1000 0.1 

10.2 100 2000 26/1000 0.05 

Tab l e  2. BCH codes and Reed-Muller codes. 

For each noise level f,~ = 0.1, 0.15, 0.2, I give n, k, t for selected BCH codes and Reed- 
Muller codes with eblock = P(more than t errors]n) < 0.1, and rate > 0.05, 0.03, 0.01 
respectively, ranked by s Values of n, k, t from Peterson and Weldon (1972). 

r t  

fn = 0.1 fn = 0.15 
k t c ~l~ rate n k t ~b,ock rate 

BCH CODES 
63 10 13 0.003 0.159 

127 29 21 0.008 0.228 
1023 153 125 0.009 0.150 

63 16 11 0.021 0.254 
511 85 63 0.037 0.166 

REED-MULLER CODES 
128 8 31 8.8e-7 0.063 
64 7 15 4.4e-4 0.109 

1024 56 127 0.0055 0.055 
32 6 7 0.012 0.188 

512 46 630.038 0.0898 
16 5 3 0.068 0.313 

BCH CODES 
127 8 310.002 0.063 
511 40 950.011 0.078 

63 7 150.021 0.111 
127 15 27 0.022 0.118 
255 21 55 0.002 0.082 

1023 91 181 0.008 0.089 
1023 101 175 0.028 0.099 
255 29 47 0.056 0.114 

REED- MULLER CODES 
256 9 63 2e-5 0.035 
128 8 31 0.0021 0.063 

32 6 7 0.096 0.188 

fn = 0.2 
n k t cb,ock rate 

BCH CODES 
1023 26 239 0.004 0.025 

255 9 63 0.028 0.035 
511 19 119 0.030 0.037 
255 13 59 0.093 0.051 

1023 46 219 0.123 0.045 
511 28 111 0.152 0.055 

REED-MULLER CODES 
1024 11 255 5.7e-5 0.011 

512 10 127 0.0034 0.020 
128 8 31 0.098 0.063 
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P o t e n t i a l  o f  t h i s  m e t h o d  fo r  e r r o r  c o r r e c t i n g  codes  

Might an error correcting code using this free energy minimization algorithm be 
practically useful? I restrict attention to the ideal case of a binary symmetric 
channel and make comparisons with BCH codes, which are described by Peterson 
and Weldon (1972) as "the best known constructive codes" for memoryless noisy 
channels, and with Reed-Muller (RM) codes. These are multiple random error 
correcting codes that  can be characterized by three parameters (n ,k , t ) .  The 
block length is n (this section's M),  of which k bits are da ta  bits (this section's 
N) and the remainder are parity bits. Up to t errors can be corrected in one 
block. How do the information rate and probability of error of a sparse random 
code using free energy minimization compare with those of BCH codes? 

To estimate the probability of error of the present algorithm I made one 
thousand runs with N = 100 and fA = 0.05 for a small set of values of M and 
f~ (table la).  A theoretical analysis will be given, along with a number of other 
codes using free energy minimization, in (MacKay and Neal 1995). 

For comparison, table 2 shows the best BCH and RM codes appropriate for 
the same noise levels, giving their probability of block error and their rate. I as- 
sumed that  the probability of error for these codes was simply the probability of 
more than t errors in n bits. In principle, it may be possible in some cases to make 
a BCH decoder that  corrects more than t errors, but according to Berlekamp 
(1968), "little is known abou t . . ,  how to go about finding the solutions" and "if 
there are more than t + 1 errors then the situation gets very complicated very 
quickly." 

Comparing tables la  and 2 it seems that the new code performs as well as 
or better  than equivalent BCH and RM codes, in that  no BCH or RM code has 
both a greater information rate and a smaller probability of block error. 

The complexity of the BCH decoding algorithm is n log n (here, n r M),  
whereas that  of the FE algorithm is believed to be WA(r)M where WA(r) is the 
number of is per row of A, or at worst WA(r)MN. There is therefore no obvious 
computat ional  disadvantage. 

5 Application to a cryptanalysis problem 

The inference of the state of a shift register from probabilistic observations of 
the output  sequence is a task arising in certain code breaking problems (Meier 
and Staffelbach 1989, Anderson 1995). 

A cheap 'stream cipher' for binary communication is obtained by sending 
the bitwise sum modulo 2 of the plain text to be communicated and one bit 
of a linear feedback shift register (LFSR) of length k bits that  is configured to 
produce an extremely long sequence of pseudo-random bits. This cipher can be 
broken by an adversary who obtains part  of the plain text and the corresponding 
encrypted message. Given k bits of plain text, the state of the shift register can 
be deduced, and the entire encrypted message decoded. Even without a piece 
of plain text, an adversary may be able to break this code if the plain text has 



A Free Energy Minimization Framework for Inference Problems 189 

high redundancy (for example, if it is an ASCII file containing English words), 
by guessing part  of the plain text. 

To defeat this simple attack, the cipher may be modified as follows. Instead 
of using one bit of the shift register as the key for encryption, the key is defined 
to be a binary function of a subset of bits of the shift register. Let the number of 
bits in tha t  subset be h. If this function is an appropriately chosen many-to-one 
function, it might be hoped that  it would be hard to invert, so that  even if an 
adversary obtained a piece of plain text and encrypted text, he would still not 
be able to deduce the underlying state of the shift register. However, such codes 
can still be broken (Anderson 1995). Consider a single bit moving along the 
shift register. This bit participates in the Creation of h bits of the key string. It 
is possible that  these h emitted bits together sometimes give away information 
about  the hidden bit. To put it another way, consider the augmented function 
that  maps from 2h - 1 successive bits in the shift register to h successive key 
bits. Think of the single bit of the preceding discussion as being the middle bit 
of these 2h - 1 bits; call this middle bit b. Write down all 2 h possible outputs 
of this mapping, and run through all 22h-1 possible inputs, counting how often 
each output  was produced by an input in which b = 1, and how often b = 0. If 
these two counts are unequal for any of the 2 h outputs, then the occurrence of 
such an output  in the key sequence gives information about the bit b. 

In principle, sufficient amounts of such information can be used to break the 
code. But if computations that  scale exponentially with k are assumed not fea- 
sible, it may be difficult to use this information. Two algorithms are given by 
Meier and Staffelbach (1989) for the case where every bit in the shift register 
sequence has been observed with uniform probability of error; I study the same 
case here. The methods derived from free energy minimization lead to an algo- 
r i thm similar to their algorithm B, and thus constitute a solution to the 'open 
problem' posed at the end of their paper. 

Derivat ion  

There are two ways in which the cryptanalysis problem above can be mapped 
onto this paper's equation A s + n  = r. One might define s to be the initial state of 
the shift register, and r to be the observed noisy sequence, with A representing 
the dependence of the mth emitted bit on the initial state, and n being the 
noise vector. This representation, however, defines a matr ix  A that  becomes 
increasingly dense with Is as one descends from the top row to the bot tom row. 
It seems likely that  a second representation, inspired by the methods of Meier 
and Staffelbach (1989), will make better use of large quantities of data. 

In the second approach, we define s to be the noise vector. Let the linear 
feedback shift register's true sequence be a0, and let the observed noisy sequence 
be al  = (a0 + s) mod2.  Following the notation of Meier and Staffelbach (1989), 
let the number of bits of state in the shift register be k and let the number of 
observed bits (i.e., the length of al and s) be N. The algorithms of Meier and 
Staffelbach (1989) centre on the examination of low-weight parity checks that  
are satisfied by a0. If the shift register employs t taps, then for N >> k, a large 
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number M " N l o g ( N / 2 k )  of relations involving t + 1 bits of a0 can be written 
down. [An even larger number of relations involving t + 2, t + 3, etc. bits are 
also available. An attack based on this method is expected to do best if such 
relations are also included.] Putt ing these relations in an M • N parity matr ix  
A, we have: 

Aa0 mod 2 = 0 

so that  
As mod 2 = r (8) 

where r = Aa l  mod2  is the 'syndrome' vector listing the values of the parity 
checks. Equation (8) defines our problem. The vector s is to be inferred, and, 
unlike equation (1), there is no noise added to As. However, we can define a 
sequence of problems of the form As + n mod 2 = r such that  the real task is 
the limiting case in which the noise level goes to zero. Then we can apply the 
free energy method of this paper to these problems. There are two important  
differences from the demonstration in section 4. First, there is a non-uniform 
prior probability over s, favouring low weight s. Second, A is not a full rank 
matrix; there are many (2 k) values of s satisfying equation (8), one for each of 
the possible initial shift register states. Our task is to find the solution that  has 
maximum prior probability, i.e. (in the case of uniform noise level) the s with 
the smallest number of ls. 

Demonstration 

This demonstrat ion uses random polynomials rather than the special polynomi- 
als that  are used to make encryption keys, but this is not expected to matter .  
Test da ta  were created for specified k and N using random taps in the LFSR and 
random observation noise with fixed uniform probability. The parameter /~ was 
initially set to 0.25. For each value of t3, a sequential reestimation optimization 
was run until the decrease in free energy was below a specified tolerance (0.001). 
/3 was increased by factors of 1.4 until either the most probable vector under 
Q(s; ~) satisfied all the relations (8), or until a maximum value of /?  = 4 was 
passed. The parameter  fiR was set to 1 so that  the prior probability was not 
influenced by the annealing. 

In the sequential reestimation procedure the bits 1 . . .  N of s may be updated 
in any order. I have experimented with various orders: a) the order 1 . . . N ;  b) 
a random order; c) an order ranked by the 'suspicion' associated with a bit, 
defined for each bit, following Meier and Staffelbach (1989), to be the fraction 
of the parity checks in which it is involved that  are violated. It seemed plausible 
that  if the most suspect bits are modified first, the algorithm would be less likely 
to modify good bits erroneously. Experimentally however, I found the difference 
in performance using these different orderings to be negligible. 

Results are shown in figure 2 for (k, N) -- (50,500), (100, 1000) and (50, 5000), 
using each of the three orderings of bits. A dot represents an experiment. A box 
represents a success, where the algorithm returned the correct error vector. On 
each of these graphs I also show three lines. A horizontal line, as in section 4, 
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Fig. 2. Results for cryptanalysis problem as a function of number of taps (horizontal 
axis) and noise level (vertical). 

shows the information theoretic bound above which one does not expect to be 
able to infer the shift register state because the data are too noisy. The two 
curved lines are from tables 3 and 5 of Meier and Staffelbach (1989), and show 
(lower line) the limit at which their 'algorithm B appeared to be very successful 
in most experiments' and (upper line) the theoretical bound beyond which their 
approach is definitely not feasible. Apparently the algorithm of the present paper 
not only works fine well beyond the lower line of Meier and Staffelbach, but it 
frequently finds the correct answer at parameter values right up to the upper 
line. 

Discuss ion  

The forward and backward calculations of the free energy algorithm are similar 
to calculations in algorithm B of Meier and Staffelbach (1989), but in detail the 
mapping from [0, 1] N ---+ [0, 1] N has a different form. Also, Meier and Staffel- 
bach employ multiple 'rounds' in which the data vector al is changed. This 
procedure has no analogue in the present algorithm. This algorithm has a well- 
defined objective function which is guaranteed to decrease during the sequential 
reestimation algorithm, or which may be minimized by other methods. 

A 'bitwise Bayesian' approach to this problem has also been given by Gal- 
lager (1963) and Mihaljevid and Golid (1993). Their iterative procedure is sim- 
ilar to Meier and Staffelbach~s, having two phases in each iteration. In the first 
phase an inference is made considering each bit individually, assuming a sim- 
plified distribution for the other bits. In the second phase a bit-by-bit decision 
(error-correction) is made. In the present paper, in contrast, the joint poste- 
rior distribution of all unknowns given all available information is written down 
(equation 4), and the iterative procedure optimizes an approximation to this true 
posterior distribution. No decisions are made until the end of the optimization. 
These algorithms are similar in that a simplified separable distribution over s is 
employed, but the details of this distribution's evolution are different. 
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The McEliece (1978) public-key cryptosystem depends for its security on the 
intractability of the general decoding problem As + n  = r.  The present algorithm 
is not expected to have any application as regards that  cryptosystem, as the free 
energy approximation only appears to be effective when the matr ix  A is sparse. 

T h e  L F S R  s y s t e m  as an  e r r o r  c o r r e c t i n g  c o d e  

The inference of the state of the linear feedback shift register was motivated as 
a cryptanalytic application, but the LFSR can also be viewed as a linear error 
correcting code known as a 'shortened cyclic code', for which the present work 
offers a decoding algorithm. 

E n c o d i n g :  A rate k/N and a feedback polynomial with t taps are chosen. A 
signal of length k bits is used as the initial state of an LFSR. The shift register 
is i terated for N cycles, the resulting sequence of N bits a0 being transmitted.  
This procedure defines a linear code with generator matr ix  G in which the first 
k rows are the identity matrix, and successive rows become increasingly dense. 

D e c o d i n g :  The linear code has an (N-k)  x N parity matr ix  H such that  for any 
a0 generated by the code, Ha0 = 0. In this special case where the code is gener- 
ated by an LFSR, H can be written as a sparse matr ix  with just weight t + 1 per 
row, each row describing the parity check on one cycle of transmission. Further- 
more, we can write many more equally sparse parity checks by adding rows of 
H. The matr ix  A of all parity checks of weight t + 1 is created. This has of order 
N log(N/2k) rows. We evaluate the extended syndrome vector r = Aa l  rood 2. 
Denoting the noise vector by s, we solve the problem As mod 2 = r using the 
free energy minimization method as described earlier. The complexity of this 
decoding is believed to be (t + 1)Ntog(N/2k) .  

As in section 4, I estimated the probability of error of this system by making 
one thousand runs with k = 100 for a small set of values of N and f~. The 
results (table lb) seem comparable with the theoretical performanc e of BCH 
codes (table 2), though not  as good as the results for sparse random code ma- 
trices (table la) for f~ = 0.1. 

6 C o n c l u s i o n  

This paper has derived a promising algorithm for inference problems in modulo 
2 arithmetic. Applied to decoding a random sparse error correcting code, this 
algorithm gives a error/rate  trade-off comparable and possibly superior to that  
of BCH and Reed-Muller codes. For the cryptanalysis problem, the algorithm 
supersedes Meier and Staffelbaeh's algorithm B, working close to the theoretical 
limits given in their paper. The linear feedback shift register system also shows 
potential for implementation as an error correcting code. 



A Free Energy Minimization Framework for Inference Problems 193 

Acknowledgements 

I thank Ross Anderson, Radford Neal, Roger Sewell, Robert McEliece and Mal- 
colm MacLeod for helpful discussions, and Mike Cares, Andreas Herz and a 
referee for comments on the manuscript. 

Appendix: Pseudo-code 

Here follows pseudo-code in C style for the sequential reestimation algorithm. 
The vector 0 of the text is called x in this appendix. For a more efficient imple- 
mentat ion,  the matr ix  A should be represented in the form of two lists of indices 
m and n such that  Anon = 1. I do not include the calculations required for the 
termination conditions given in the text. 

This routine requires as arguments an initial condition x, a matr ix  A, an 
observation vector g as defined in section 1, and a value for ~, a prior bias b as 
defined in section 3. The final answer is returned in x; a reconstructed binary 
vector can be obtained by taking the sign of x. 

The routine makes use of arrays q0 In] and ql  [n] which contain the probabil- 
ities q, and arrays p0 [m] [n] and p l  [m] [n] which contain both the forward and 
reverse probabilities. Again, for efficient implementation, these arrays should be 
represented as lists. 

This code is free software as defined by the Free Software Foundation. 

sequential optimizer 

( d o u b l e  * x  , 

d o u b l e  **A , 

d o u b l e  * g  , 

d o u b l e  b e t a  , 

double *bias , 

int N , 

int M 

/* arguments : */ 

/* the arrays have indices in */ 

/* the following ranges: */ 

I* x[n] : x[l] ... x[N] */ 

/* A[m][n] : A[I][I] ... A[M][N] */ 

/* gem] : gEl] ... gEM] */ 

/* 

double *qO , *ql ; /* 

double **pO , **pi ; /* 

bias[n] : bias[l] ... bias[N] */ 

qO[n] : qO[l] ... qOEN] */ 

pOEm]En] : pO[l][O] ... pO[M][N+I] */ 

for ( m = i ; m <= M ; m ++ ) { /* set up boundary conditions */ 

pOEm][O] = 1.0 ; pl[m][O] = 0.0 ; /* for forward pass */ 

pOEm]IN+i] = i.O ; pl[m][N+l] = 0.0 ; /* and reverse pass */ 
} 

do { 

for (n = i ; n <= N ; n ++ ) { 

ql[n] = 1.0 / ( i.O + exp ( - x[n] ) ) ; 

qO[n] = i.O / ( i.0 + exp ( x[n] ) ) ; 

for (m = i ; m <= M ; m ++ ) { 

/* forward pass */ 
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if ( A[m][n] == 0 ) { 

pO[m] [n] = pO[m] [n-l] ; 

pl[m] In] = pl[m] In-l] ; 
} 

else { 

pO[m] [hi = qO[n] * pO[m] [n-l] + ql[n] * pl[m] [n-l] ; 

pl[m][n] = qO[n] * pl[m][n-l] + ql[n] * pO[m][n-l] ; 
} 

} 
} 

for ( n = N ; n >= I ; n -- ) { /* backward pass 

gradient_n = 0.0 ; 

for ( m = 1 ; m <= M ; m ++ ) { 

if (Aim] In] ) { 

gradient_n-= g[m] * 

( pl[m] In-l] * pl[m] In+l] + pO[m] In-l] * pO[m] In+l] - 

pO[m] In-l] * pl[m] In+l] - pl[m] In-l] * pO[m] In+l] 
} 

} 

gradient_n *= beta ; 

gradient_n -= bias[n] ; 

x[n] = - gradient_n ; 

ql[n] = 1.0 / ( 1.0 + exp ( - x[n] ) ) ; 

qO[n] = 1.0 / ( 1.0 + exp ( x[n] ) ) ; 

for ( m = I ; m <= M ; m ++ ) { 

if ( Aim]In] == 0 ) { 

pO[m] [11] = pO[m] In+l] ; 

pl[m] [n] = pl[m] In+l] ; 
} 

else { 

pO[m] In] = qO[n] * pO[m] In+l] + ql[n] * pl[m] In+l] ; 

pl[m] In] = qO[n] * pl[m][n+l] + ql[n] * pO[m] In+l] ; 
} 

} 
} until ( converged ) ; 

*/ 

/* accumulate gradient  */  

) ; 
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