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1 I n t r o d u c t i o n  

The ideal cryptosystem would be one that  can be proved secure against all 
possible cryptanalytic attacks (at least computatioually secure). In practice, of 
course, we settle for cryptosystems that  are secure against all known attacks 
(and in some cases merely rely on intuition rather than proof to believe they 
are secure). This is particularly true of private key systems. Thus the history of 
research on stream ciphers repeats a cycle in which a new system is developed, 
and perhaps proved secure against many existing attacks, then a new method is 
developed for attacking the new system. Future systems must be secure against 
the new attack. If the new attack is highly specialized, this tends to be easy 
- random unrelated methods of encryption are likely to be secure against the 
attack, or the attack may simply make no sense outside the context of the cryp- 
tosystem it was designed for. In some cases, however, a general purpose attack 
is developed that  can potentially be used against a large class of cryptosystems. 
Furthermore, in some cases such attacks come with numeric measures of re- 
sistence to the attack. Such is the case, for example with the Berlekamp-Massey 
algorithm and linear span. All sequences used in stream ciphers must have large 
linear spans in order to resist the Berlekamp-Massey attack. This algorithm is 
based on the idea of synthesizing a linear feedback shift register (LFSR) that  
generates a given sequence, given a small number of bits of the sequence. Es- 
sential to make the algorithm work is the existence of an algebraic framework 
for the analysis of LFSR sequences, based on power series and polynomials over 
GF(2) .  

In the Cambridge Algorithms Workshop in 1993, I described joint work with 
Mark Goresky in which we developed a new type of feedback register, feedback 
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with carry shift registers (or FCSRs) [5]. These registers are equipped with an 
algebraic framework for analysis, analogous to that  of LFSRs, but  based on the 
2-adic number rather than power series over GF(2) .  

In that  paper, we described the basic algebraic properties of FCSRs. As in the 
case of FCSRs, one can ask whether there is an algorithm which, given part  of 
a binary sequence a, synthesizes a (minimal length) FCSR that  generates a. We 
showed that  the existence of such an algorithm implies that  it is possible to crack 
Massey and Ruepell's summation combiner. We further argued that  the 2-adic 
span, the length of the smallest FCSR that  generates a given sequence, is thus an 
impor tant  measure of security. A sequence must have large 2-adic span in order 
to be secure (though this of course does not guarantee security). At the t ime of 
the Cambridge workshop we believed that  a variant of the Berlekamp-Massey 
algorithm for approximating rational numbers (due to Mandelbaum [6]) could 
be adapted to the case of LFSRs. This has proved to not work. However, we have 
since developed a provably correct analogue of the Berlekamp-Massey algorithm, 
based on De Weger's lattice theoretic approach to rational approximation [8]. We 
describe the algorithm here, but  details of the proof of correctness and analysis 
will appear elsewhere. 

We have further developed generalizations of FCSRs by replacing the 2-adic 
numbers by ramified extensions [2]. That  is, by adjoining ~r, a real dth root of 
2. We showed that  these registers have a similar algebraic structure to that  of 
FCSRs, and we thus get a security measure for each positive d. (Although it 
seems that  the larger d is, the computationally harder, and hence less threaten- 
ing, is an attack based on these registers.) Furthermore, we have recently shown 
that  our rational approximation algorithm for FCSRs works at least in the case 
d = 2 .  

From the point of view of wanting to build more secure systems, we are 
thus left with the question of how we can generate sequences which resist these 
attacks. Tha t  is, sequences with large 2-adic span, and even large 7r-adic span, 
where ~T is a dth root of 2 with d small. We would further like to do so without 
sacrificing other measures of security. 

We do not yet have an answer to this question, but the purpose of this paper 
is to introduce new feedback register based tools that  may allow us to build such 
secure sequences. One method that  has been used to increase linear span is to 
take a LFSR over an extension GF(p n) of GF(p), p prime, and apply a nonlinear 
"feedforward" function to its output  to obtain a binary sequence. When p r 2, 
these sequences can have very large linear spans [1], although they are vulnerable 
for other reasons [4]. When p = 2, their linear spans are only moderately larger 
than LFSR sequences [3]. We describe here an FCSR anMogue of LFSRs over 
nonprime finite fields. Hopefully such registers can be used to build sequences 
that  have large 2-adic span. 

In this abstract we describe the algebraic basis for these registers; the con- 
struction of the registers; various algebraic properties of the sequences they gen- 
erate; and conditions under which our rational approximation algorithm can be 
generalized. For each class of generalized FCSR for which the rational approxi- 
mat ion algorithm works, we obtain a new cryptographic security measure. 
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2 D e f i n i t i o n s  

The constructions of both  LFSRs and FCSRs over a field K can be based on the 
following algebraic machinery: A ring R with a valuation such tha t  the maximal  
ideal I of the valuation is principal, I = (~r) and such that  R / I  = K.  There 
must  be a set S C_ R that  maps  bijectively to K under reduction modulo I ,  and 
we must  be able to write every element of R as a difference x - y where x and y 
are finite sums of powers of ~r with coefficients in S. We denote by P the set of 
finite sums of powers of ~r with coefficients in S. Infinite sequences over K can 
then be identified with infinite sequences over S, which can be identified with 
power series in ~- with coefficients in S, which can be identified with elements of 
the c o m p l e t i o n / ~  of T / a t  the valuation. Every element of R~ can be identified 
with such a power series. The feedback register is then constructed to carry out 
division in R, producing such a~ element  of R~. 

In the case of LFSRs, R = "t([x], the power series ring in one variable over 
K,  I = (x), and S = K.  In the case of FCSRs, R = Z, the integers, I = (2) 
(or, more generally, any prime ideal), and S = {0, 1}. In the case of FCSRs over 
a ramified extension of Z, if ~r is a real dth root of 2, then R = Z[~'], I = (Tr), 
and S = {0, 1}. It  should be noted that  in the first two cases R is a Euclidean 
domain ( that  is, we can carry out "division with remainder") ,  but in the third 
case, /~ is only a Euclidean domain for some values of d, and the question of 
which values of d give Euclidean domains is a quite subtle one. This turns out 
to have an impact  on what can be done with these registers. In particular,  our 
rational approximat ion algorithm only works in a Euclidean domain.  

D e f i n i t i o n  1. Let R, I = (~r), and S be as above. A feedback with carry shift 
register over.R, I, S, or simply an R-FCSR, of length r, is specified by r elements 
of S, ql, �9 "', qr (which can be identified with elements of K = R / I ) .  The register 
consists of r cells for storing elements of S, some additional memory  for storing a 
"carry", and, if the contents of the register are ( a n - 1 , ' " ,  an-r) and the memory  
is m,~-l ,  circuitry for implementing the following operations: 

r 
A1.  Form the number  ~ = ~'~k=l qkan-k § m. 
A2.  Shift the contents one step to the right, output t ing .the r ightmost  element 

a n - r  �9 

A3.  Let (rn = an -{- ~rmn, with an G S ((r~,can always be written this way). Place 
a,~ into the leftmost cell of the shift register. Replace the memory  m,~_ 1 by 
m r s .  

If  K is finite, it is straightforward to design circuitry to implement  these 
operations, though only practical if K is small. The memory,  an arbi t rary element 
of R, can be represented as a finite set of elements of S by writing it as a difference 

r x - y, with x, y E P.  We refer to q = ~i=1 qi 2i 1 as the connection number 
because it is the analog to the connection polynomial  in the usual theory of 
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LFSRs. Any periodic sequence of elements of S may be generated by such a 

FCSR, 
In order to define FCSRs over extensions of GF(2) ,  it is necessary to find 

suitable R, I, and S. In this abstract we consider only rings in which the ideal 
(2) remains a prime ideal (extensions that  are unramified at 2), and take I = (2). 
In order for R to reduce to K = GF(2n),  R must contain an element /3 that  
reduces modulo 2 to a primitive element of K.  Thus the minimal polynomial 
f ( x )  of/3 must reduce modulo 2 to a primitive polynomial over K.  We assume 
that  R = Z[/3]. Let/~ be the reduction of/3 modulo 2. Then/~  is primitive, so 
1,/9, ~2, . .  " , / ~ - 1  is a basis for K over GF(2) .  Thus the set of linear combinations 
of 1,/3,/32,.. ",/3n-1 with coefficients in {0, 1} maps bijectively to K modulo 2. 
We take this set as S. For example, if n = 2 then we can take f ( x )  = x 2 - x - 1. 
In the next section we assume R, I, and S are defined in this manner. As it 
turns out, the amount  of auxiliary memory needed for a register tends to be 
smallest when the bi are small,'s6 we would like to take bi 6 {0, • However, 
other properties of the registers (such as the convergence rate of the rational 
approximation algorithm) may be superior for other choices of the hi. 

3 Properties of R-FCSRs 

Many of the algebraic properties of FCSRs also hold for R-FCSRs. There are 
five different ways to view an infinite, eventually periodic sequence over GF(2n):  

1. As a sequence a : a 0 , a l , . . ' ,  ai C GF(2n) .  
2. As a sequence a = a0, a l , . . . ,  ai G S. 
3. As an ele.ment a of the completion R2 of R at 2. 
4. As an R-rational number p /q  6 K .  
5. As the output  stream of an R-FCSR. 

Representations (1) and (2) are identified by reducing S modulo 2. Represen- 
tations (2) and (3) are identifed by associating the binary sequence a with 
the coefficients in the formal power series expression for a. The translation be- 
tween representations (3) and (4) is essentially the same as the identification 
between real numbers whose decimal expansions are eventually periodic and ra- 
tional numbers. To translate between representations (4) and (5) we have the 
following. 

T h e o r e m 2 .  The output, a, of  an R-FCSI~ with connection number  q, initial 
m e m o r y  value m r - 1 ,  and initial loading a t - l ,  a t - 2 , . . . ,  al, ao, i8 the bit sequence 
of  the 2-adic representation of  an R-rat ional  number  

r - - i  ~--~r--i-- 1 
~-~i=o z._.j=o qi2iaj 2j -- mr-12r  

: ( i )  
q 

Thus the denominator of a is equal to the connection integer q of the shift 
register. 
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C o r o l l a r y  3. Adding b lo the memory adds -b2" /q  to the output. 

The converse of Theorem 2, that  every R-rational number p/q  can be realized 
as the output  of an R-FCSR, is true as well. To see this, we show how to construct 
the initial loading of an R-FCSR for certain p, and then use Corollary 3 to 

r - 1  obtain initial loadings for other FCSR. Let p = ~-~i=o Pi 2i with Pi E S U - 5 .  
Every element of R differs from some such a p by a multiple of 2 ~. Thus if we 
can construct initial loadings for p/q with p of this type, then we can construct 
initial loadings for all p/q. 

T h e o r e m 4 .  Given a connection number q = ~-]i=oqi2 i with qo = - 1  and 
1"--1 

q l , ' " , q r  E S, and p :- ~ i = o p i 2  i with pi E S U - S ,  define a o , ' " , a r - 1  and 
rn,.-1 by the following procedure: 

B1.  Set m-1  = 0 and ~o = O. 
B2. For each i = O, 1 , . . . ,  r - 1 compute the following numbers: 

i - 1  

O'i : Z qi-kak + mi-1 --Pi E R. 
k=O 

Write 
~ri :- ai + 2mi, 

where ai E S, mi E R, and the empty sum in Cro is interpreted as zero. 

I f ( a t - l ,  a t - 2 , . . . ,  al, ao) is used as the initial loading, rn,_l  is used as the initial 
memory in an R -FCSR  with connection number q, then the output sequence will 
correspond to the R-rational number p/q.  

Note that  the memory may not be in P (the set of elements in R which 
are finite sums of powers of 2 with coefficients in 5). However, it can always be 
represented as a difference of such elements since this is true of every element of 
R. Moreover, if p E - P ,  i.e., if all the Pi are in - S ,  and f (x )  = x"  - ~-~__-01 bix i 
with bi ~ O, then m ,_ l  E P.  

It is natural to ask how large an auxiliary memory is needed. In the case 
where p E - P ,  we have the following. 

T h e o r e m 5 .  Suppose that the coefficients bi in the polynomial f ( x )  = x n - 
~"~i=0 bixi  are all either 0 or i .  Let q be expressed is a polynomial in ~, q + 1 : 

r-1 t i ~-]i=o ~j3 , with ti E Z. With lhe initial value constructed as in Theorem 4, the 
number of bits M needed for the initial memory value is bounded by 

M < n l o g ( Z  2iwt(t,) < n 2 +  nlog(max(wt( t i ) ) ) ,  
i = 0  

where wt(ti) is the Hamming weight of the binary expansion of ti. This bound 
continues to hold for all later values of the memory. 

For other choices of the bi, a similar but higher bound can be given. 
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4 Rational Approximation and Security Measures 

The role to be played by R-FCSRs in cryptography is two fold. First, as discussed 
in the introduction, they are potential tools for building sequences that  have 
large 2-adic span, and thus that  are secure against 2-adic rational approximation 
(Berlekamp-Massey) algorithms. However, there is also a possibility that  rational 
approximation can be carried out over R - we would call this R-adic rational 
approximation - and that  we can thus carry out this sort of attack on sequences 
over GF(2'~). 

As it turns out, the ingredients needed to generalize our 2-adic rational ap- 
proximation algorithm appear to be quite restrictive. R must be a Euclidean do- 
main, with a little extra. Specifically, we need a norm function N : K - { 0 }  --* Q+ 
(Q+ denotes the positive rational numbers), that  satisfies the following: 

a. For all a �9 R, g(a)  �9 N (N denotes the natural numbers). 
b. For all a, b e K,  we have N(ab) = N(a)N(b). 
c. For all a,b �9 R, there exist q,p e R so that  a = qb + p and N(p) < N(b). 

In addition, in order to ensure the algorithm converges rapidly, we need 

d. There is a function f : N ~ N so that  i f a  = b rood ~r/(k), N(a) < 2 k, and 
N(b) < 2  k , t h e n a = b .  

For any pair of elements p and q of R, define 

�9 (p, q) = max(N(p),  g(q)). 

Assume we have consecutive terms a0, a l , ' . ,  of a sequence a of elements of K 
(or equivalently S). We can think of a as the R~-adic expansion of a number a.  
We wish to determine a pair of elements (p, q) of R such that  a = p/q and ~(p, q) 
is minimal among all such pairs. In the rational approximation algorithm, given 
in Figure 1, the symbols f = (f~, f2) and g = (gl, g2) denote pairs of elements of 
R. With  these ingredients, the rational approximation algorithm is described in 
Figure 1. Unlike De Weger's approach to rational approximation, our algorithm 
is adaptive. Tha t  is, the number of terms of known key does not need to be 
predetermined. The algorithm can continue to revise the approximation as long 
as new key terms are found. Note that  the minimization steps can be carried 
out with a pair of divisions in R. These divisions can be computed since R is 
a Euclidean domain. An example of the execution of the algorithm is given in 
Table 1. The input used is the 2-adic expansion of -252/269 ,  the first 30 bits of 
which are 001010000100100010000110010000. The table shows the values of k, a,  
g, and f through 15 iterations. The algorithm thus uses 17 bits of the sequence 
since the first two bits are zero. Note that  17 < 2 [log(269)]. Thereafter the 
value of g remains unchanged. 

T h e o r e m 6 .  Suppose such a norm function exists for R. There is a rational 
approximation algorithm which, when given f (2  max(N(p) ,  N(q))) terms of the 
expansion over S of an R-rational number p/q as input, will output an R-FCSR 
that outputs p/q. 
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R a t i o n a l _ A p p r o x i m a t i o n  0 
beg in  
Input a i s  until the first ak-1 ~ 0 
O/ = ~k- -1  7rk--1 

f = (0, 
g = (7r k-1 , 1) 
whi le  more input do  

input ak 
O~ = OL -~- a k T ~  k 

i f  a . g 2 - g l = 0 ( m S d T r  k+l) t h e n  
.f = Tr f 

else if  ~5(g) < ~ ( f )  t h e n  
Let d minimize ~ ( f  + dg) with g + df = 0 rood 7r k+l 
(g, f )  = ( f  +dg ,  rrg) 

else 
Let d minimize ~(g + dr) with g + df - 0 rood 7r k+l 
(g, f )  = (g + df, rrf) 

t i f f  
k = k + l  

od  
r e t u r n  g 
end  

Fig.  1. Rational Approximation Algorithm. 

I t  tu rns  out  t h a t  algebraic n u m b e r  fields tha t  possess such n o r m  funct ions  
are rare. For the fields t ha t  arise in the cons t ruc t ion  of FCSRs,  as well as those 
t h a t  arise by tak ing  extensions of  Z t ha t  are ramified at  2, we have shown this 
in only two cases. 

C o r o l l a r y  7. Such a norm .function, and hence such a rational approximation 
algorithm exists for: 

1. Ordinary FCSRs;  
2. F C S R s  based on R = Z[Tr], with ~r 2 + 2 -- 0, S = {0, 1}, and K = G F ( 2 ) ;  

3. F C S R s  based on R = Z[fl], with f12 + f l +  1 = O, S = {0,1 , f l ,  1 + f l } ,  and K 
= G F ( 4 ) .  

In the unramif ied  case (the case described in Sections 2 and  3), if  n = 2 we 
have a Eucl idean doma in  whenever b0 is square  free and  divides bl. However,  if 
b0 = 1, condi t ion (d) does not  hold. In other  cases we do not  yet  know whether  
condi t ion (d) holds. Thus  the a lgor i thm finds ra t ional  approx ima t ions ,  bu t  we 
do not  know how fast,  or even whether ,  it converges. In the ramif ied case ( tha t  
is, when R is fo rmed  by adjoining a real n th  root  of  2 to Z), condi t ion (d) a lways 
holds, bu t  we do not  know whether  R is a Eucl idean d o m a i n  except  when n = 2. 
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k 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

O/ 

4 
4 
20 
20 
20 
20 
20 

532 
532 
532 

4628 
4628 
4628 
4628 

70164!{-252,269) 

g f 
(4,1) (0, 2) 
(4,1) (0, 4) 

(-4,3) (0,8) 
(-4, 3) (0,16) 
(12, 7) (-8, 6) 
(4, 13) (-16, 12) 
(20, 1) (8, 26) 

(-12,25) (40,2) 
(28,27) (-24,50) 

(-52, 23) (56, 54) 
(--52, 23) (112,108) 
(60,131) (-104, 46) 
(164,85) (-208,92) 
(164,85) (-416,184) 

(328,170) 

Table 1. Execution of the Rational Approximation Algorithm for -252/269. 

As a consequence of these considerations, we have new measures of crypto- 
logic security. 

D e f i n i t i o n 8 .  If R, I,  S is a ring over which FCSRs can be constructed, based 
on maximal ideal I = (lr) and lift S of R/I, then the R-adic span of a sequence 
a is the size of the smallest R-FCSR that outputs a. 

Notice that  we have been somewhat vague as to what is meant by the size of 
a FCSR. One reasonable definition might be the integer r, the number of terms 
in the expansion q + 1 = ~ i=1  q i2~" This makes sense if p has fewer than r terms 
in its expansion. More generally, we might take the maximum number of bits 
(or S cells) required to store the contents of the register, including the extra 
memory, over the course of its execution. From the cryptographic point of view, 
what we want is that  max(N(p), g(q)) is bounded by the size of the register (or 
perhaps a multiple of the size). In this case, it follows that  a sequence must have 
large R-adic span to be secure. This indeed holds in the two cases covered by 
Corollary 7. 

5 C o n c l u s i o n s  

We have described a general method for constructing feedback with carry shift 
registers over certain rings of algebraic integers, R. These registers are analogous 
to linear feedback shift registers. They can be thought of as generating sequences 
by carrying out division in the completion R2 of the ring at the prime ideal (2). 
They carry similar algebraic structures to those of LFSRs. 

The cryptographic importance of these registers is twofold. First, they are 
a potential source of cryptographically secure sequences for stream ciphers. As 
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with LFSR sequences, there are many  possible (as yet unexplored) ways to at- 
t empt  to modify these sequences to make them secure. Second, these registers 
can be used for cryptanalysis if a rational approximat ion algori thm can be de- 
vised for R2. Such an algorithm exists if R is a Euclidean domain with an extra  
condition on its norm. For only a few Rs we have shown that  these conditions 
occur. It  remains to be seen whether other such Rs have these properties and, if 
not, whether there is a different rational approximation algori thm that  works. 

Finally, it should be mentioned that  further generalizations are possible. We 
have only considered the cases where R is totally ramified or purely unrami-  
fled at (2), but  more general extensions can be considered. We have also only 
considered here sequences over finite fields of characteristic two, but  the same 
constructions can be carried out for primes other than two. The advantage might 
be in obtaining rings for which rational approximation works. 
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