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Abs t rac t .  This paper describes an ongoing effort to verify the cache 
coherence protocol of the IEEE/ANSI Standard for Scalable Coherent 
Interface using the Murky verification system. A model of the typical 
set protocol was constructed in the Mur~ description language. This 
model was augmented with a specification of properties necessary for 
cache coherence. The Mur~ verification system automatically checks if 
all reachable states in the model satisfy the given specification. Although 
verification is still under way, we have already found several errors in the 
C-code defining the protocol. Finally, we elucidate the experiences gained 
in the verification project. 

1 Introduct ion 

The IEEE/ANSI  Standard for Scalable Coherent Interface (SC1) includes a cache 
coherence protocol for distributed shared-memory multiprocessors. Designing a 
complex protocol - like this cache coherence protocol - is a challenging and 
difficult task. It is very hard for a designer to predict all possible interactions 
among the distributed system components. One way a computer can support  the 
designer is by means of simulating random executions of the system. However, 
especially in complex systems, there is a high probability of missing executions 
containing errors using this simulation approach. Conversely, an automatic  ver- 
ifier tries to examine all states reachable from a given start  state. The biggest 
obstacle in this exhaustive approach is the often unmanageably huge number of 
reachable states - the "state explosion problem". 

We are currently using the Mur~ verification system developed at Stanford to 
find errors in the SCI cache coherence protocol. In prior work, the M u f f  system 
was successfully applied to several industrial protocols [2, 3, 9, 14]. For verifying 
the SCI cache coherence protocol, the typical set protocol was modeled with the 
Murp description language. This model was augmented with a specification of 
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necessary conditions for cache coherence. Together, the model and the specifi- 
cation form the input file for the verifier and consist of 3700 lines of M u t t  code 
(not counting comments). The Mur~ verification system automatically checks 
by explicit state enumeration if all reachable states in the model satisfy the given 
specification (model checking). Although verification is still under way, we have 
already found several errors in the C-code defining the protocol. Various of these 
errors affect both the typical set protocol and the full set protocol. 

To alleviate the state explosion problem, the model was made scalable. By 
simply changing constant declarations, one is able to change the size of the model 
- and with that the number of reachable states. Since verification is usually 
possible only for "down-scaled" models, one cannot guarantee design correctness. 
Thus, we consider formal verification only as a debugging tool. However, since 
verification is completed for the down-scaled model of the system, it is likely to 
catch errors that are missed during simulation. 

We tried to make the Mur~ description of the model similar to the SCI C- 
code to prevent incurring additional errors in the translation process. At the same 
time, however, we had to abstract away from low-level details of the protocol 
that are not important for the verification. The resulting description should be 
easy to understand for someone familiar with the C-code. Furthermore, we tried 
to make it easy to add new features of the SCI cache coherence protocol to the 
current Mur~ description. 

The C-code includes a multi-threaded execution environment, which incurred 
many implicit state variables of the SCI protocol. These variables now occur ex- 
plicitly in our Mut t  description, which should help in implementations of the 
protocol. The Mur~ system contains a simulator as well, allowing to run execu- 
tions without the need to construct a multi-threaded execution environment. 

The Scalable Coherent Interface is specified in  the IEEE Standard 1596- 
1992 [7]. An easy-to-read introduction to the SCI cache coherence protocol can 
be found in [11]. An overview of the SCI and related standards projects is given 
in [6]. Previous work on formally verifying the SCI cache coherence protocol was 
done by Gjessing et al. [4, 5]. However, they did not use automatic methods and 
did not report finding any errors. 

The paper is organized as follows. Sections 2 and 3 present an overview of 
the Mur~ verification system and the SCI cache coherence protocol, respectively. 
The modeling of the SCI cache coherence protocol is described in Sect. 4, while 
the specification of cache coherence properties can be found in Sect. 5. In the 
Sect. 6, we report on some of the errors we found in the protocol and how they 
were fixed. The experience gained during the course of the verification project is 
elucidated in Sect. 7. Finally, Sect. 8 contains some suggestions for future work. 

2 T h e  M u r ~ a  V e r i f i c a t i o n  S y s t e m  

The Mur~ language is a simple high-level language for describing nondetermin- 
istic finite-state machines. Many features of the language are familiar from con- 
ventional programming languages. Its unique features not found in a "typical" 
high-level language can be described as follows: 
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- The state of the model consists of the values of all global variables. In a 
startstate statement,  initial values are assigned to the global variables. The 
transition from one state to another is performed by rules. Each rule has a 
Boolean condition and an action. The action may be executed if the condition 
is true (i.e. the rule is enabled) and may change global variables. An action 
is a program segment that  is executed atomically. In any state, there can be 
more than one enabled rule (nondeterminism). 

Fig. 1. Sample state graph 

Figure 1 shows a simple sample state graph with nine states ( s o , . . . ,  ss). The 
outgoing arcs in each state correspond to the rules that  are enabled in that  
state. While a simulator chooses an outgoing arc at random, a verifier ex- 
plores all reachable states from a given startstate (So). For the verification, 
either breadth-first or depth-first search can be selected in Murk. Reached 
states are stored in a hash table to avoid double work when a state is revis- 
ited. In our SCI model, for example, each processor has the nondeterministic 3 
choice of Load, Store, Delete or Flush for its next instruction. 

- The parallel composition of two processe s in Mur~p is done by simply using 
the union of the rules of the two processes as rules for the composition. 
Each process can take any number of steps (actions) between the steps of 
the other. The resulting computational  model is that  of asynchronous, in- 
terleaving concurrency. Parallel processes communicate via shared variables. 
There are no special language constructs for communication. 

- The Mur~ language supports scalable models. In a scalable model, one is able 
to change the size of the model by simply changing constant declarations. 
This down-scaling capability is important  to reduce the number of reachable 
states and thus make verification feasible. In many cases, the errors in a 

3 A nondeterministic choice will also be called an arbitrary choice in the following. 
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system are also found in the down-scaled system. For example, in our SCI 
model the number of processors is scalable and defined by a constant. 

- The MurT verifier supports automatic symmetry reduction of models by 
special language constructs [8, 9]. For example, if we have two processors, 
the state where processor one is the head and two is the tail of a sharing list 
is - for verification purposes - the same as the state where processor one is 
the tail and two is the head. 

- There are several ways the Mur~o verifier detects design errors. First, the 
description is checked for deadlocks. Second, there is an assert statement,  
which causes the verifier to print an error trace if the assertion condition is 
violated. An error trace is a sequence of states from the start  state to a state 
exhibiting the problem. Besides the assert statement,  Mur~o has an error 
statement that  always prints an error trace. In the SCI model, for example, 
the error statement was used in the default case of switch statements to check 
for illegal cache line states. Finally, one may specify invariants (Boolean con- 
ditions) that  have to be true in every reachable state. For example, invariants 
were added to the SCI model to specify cache coherence properties. 
With the methods for detecting design errors described above, one is not able 
to specify fairness properties. Thus, livelocks cannot be detected and forward 
progress cannot be guaranteed with Murk. This limitation will be lifted in 
the future. Note that  the system whose state graph is shown in Fig. 1 has 
one deadlock (s4) and one livelock (s6, ss) assuming that  the system should 
always return to the startstate (so). 

3 O v e r v i e w  o f  t h e  P r o t o c o l  

Shared-memory multiprocessors are commonly deemed to be easier to program 
than distributed multiprocessors, where the communication takes place via mes- 
sage passing. However, the latter are easier to implement in hardware. A solution 
to this problem is a distributed shared-memory mul~iproeessor, which provides 
shared memory at the software level, while the actual hardware implementation 
is a distributed message passing system. The IEEE Standard for Scalable Coher- 
ent Interface (SCI) includes a protocol for maintaining cache coherence among 
the distributed components in such a distributed shared-memory multiprocessor. 

An SCI node may contain a processor-  consisting of (multiple) execution 
units and a cache - and may contain a memory. The SCI nodes communicate 
via transactions, each consisting of a request packet and a response packet. In 
this simplified description, echo packets are not taken into account. A distributed 
shared-memory multiprocessor can be assembled out of these nodes. 

The SCI Standard consists of both an English language description and an 
accurate definition in the C programming language. This C-code was also used 
for debugging the protocol when it was developed. Therefore, the C-code contains 
a multi-threaded execution environment for running simulations of the protocol. 
The SCI Standard contains many options that  can each be enabled or disabled 
in actual hardware implementations. Thus, the protocol can be tailored to meet 
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the needs of a specific implementat ion.  Furthermore,  two subsets of the (full set) 
cache coherence protocol - the minimal set and the typical set protocol - are 
defined for reducing the complexity of early implementat ions.  

In a cache coherent SCI system, where snooping is not possible, for each 
memory  line a list of all caches tha t  have a copy of this line has to be main- 
tained. In an SCI system, this "sharing list" is distributed among the system 
components.  This is illustrated in Fig. 2. The left-hand side of this figure shows a 
sharing list of cache lines in processors B and C and the corresponding memory  
line. The pointers for the sharing lists are stored in additional bits (tags) in each 
memory  and cache line. The current states of the memory  and cache lines are 
also stored in these tags. 

proc A proc B proc C proc A proc B proc C 

memory memory 

exec 
cache [] memory/cache line 

Fig. 2. A sharing list before and after a Load instruction 

We now give an example of a typicM execution sequence in the cache co- 
herence protocol. If  processor A on the left-hand side of Fig. 2 is executing a 
Load instruction and wants to read da ta  from the memory  line tha t  is shared 
by processor B and C, it first issues an reread64 request packet to the memory  
and is notified in the response packet tha t  processor B has the data. Assume the 
da ta  in processor B's cache line is modified. Then, processor A sends a cread64 
request packet to processor B's cache, obtains the data  in the response packet 
and becomes the new head (owner) of the sharing list as shown on the right-hand 
side of Fig. 2. 

In the typical set protocol, five instructions are defined by which a proces- 
sor may  access the shared memory.  In addition to executing a Load or Store 
instruction, a processor may  Delete itself f rom a sharing list, Flush (i.e. purge) 
the whole sharing list or Lock the memory  line. According to the standard,  these 
instructions are executed in four phases - namely allocate, setup, execute and 
cleanup. 

The three distinct behaviors of processors, caches and memories are defined 
separately from each other in the C-code. According to this definition, the ex- 
ecution of the routines implementing cache and memory  behavior is performed 
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atomically. However, the execution of a routine modeling the execution of an 
instruction by a processor may be non-atomical. For example, after processor A 
in the above example sent out its mread64 request packet to the memory, pro- 
cessor B may start  a Delete instruction, processor C may continue its Lock in- 
struction in progress, etc. 

4 The Modeling of the Protocol 

The model of the SCI cache coherence protocol was constructed in three steps. 
These steps are clarified in the following subsections. 

A b s t r a c t i o n  

The goal of the abstraction or modeling was to extract the details of the SCI 
Standard that  are important  for the cache coherence protocol. Equivalently, this 
means that  unnecessary details of the standard were omitted. Figure 3 shows an 
abstraction (model) of the SCI configuration. Details of the internal structures 
of the SCI nodes (processors and memories) are omitted. The transfer cloud 
connecting the system components is reliable. However, the order of packets is 
not preserved. Echo packets were not modeled, so a transaction consists of a 
request packet and a response packet. Only the fields of request and response 
packets were modeled that  are actually used in the cache coherence part of 
the SCI Standard. In fact, chapter 4 of the SCI Standard [7] uses a similar 
abstraction to describe the cache coherence protocol. 

proc proc memory 

Fig. 3. Model of the SCI configuration 

S i m p l i f i c a t i o n  

The simplifications done were needed to make the model construction possible 
in a "finite" amount  of time. The most significant of these simplifications was 
not modeling the full set cache coherence protocol, but restricting ourselves to 
the typical set protocol. In addition, only three of the processor/cache options 
were implemented in our model, namely DIRTY, FRESH and MODS. For the 



27 

memory, the option MOP_FRESH was selected. The coherent instructions Load 
(with fetch options CO_FETCH, CO_LOAD and CO_STORE), Store, Delete 
and Flush were implemented. 

Another simplification was not to model DMA reads and writes that  are 
"allowed" in the typical set protocol. Furthermore, strong ordering constraints 
were assumed, so pipelining during the cleanup phase of an instruction was 
disabled. Finally, only one execution unit is attached to each processor. 

I m p l e m e n t a t i o n  

As mentioned before, scalability is crucial for successful verification. In imple- 
menting the model, we kept the following parameters scalable: the number of 
processors, the number of lines in each cache, the number of memories, the num- 
ber of lines in each memory and the number of different data values. Besides 
that ,  each SCI processor/cache option, each instruction and each fetch option 
can be enabled or disabled by simply changing a constant declaration. 

The model can be explained ~)y three different types of behaviors or processes, 
namely memory, cache and processor. There can be many individual processes 
of each of these three types. For example, there is one individual process of type 
memory for each memory in the system. The model consists of all the resulting 
processes running (asynchronously) in parallel. 

- Each memory has a simple request/response behavior, i.e. if there is a request 
packet for our memory in the transfer cloud, the memory reacts by sending 
a response packet. This is done atomically. However, before the memory 
responds to a request in the transfer cloud, any other process in the model 
may be active. 
The implementation in Mur~ is done by using one rule, whose condition is 
true iff there is a request for the particular memory in the transfer cloud. 
The action of the rule deletes the request from the transfer cloud, performs 
the update of the accessed memory line's data  field and tags and sends out 
a response on the transfer cloud. 

- Each cache has a simple request/response behavior, similar to that  of the 
memory. 

- The processor behavior in our model is more complicated. A processor ar- 
bitrarily chooses a coherent instruction (Load, Store, Flush or Delete) to 
execute next, when the preceding instruction has completed. If the new in- 
struction is, for example, a Load, the processor also chooses an arbitrary 
source address, an arbitrary cache line for cache misses and an arbitrary 
fetch option. Thus, we verified the cache coherence protocol while an arbi- 
t rary program is running in each processor. 
When a coherent instruction is in progress, the processor may several times 
send out a request on the transfer cloud to a cache or memory and then wait 
for the corresponding response. During this waiting time, any other system 
component may be active. Consequently, almost all SCI C-code routines 
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describing the processor behavior are often executed non-atomically 4. For 
example, Table i shows a hierarchy of routines that  may be called in a Flush 
instruction (main routine TypicalExecuteFlush0).  The last routine called 
(CommonTransact ion0)  sends out the request packet and waits for the re- 
sponse packet. Thus, it is interruptable. Consequently, all routines shown in 
the table are interruptable, since each of them calls a subroutine that  may 
be interrupted. 

Table 1. Possible hierarchy of routines in a Flush instruction 

TypicalExecuteFlush 0 
TypicalFlushSetup 0 

InvalidToOnlyDirty 0 
AttachLists 0 

CacheReadSrc 0 
CommonTransaction 0 

One goal in the implementation was to make the Mur~ code similar to 
the SCI C-code. Specifically, we wanted to model each SCI routine by a 
Mur~ routine. We implemented interruptable routines in Mur~ by making 
it possible to re-enter them. If, for example, the Flush instruction initiates 
two transactions, the Mur~ routine TypicalExecuteFlush 0 is called three 
times. One time initially and the other two times after a response packet 
arrived. 
To implement routines that  can be re-entered, the corresponding Mur~ rou- 
tines had to store their current state in special global variables. Correspond- 
ing state variables also have to occur in a hardware implementation of the 
protocol. Since they are explicit in our Mur~ model, this model could be 
useful for hardware designers as well. 

Finally, the implementation of the transfer cloud is described. We assumed 
that pipelining is disabled. Then, each processor can only have one outstanding 
request and (later) one non-processed response. Thus, in our implementation 
each processor has - as part of its state variables - a record for the "outgoing" 
request packet and another one for the "incoming" response packet. Each mem- 
ory~ for example, scans the request packet records of all processors to see if there 
is a request addressed to it in the transfer cloud. 

5 S p e c i f y i n g  C a c h e  C o h e r e n c e  

The cache coherence property was specified in our Mur~ model in two different 
ways: 

4 Routines that may be executed non-atomically will also be called interruptable in 
the following. Clearly, this is different from interrupts in the classical sense. 
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- First, the SCI C-code includes many  assert s ta tements  to catch errors while 
running simulations with the built-in execution environment.  Furthermore,  
the C-code contains several s ta tements  for the detection of memory- t ag  and 
cache-tag inconsistencies. We tried to include as many  of these self-checks 
into our Mur~ model as possible. 

- Second, we added invariants to the Mur~ model to specify more accurately 
cache coherence. These invariants imposed local conditions on the elements 
of sharing lists. We give two examples to clarify that:  

�9 If  a cache line is in an unmodified stable state 5 (e.g. CS_ONLY_CLEAN), 
the data  value in the cache line must  be the same as the one in the 
corresponding memory  line. 

�9 If  a cache line is the head of a stable sharing list 6 (e.g. CS_HEAD_DIR- 
TY),  there must  be a successor in the sharing list having the same mem-  
ory address and pointing back to the head. 

Even though our conditions specifying cache coherence are not sufficient 
conditions for cache coherence, we expect them to be able to catch many  of 
the errors that  could occur. Furthermore,  we are currently working to make 
the specification more accurate. 
In the process of specifying cache coherence with invariants, we first at- 
t empted  relatively straightforward conditions. If  these conditions were vio- 
lated by any execution, we checked whether a protocol error was detected 
or whether a legal state violated our conditions. In the lat ter  case, the con- 
ditions were relaxed to take into account this state. 
We would also like to specify fairness properties. For example,  a processor 
who starts  a Load instruction should finally get a copy of the data  and finish 
the Load instruction. As mentioned in Sect. 2, specifying fairness properties 
is not possible in the current version of Murk.  

6 E r r o r s  F o u n d  D u r i n g  V e r i f i c a t i o n  

All the errors found so far occurred in system configurations with only two 
processors with one cache line each, one memory  with one address and one da ta  
value ("zero bits of da ta")  after examining a few thousand states in t ime on the 
order of minutes. Furthermore,  only the protocol self-checks copied from the SCI 
C-code were triggered. None of our invariants was violated. 

The largest example we ran had three processors with one cache line each, 
one memory  with one address and two data  values. The Load (fetch option 
CO_LOAD), Store, and Delete instruction were enabled. The cache/processor 
options DIRTY, FRESH and MODS were selected. The Mur~ verifier examined 
5.8 million states in 6.4 h, running on a Sun SPARCstat ion 20 and using 61 
bytes per state. However, this example revealed no new errors. 

We also ran examples in which we used more than one memory,  address or 
cache line. None of these examples revealed new errors in the protocol. We only 

5 See Table 4-3 in [7] for a list of all stable cache-tag states. 
6 See Table 4-4 in [7] for a list of all stable sharing lists. 
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sometimes found errors in our Mur~ model that  were due to incorrect translation 
from the C-code to Murk.  

All protocol errors we found can be divided into three different classes, that  
are described in the following subsections. For each class, error examples are 
given. The full error list was sent to the SCI code-bugs reflector. 

Omissions in the typical set protocol 

The typical set protocol can be considered as a simplification of the full set 
protocol. All errors in the first class have in common that  there were some 
program segments missing in the C-code of a rout ine  of the typical set protocol 
but not in the corresponding routine of the full set protocol. Thus, these errors 
were easy to fix. The missing program segments were copied from the full set 
routine into the corresponding typical set routine. 

For example,  a processor executing a Load instruction may  set the current 
cache line state to CI_ONLY_EXCL. This intermediate cache line s tate  is not 
considered in the routine Typica lLoad0,  which reports an error instead. How- 
ever, the routine FullLoad 0 considers this case and correctly changes the cache 
line state to CS_ONLY_DIRTY 7. 

Uninit ial ized variables 

At some places in the SCI C-code uninitialized variables are accessed. During 
simulation runs using the C-code execution environment,  these variables were 
presumably initialized to zero by code generated by the C-compiler - thus caus- 
ing no problem. However, hardware implementat ions are less error-prone if all 
initializations are made explicit. 

Instead of describing the situations when access to uninitialized variables 
occurs, we give two examples where variables have to be set to a defined value 
to avoid problems later. 

- First, the routine MemoryAccessCoherent 0 should not return without set- 
ting the commafld nullified (cn) bit in the response packet to a defined value. 
We added an assignment to set the cn bit by default to zero. 

- Second, the routine CacheRamAccess 0 should set the command .cmd field 
in the response packet to the default value SC_RESP00. This is especially 
impor tan t  since the routine CommonTransac t ion  0 copies the incoming da ta  
into the cache line data  field dependent on the command .cmd field of the 
incoming packet. 

Logical protocol e r r o r s  

The logical protocol errors we found required more subtle changes in the cache 
coherence protocol. These errors can be characterized as revealing flaws in the 

7 Actually, the state is set to CS_ONLYP_DIRTY_POP. However, this equals CS_ON- 
Lu since we assume palrwise sharing being disabled. 
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logical structure of the protocol. Note, that  this error class and the previous one 
not only affect the correct operation of the typical set protocol, but  also the full 
set protocol. 

So far, we found the two logical protocol errors explained in the following. 
Only the first error has been fixed, the second one is currently being discussed 
with SCI working group members.  

- When a Flush instruction is in progress in a processor, the current cache line 
state may  be set to CS_HX_INVAL_OX. Assume a second processor who is a 
"TAIL_VALID" member  of the sharing list now also starts  a Flush instruc- 
tion. Then, he sends a cread00.CC_PREV_VTAIL request to the first cache. 
When the first cache tries to respond to this request, an assert s ta tement  
is violated in the cache's routine CacheTagUpdate  0 because none of the 
CacheTag. . .Update 0 routines has processed the request. The error can be 
fixed by adding CS_HX_INVAL_OX to the "blocking states" in the routine 
CacheTagBasicUpdate  0 .  

- While the errors described so far occurred with the three processor/cache 
options DIRTY,  FRESH and MODS enabled, the following error was found 
with only options FRESH and MODS enabled. Tab l e2  shows the trace for 
this error, consisting of actions, star t ing from a state where both processors 
have invalid caches and ending in the error state. 

Table  2. Error trace for the second logical protocol error 

1. procl starts Flush instruction, sends 
mread64.CACHE_DIRTY to memory 

2. proc2 starts Store instruction, sends 
mread64.CACHE_DIRTY to memory 

3. memory responds to proc2 
4. proc2 finishes Store instruction, cache2 be- 

comes ONLY_DIRTY 
5. memory responds to procl 
6. procl sends cread64.COPY_VALID to 

cache2 
7. cache2 responds to procl, becomes 

TAIL_VALID 
8. procl continues Flush instruction, assertion 

POP_DIRTY is violated in HeadDirtyTo- 
Flushed() 

Usually, the protocol leaves several choices at each state for the successor 
state. Thus, the longer an error trace, the more unlikely it becomes to detect 
tha t  error by simulation means. The error trace in Table 2 was found by 
breadth-first  search and is therefore as short as possible. 
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7 Conc lus ion  

The most important  experiences gained in verifying the SCI cache coherence 
protocol can be summarized as follows: 

- The abstraction done in the modeling was relatively simple and straightfor- 
ward. Modeling at a higher level of abstraction - for example, by mapping 
the many possible cache line states onto fewer abstract states - would have 
incurred the problem of comparing the abstract model with the real protocol 
defined in the C-code. To avoid this (severe) difficulty, we opted for simple 
abstractions. 

- A careful impleraenlation of the model in Mnr~ is important  in fighting the 
state explosion problem. For example, we were able to reduce the number 
of reachable states by a factor of over 20 by just setting all state variables 
whose current values were no longer needed to fixed values. 

- The Mur~ system for formal verification should be viewed as a debugging 
tool. Verification was only possible for down-scaled versions of the model and 
thus total correctness cannot be guaranteed. 

- It seems to be advantageous to design and specify complex protocols with the 
help of formal verification tools. First, the quality of the system is increased. 
Second, the time-consuming task of translating the description of the system 
into a "formal model" would be eliminated. Finally, our Mur~ description 
is deemed to be easier to implement in hardware and not more complicated 
to understand than the original C-code. 

8 Future  Work 

Our model of the SCI cache coherence protocol could be extended in several 
ways. However, one should keep in mind that  these extensions worsen the state 
explosion. 

- First, the model could be enlarged to cover the full set cache coherence 
protocol and all of the processor/cache options defined in the SCI Standard. 
Furthermore, the extensions of the SCI cache coherence protocol currently 
under development (for an overview see [10]) could be included in the model. 

- Second, in the current version of our model, the processor/cache options 
have to be enabled/disabled by hand and they are identical for all nodes. 
For automatic verification, they should be selected automatically, arbitrarily 
and separately for each node. 

- Finally, the model could be altered to allow multiple execution units for each 
processor and pipelining during the cleanup phase of an instruction. However, 
unlike the first two suggestions, this would require significant changes in the 
current model. 

In our verification project, some errors were revealed that  had not been found 
before. Verification methods are able to help in constructing better systems, but 
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they have to keep pace with the increasing size of the systems. There are several 
ways by which the verifiable size of the model could be increased. First, it might  
be possible to abstract  the sharing list f rom a low-level doubly-linked list to 
an abstract  list. This way, the number  of reachable states could be reduced. 
Second, there are some ways to increase the number  of explorable states in the 
current Mur~ system. Examples  would be state compression [13] and on-the- 
fly methods [12], Finally, symbolic methods to. represent the set of reachable 
states [1] could yield further progress in the SCI verification. 
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