
A u t o m a t i c Verification of the SCI Cache
Coherence Protocol*

Ulrich Stern** and David L. Dill

Department of Computer Science, Stanford University,
Stanford, CA 94305

{uli@rutabaga, dill@cs}.st anford.edu

Abs t rac t . This paper describes an ongoing effort to verify the cache
coherence protocol of the IEEE/ANSI Standard for Scalable Coherent
Interface using the Murky verification system. A model of the typical
set protocol was constructed in the Mur~ description language. This
model was augmented with a specification of properties necessary for
cache coherence. The Mur~ verification system automatically checks if
all reachable states in the model satisfy the given specification. Although
verification is still under way, we have already found several errors in the
C-code defining the protocol. Finally, we elucidate the experiences gained
in the verification project.

1 Introduct ion

The IEEE/ANSI Standard for Scalable Coherent Interface (SC1) includes a cache
coherence protocol for distributed shared-memory multiprocessors. Designing a
complex protocol - like this cache coherence protocol - is a challenging and
difficult task. It is very hard for a designer to predict all possible interactions
among the distributed system components. One way a computer can support the
designer is by means of simulating random executions of the system. However,
especially in complex systems, there is a high probability of missing executions
containing errors using this simulation approach. Conversely, an automatic ver-
ifier tries to examine all states reachable from a given start state. The biggest
obstacle in this exhaustive approach is the often unmanageably huge number of
reachable states - the "state explosion problem".

We are currently using the Mur~ verification system developed at Stanford to
find errors in the SCI cache coherence protocol. In prior work, the M u f f system
was successfully applied to several industrial protocols [2, 3, 9, 14]. For verifying
the SCI cache coherence protocol, the typical set protocol was modeled with the
Murp description language. This model was augmented with a specification of

* A preliminary version of this paper was presented at the 2nd International Workshop
on SCI-based High-Performance Low-Cost Computing, Santa Clara University, 1995.

** Ulrich Stern was supported during this research by a scholarship from the German
Academic Exchange Service (DAAD-Doktorandenstipendium HSP-II).

22

necessary conditions for cache coherence. Together, the model and the specifi-
cation form the input file for the verifier and consist of 3700 lines of M u t t code
(not counting comments). The Mur~ verification system automatically checks
by explicit state enumeration if all reachable states in the model satisfy the given
specification (model checking). Although verification is still under way, we have
already found several errors in the C-code defining the protocol. Various of these
errors affect both the typical set protocol and the full set protocol.

To alleviate the state explosion problem, the model was made scalable. By
simply changing constant declarations, one is able to change the size of the model
- and with that the number of reachable states. Since verification is usually
possible only for "down-scaled" models, one cannot guarantee design correctness.
Thus, we consider formal verification only as a debugging tool. However, since
verification is completed for the down-scaled model of the system, it is likely to
catch errors that are missed during simulation.

We tried to make the Mur~ description of the model similar to the SCI C-
code to prevent incurring additional errors in the translation process. At the same
time, however, we had to abstract away from low-level details of the protocol
that are not important for the verification. The resulting description should be
easy to understand for someone familiar with the C-code. Furthermore, we tried
to make it easy to add new features of the SCI cache coherence protocol to the
current Mur~ description.

The C-code includes a multi-threaded execution environment, which incurred
many implicit state variables of the SCI protocol. These variables now occur ex-
plicitly in our Mut t description, which should help in implementations of the
protocol. The Mur~ system contains a simulator as well, allowing to run execu-
tions without the need to construct a multi-threaded execution environment.

The Scalable Coherent Interface is specified in the IEEE Standard 1596-
1992 [7]. An easy-to-read introduction to the SCI cache coherence protocol can
be found in [11]. An overview of the SCI and related standards projects is given
in [6]. Previous work on formally verifying the SCI cache coherence protocol was
done by Gjessing et al. [4, 5]. However, they did not use automatic methods and
did not report finding any errors.

The paper is organized as follows. Sections 2 and 3 present an overview of
the Mur~ verification system and the SCI cache coherence protocol, respectively.
The modeling of the SCI cache coherence protocol is described in Sect. 4, while
the specification of cache coherence properties can be found in Sect. 5. In the
Sect. 6, we report on some of the errors we found in the protocol and how they
were fixed. The experience gained during the course of the verification project is
elucidated in Sect. 7. Finally, Sect. 8 contains some suggestions for future work.

2 T h e M u r ~ a V e r i f i c a t i o n S y s t e m

The Mur~ language is a simple high-level language for describing nondetermin-
istic finite-state machines. Many features of the language are familiar from con-
ventional programming languages. Its unique features not found in a "typical"
high-level language can be described as follows:

23

- The state of the model consists of the values of all global variables. In a
startstate statement, initial values are assigned to the global variables. The
transition from one state to another is performed by rules. Each rule has a
Boolean condition and an action. The action may be executed if the condition
is true (i.e. the rule is enabled) and may change global variables. An action
is a program segment that is executed atomically. In any state, there can be
more than one enabled rule (nondeterminism).

Fig. 1. Sample state graph

Figure 1 shows a simple sample state graph with nine states (s o , . . . , ss). The
outgoing arcs in each state correspond to the rules that are enabled in that
state. While a simulator chooses an outgoing arc at random, a verifier ex-
plores all reachable states from a given startstate (So). For the verification,
either breadth-first or depth-first search can be selected in Murk. Reached
states are stored in a hash table to avoid double work when a state is revis-
ited. In our SCI model, for example, each processor has the nondeterministic 3
choice of Load, Store, Delete or Flush for its next instruction.

- The parallel composition of two processe s in Mur~p is done by simply using
the union of the rules of the two processes as rules for the composition.
Each process can take any number of steps (actions) between the steps of
the other. The resulting computational model is that of asynchronous, in-
terleaving concurrency. Parallel processes communicate via shared variables.
There are no special language constructs for communication.

- The Mur~ language supports scalable models. In a scalable model, one is able
to change the size of the model by simply changing constant declarations.
This down-scaling capability is important to reduce the number of reachable
states and thus make verification feasible. In many cases, the errors in a

3 A nondeterministic choice will also be called an arbitrary choice in the following.

24

system are also found in the down-scaled system. For example, in our SCI
model the number of processors is scalable and defined by a constant.

- The MurT verifier supports automatic symmetry reduction of models by
special language constructs [8, 9]. For example, if we have two processors,
the state where processor one is the head and two is the tail of a sharing list
is - for verification purposes - the same as the state where processor one is
the tail and two is the head.

- There are several ways the Mur~o verifier detects design errors. First, the
description is checked for deadlocks. Second, there is an assert statement,
which causes the verifier to print an error trace if the assertion condition is
violated. An error trace is a sequence of states from the start state to a state
exhibiting the problem. Besides the assert statement, Mur~o has an error
statement that always prints an error trace. In the SCI model, for example,
the error statement was used in the default case of switch statements to check
for illegal cache line states. Finally, one may specify invariants (Boolean con-
ditions) that have to be true in every reachable state. For example, invariants
were added to the SCI model to specify cache coherence properties.
With the methods for detecting design errors described above, one is not able
to specify fairness properties. Thus, livelocks cannot be detected and forward
progress cannot be guaranteed with Murk. This limitation will be lifted in
the future. Note that the system whose state graph is shown in Fig. 1 has
one deadlock (s4) and one livelock (s6, ss) assuming that the system should
always return to the startstate (so).

3 O v e r v i e w o f t h e P r o t o c o l

Shared-memory multiprocessors are commonly deemed to be easier to program
than distributed multiprocessors, where the communication takes place via mes-
sage passing. However, the latter are easier to implement in hardware. A solution
to this problem is a distributed shared-memory mul~iproeessor, which provides
shared memory at the software level, while the actual hardware implementation
is a distributed message passing system. The IEEE Standard for Scalable Coher-
ent Interface (SCI) includes a protocol for maintaining cache coherence among
the distributed components in such a distributed shared-memory multiprocessor.

An SCI node may contain a processor- consisting of (multiple) execution
units and a cache - and may contain a memory. The SCI nodes communicate
via transactions, each consisting of a request packet and a response packet. In
this simplified description, echo packets are not taken into account. A distributed
shared-memory multiprocessor can be assembled out of these nodes.

The SCI Standard consists of both an English language description and an
accurate definition in the C programming language. This C-code was also used
for debugging the protocol when it was developed. Therefore, the C-code contains
a multi-threaded execution environment for running simulations of the protocol.
The SCI Standard contains many options that can each be enabled or disabled
in actual hardware implementations. Thus, the protocol can be tailored to meet

25

the needs of a specific implementat ion. Furthermore, two subsets of the (full set)
cache coherence protocol - the minimal set and the typical set protocol - are
defined for reducing the complexity of early implementat ions.

In a cache coherent SCI system, where snooping is not possible, for each
memory line a list of all caches tha t have a copy of this line has to be main-
tained. In an SCI system, this "sharing list" is distributed among the system
components. This is illustrated in Fig. 2. The left-hand side of this figure shows a
sharing list of cache lines in processors B and C and the corresponding memory
line. The pointers for the sharing lists are stored in additional bits (tags) in each
memory and cache line. The current states of the memory and cache lines are
also stored in these tags.

proc A proc B proc C proc A proc B proc C

memory memory

exec
cache [] memory/cache line

Fig. 2. A sharing list before and after a Load instruction

We now give an example of a typicM execution sequence in the cache co-
herence protocol. If processor A on the left-hand side of Fig. 2 is executing a
Load instruction and wants to read da ta from the memory line tha t is shared
by processor B and C, it first issues an reread64 request packet to the memory
and is notified in the response packet tha t processor B has the data. Assume the
da ta in processor B's cache line is modified. Then, processor A sends a cread64
request packet to processor B's cache, obtains the data in the response packet
and becomes the new head (owner) of the sharing list as shown on the right-hand
side of Fig. 2.

In the typical set protocol, five instructions are defined by which a proces-
sor may access the shared memory. In addition to executing a Load or Store
instruction, a processor may Delete itself f rom a sharing list, Flush (i.e. purge)
the whole sharing list or Lock the memory line. According to the standard, these
instructions are executed in four phases - namely allocate, setup, execute and
cleanup.

The three distinct behaviors of processors, caches and memories are defined
separately from each other in the C-code. According to this definition, the ex-
ecution of the routines implementing cache and memory behavior is performed

26

atomically. However, the execution of a routine modeling the execution of an
instruction by a processor may be non-atomical. For example, after processor A
in the above example sent out its mread64 request packet to the memory, pro-
cessor B may start a Delete instruction, processor C may continue its Lock in-
struction in progress, etc.

4 The Modeling of the Protocol

The model of the SCI cache coherence protocol was constructed in three steps.
These steps are clarified in the following subsections.

A b s t r a c t i o n

The goal of the abstraction or modeling was to extract the details of the SCI
Standard that are important for the cache coherence protocol. Equivalently, this
means that unnecessary details of the standard were omitted. Figure 3 shows an
abstraction (model) of the SCI configuration. Details of the internal structures
of the SCI nodes (processors and memories) are omitted. The transfer cloud
connecting the system components is reliable. However, the order of packets is
not preserved. Echo packets were not modeled, so a transaction consists of a
request packet and a response packet. Only the fields of request and response
packets were modeled that are actually used in the cache coherence part of
the SCI Standard. In fact, chapter 4 of the SCI Standard [7] uses a similar
abstraction to describe the cache coherence protocol.

proc proc memory

Fig. 3. Model of the SCI configuration

S i m p l i f i c a t i o n

The simplifications done were needed to make the model construction possible
in a "finite" amount of time. The most significant of these simplifications was
not modeling the full set cache coherence protocol, but restricting ourselves to
the typical set protocol. In addition, only three of the processor/cache options
were implemented in our model, namely DIRTY, FRESH and MODS. For the

27

memory, the option MOP_FRESH was selected. The coherent instructions Load
(with fetch options CO_FETCH, CO_LOAD and CO_STORE), Store, Delete
and Flush were implemented.

Another simplification was not to model DMA reads and writes that are
"allowed" in the typical set protocol. Furthermore, strong ordering constraints
were assumed, so pipelining during the cleanup phase of an instruction was
disabled. Finally, only one execution unit is attached to each processor.

I m p l e m e n t a t i o n

As mentioned before, scalability is crucial for successful verification. In imple-
menting the model, we kept the following parameters scalable: the number of
processors, the number of lines in each cache, the number of memories, the num-
ber of lines in each memory and the number of different data values. Besides
that , each SCI processor/cache option, each instruction and each fetch option
can be enabled or disabled by simply changing a constant declaration.

The model can be explained ~)y three different types of behaviors or processes,
namely memory, cache and processor. There can be many individual processes
of each of these three types. For example, there is one individual process of type
memory for each memory in the system. The model consists of all the resulting
processes running (asynchronously) in parallel.

- Each memory has a simple request/response behavior, i.e. if there is a request
packet for our memory in the transfer cloud, the memory reacts by sending
a response packet. This is done atomically. However, before the memory
responds to a request in the transfer cloud, any other process in the model
may be active.
The implementation in Mur~ is done by using one rule, whose condition is
true iff there is a request for the particular memory in the transfer cloud.
The action of the rule deletes the request from the transfer cloud, performs
the update of the accessed memory line's data field and tags and sends out
a response on the transfer cloud.

- Each cache has a simple request/response behavior, similar to that of the
memory.

- The processor behavior in our model is more complicated. A processor ar-
bitrarily chooses a coherent instruction (Load, Store, Flush or Delete) to
execute next, when the preceding instruction has completed. If the new in-
struction is, for example, a Load, the processor also chooses an arbitrary
source address, an arbitrary cache line for cache misses and an arbitrary
fetch option. Thus, we verified the cache coherence protocol while an arbi-
t rary program is running in each processor.
When a coherent instruction is in progress, the processor may several times
send out a request on the transfer cloud to a cache or memory and then wait
for the corresponding response. During this waiting time, any other system
component may be active. Consequently, almost all SCI C-code routines

28

describing the processor behavior are often executed non-atomically 4. For
example, Table i shows a hierarchy of routines that may be called in a Flush
instruction (main routine TypicalExecuteFlush0). The last routine called
(CommonTransact ion0) sends out the request packet and waits for the re-
sponse packet. Thus, it is interruptable. Consequently, all routines shown in
the table are interruptable, since each of them calls a subroutine that may
be interrupted.

Table 1. Possible hierarchy of routines in a Flush instruction

TypicalExecuteFlush 0
TypicalFlushSetup 0

InvalidToOnlyDirty 0
AttachLists 0

CacheReadSrc 0
CommonTransaction 0

One goal in the implementation was to make the Mur~ code similar to
the SCI C-code. Specifically, we wanted to model each SCI routine by a
Mur~ routine. We implemented interruptable routines in Mur~ by making
it possible to re-enter them. If, for example, the Flush instruction initiates
two transactions, the Mur~ routine TypicalExecuteFlush 0 is called three
times. One time initially and the other two times after a response packet
arrived.
To implement routines that can be re-entered, the corresponding Mur~ rou-
tines had to store their current state in special global variables. Correspond-
ing state variables also have to occur in a hardware implementation of the
protocol. Since they are explicit in our Mur~ model, this model could be
useful for hardware designers as well.

Finally, the implementation of the transfer cloud is described. We assumed
that pipelining is disabled. Then, each processor can only have one outstanding
request and (later) one non-processed response. Thus, in our implementation
each processor has - as part of its state variables - a record for the "outgoing"
request packet and another one for the "incoming" response packet. Each mem-
ory~ for example, scans the request packet records of all processors to see if there
is a request addressed to it in the transfer cloud.

5 S p e c i f y i n g C a c h e C o h e r e n c e

The cache coherence property was specified in our Mur~ model in two different
ways:

4 Routines that may be executed non-atomically will also be called interruptable in
the following. Clearly, this is different from interrupts in the classical sense.

29

- First, the SCI C-code includes many assert s ta tements to catch errors while
running simulations with the built-in execution environment. Furthermore,
the C-code contains several s ta tements for the detection of memory- t ag and
cache-tag inconsistencies. We tried to include as many of these self-checks
into our Mur~ model as possible.

- Second, we added invariants to the Mur~ model to specify more accurately
cache coherence. These invariants imposed local conditions on the elements
of sharing lists. We give two examples to clarify that:

�9 If a cache line is in an unmodified stable state 5 (e.g. CS_ONLY_CLEAN),
the data value in the cache line must be the same as the one in the
corresponding memory line.

�9 If a cache line is the head of a stable sharing list 6 (e.g. CS_HEAD_DIR-
TY), there must be a successor in the sharing list having the same mem-
ory address and pointing back to the head.

Even though our conditions specifying cache coherence are not sufficient
conditions for cache coherence, we expect them to be able to catch many of
the errors that could occur. Furthermore, we are currently working to make
the specification more accurate.
In the process of specifying cache coherence with invariants, we first at-
t empted relatively straightforward conditions. If these conditions were vio-
lated by any execution, we checked whether a protocol error was detected
or whether a legal state violated our conditions. In the lat ter case, the con-
ditions were relaxed to take into account this state.
We would also like to specify fairness properties. For example, a processor
who starts a Load instruction should finally get a copy of the data and finish
the Load instruction. As mentioned in Sect. 2, specifying fairness properties
is not possible in the current version of Murk.

6 E r r o r s F o u n d D u r i n g V e r i f i c a t i o n

All the errors found so far occurred in system configurations with only two
processors with one cache line each, one memory with one address and one da ta
value ("zero bits of da ta") after examining a few thousand states in t ime on the
order of minutes. Furthermore, only the protocol self-checks copied from the SCI
C-code were triggered. None of our invariants was violated.

The largest example we ran had three processors with one cache line each,
one memory with one address and two data values. The Load (fetch option
CO_LOAD), Store, and Delete instruction were enabled. The cache/processor
options DIRTY, FRESH and MODS were selected. The Mur~ verifier examined
5.8 million states in 6.4 h, running on a Sun SPARCstat ion 20 and using 61
bytes per state. However, this example revealed no new errors.

We also ran examples in which we used more than one memory, address or
cache line. None of these examples revealed new errors in the protocol. We only

5 See Table 4-3 in [7] for a list of all stable cache-tag states.
6 See Table 4-4 in [7] for a list of all stable sharing lists.

30

sometimes found errors in our Mur~ model that were due to incorrect translation
from the C-code to Murk.

All protocol errors we found can be divided into three different classes, that
are described in the following subsections. For each class, error examples are
given. The full error list was sent to the SCI code-bugs reflector.

Omissions in the typical set protocol

The typical set protocol can be considered as a simplification of the full set
protocol. All errors in the first class have in common that there were some
program segments missing in the C-code of a rout ine of the typical set protocol
but not in the corresponding routine of the full set protocol. Thus, these errors
were easy to fix. The missing program segments were copied from the full set
routine into the corresponding typical set routine.

For example, a processor executing a Load instruction may set the current
cache line state to CI_ONLY_EXCL. This intermediate cache line s tate is not
considered in the routine Typica lLoad0, which reports an error instead. How-
ever, the routine FullLoad 0 considers this case and correctly changes the cache
line state to CS_ONLY_DIRTY 7.

Uninit ial ized variables

At some places in the SCI C-code uninitialized variables are accessed. During
simulation runs using the C-code execution environment, these variables were
presumably initialized to zero by code generated by the C-compiler - thus caus-
ing no problem. However, hardware implementat ions are less error-prone if all
initializations are made explicit.

Instead of describing the situations when access to uninitialized variables
occurs, we give two examples where variables have to be set to a defined value
to avoid problems later.

- First, the routine MemoryAccessCoherent 0 should not return without set-
ting the commafld nullified (cn) bit in the response packet to a defined value.
We added an assignment to set the cn bit by default to zero.

- Second, the routine CacheRamAccess 0 should set the command .cmd field
in the response packet to the default value SC_RESP00. This is especially
impor tan t since the routine CommonTransac t ion 0 copies the incoming da ta
into the cache line data field dependent on the command .cmd field of the
incoming packet.

Logical protocol e r r o r s

The logical protocol errors we found required more subtle changes in the cache
coherence protocol. These errors can be characterized as revealing flaws in the

7 Actually, the state is set to CS_ONLYP_DIRTY_POP. However, this equals CS_ON-
Lu since we assume palrwise sharing being disabled.

31

logical structure of the protocol. Note, that this error class and the previous one
not only affect the correct operation of the typical set protocol, but also the full
set protocol.

So far, we found the two logical protocol errors explained in the following.
Only the first error has been fixed, the second one is currently being discussed
with SCI working group members.

- When a Flush instruction is in progress in a processor, the current cache line
state may be set to CS_HX_INVAL_OX. Assume a second processor who is a
"TAIL_VALID" member of the sharing list now also starts a Flush instruc-
tion. Then, he sends a cread00.CC_PREV_VTAIL request to the first cache.
When the first cache tries to respond to this request, an assert s ta tement
is violated in the cache's routine CacheTagUpdate 0 because none of the
CacheTag. . .Update 0 routines has processed the request. The error can be
fixed by adding CS_HX_INVAL_OX to the "blocking states" in the routine
CacheTagBasicUpdate 0 .

- While the errors described so far occurred with the three processor/cache
options DIRTY, FRESH and MODS enabled, the following error was found
with only options FRESH and MODS enabled. Tab l e2 shows the trace for
this error, consisting of actions, star t ing from a state where both processors
have invalid caches and ending in the error state.

Table 2. Error trace for the second logical protocol error

1. procl starts Flush instruction, sends
mread64.CACHE_DIRTY to memory

2. proc2 starts Store instruction, sends
mread64.CACHE_DIRTY to memory

3. memory responds to proc2
4. proc2 finishes Store instruction, cache2 be-

comes ONLY_DIRTY
5. memory responds to procl
6. procl sends cread64.COPY_VALID to

cache2
7. cache2 responds to procl, becomes

TAIL_VALID
8. procl continues Flush instruction, assertion

POP_DIRTY is violated in HeadDirtyTo-
Flushed()

Usually, the protocol leaves several choices at each state for the successor
state. Thus, the longer an error trace, the more unlikely it becomes to detect
tha t error by simulation means. The error trace in Table 2 was found by
breadth-first search and is therefore as short as possible.

32

7 Conc lus ion

The most important experiences gained in verifying the SCI cache coherence
protocol can be summarized as follows:

- The abstraction done in the modeling was relatively simple and straightfor-
ward. Modeling at a higher level of abstraction - for example, by mapping
the many possible cache line states onto fewer abstract states - would have
incurred the problem of comparing the abstract model with the real protocol
defined in the C-code. To avoid this (severe) difficulty, we opted for simple
abstractions.

- A careful impleraenlation of the model in Mnr~ is important in fighting the
state explosion problem. For example, we were able to reduce the number
of reachable states by a factor of over 20 by just setting all state variables
whose current values were no longer needed to fixed values.

- The Mur~ system for formal verification should be viewed as a debugging
tool. Verification was only possible for down-scaled versions of the model and
thus total correctness cannot be guaranteed.

- It seems to be advantageous to design and specify complex protocols with the
help of formal verification tools. First, the quality of the system is increased.
Second, the time-consuming task of translating the description of the system
into a "formal model" would be eliminated. Finally, our Mur~ description
is deemed to be easier to implement in hardware and not more complicated
to understand than the original C-code.

8 Future Work

Our model of the SCI cache coherence protocol could be extended in several
ways. However, one should keep in mind that these extensions worsen the state
explosion.

- First, the model could be enlarged to cover the full set cache coherence
protocol and all of the processor/cache options defined in the SCI Standard.
Furthermore, the extensions of the SCI cache coherence protocol currently
under development (for an overview see [10]) could be included in the model.

- Second, in the current version of our model, the processor/cache options
have to be enabled/disabled by hand and they are identical for all nodes.
For automatic verification, they should be selected automatically, arbitrarily
and separately for each node.

- Finally, the model could be altered to allow multiple execution units for each
processor and pipelining during the cleanup phase of an instruction. However,
unlike the first two suggestions, this would require significant changes in the
current model.

In our verification project, some errors were revealed that had not been found
before. Verification methods are able to help in constructing better systems, but

33

they have to keep pace with the increasing size of the systems. There are several
ways by which the verifiable size of the model could be increased. First, it might
be possible to abstract the sharing list f rom a low-level doubly-linked list to
an abstract list. This way, the number of reachable states could be reduced.
Second, there are some ways to increase the number of explorable states in the
current Mur~ system. Examples would be state compression [13] and on-the-
fly methods [12], Finally, symbolic methods to. represent the set of reachable
states [1] could yield further progress in the SCI verification.

Acknowledgements

We would like to thank Dave James for help with understanding details of the
SCI cache coherence protocol and for discussing our results. Dave Gustavson
helped in all other SCI related issues. Furthermore, we would like to thank Norris
Ip for his assistance with symmet ry problems, Irene Shen for her comments on
a draft of this paper, and David Long for sharing his SCI description with us
at the beginning of this project, which helped us with some initial modeling
decisions.

References

1. J. R. Butch, E. M. Clarke, K. L. McMillan, and D. L. Dill. Sequential circuit ver-
ification using symbolic model checking. In 27th ACM/IEEE Design Automation
Conference, pages 46-51, 1990.

2. D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang. Protocol verification as a
hardware design aid. In IEEE International Conference on Computer Design:
VLSI in Computers and Processors, pages 522-5, 1992.

3. D. L. Dill, S. Park, and A. G. Nowatzyk. Formal specification of abstract memory
models. In Symposium on Research on Integrated Systems, pages 38-52, 1993.

4. S. Gjessing, S. Krogdahl, and E. Munthe-Kaas. A top down approach to the for-
mal specification of SCI cache coherence. In Computer Aided Verification. 3rd
International Workshop, pages 83-91, 1991.

5. S. Gjessing and E. Munthe-Kaas. Formal specification of cache coherence in a
shared memory multiprocessor. Research Report 158, Department of Informatics,
University of Oslo, 1991.

6. D. B. Gustavson. The Scalable Coherent Interface and related standards projects.
IEEE Micro, 12(1):10-22, 1992.

7. IEEE Std 1596-1992, IEEE Standard for Scalable Coherent Interface (SCI).
8. C. N. Ip and D. L. Dill. Better verification through symmetry. In 11th Interna-

tional Conference on Computer Hardware Description Languages and their Appli-
cations, pages 97-111, 1993.

9. C. N. Ip and D. L. Dill. Efficient verification of symmetric concurrent systems.
In IEEE International Conference on Computer Design: VLSI in Computers and
Processors, pages 230-234, 1993.

10. D. V. James. The Scalable Coherent Interface: Scaling to high-performance sys-
tems. In Spring COMPCON, pages 64-71, 1994.

34

11. D. V. James, A. T. Laundrie, S. Gjessing, and G. S. Sohi. Distributed-directory
scheme: Scalable Coherent Interface. Computer, 23(6):74-7, 1990.

12. C. Jard and T. :l~ron. Bounded-memory algorithms for verification on-the-fly. In
Computer Aided Verification. 3rd International Workshop, pages 192-202, 1991.

13. U. Stern and D. L. Dill. Improved probabilistic verification by hash compaction.
In IFIP WG 10.5 Advanced Research Working Conference on Correct Hardware
Design and Verification Methods, 1995.

14. L. Yang, D. Gao, J. Mostoufi, R. Joshi, and P. Loewenstein. System design
methodology of UltraSPARCTM-I. In 32nd Design Automation Conference, pages
7-12, 1995.

