
Knowledge Discovery in Large Spatial Databases:
Focusing Techniques for Efficient Class Identification I

Martin Ester, Hans-Peter Kriegel, Xiaowei Xu

Institute for Computer Science, University of Munich
Leopoldstr. 11 B, D-80802 Mtinchen, Germany

{ ester I kriegel I xu } @informatik.uni-muenchen.de

Abstract. Both, the number and the size of spatial databases are rapidly growing
because of the large amount of data obtained from satellite images, X-ray crystal-
lography or other scientific equipment. Therefore, automated knowledge discov-
ery becomes more and more important in spatial databases. So far, most of the
methods for knowledge discovery in databases (KDD) have been based on rela-
tional database systems. In this paper, we address the task of class identification
in spatial databases using clustering techniques. We put special emphasis on the
integration of the discovery methods with the DB interface, which is crucial for
the efficiency of KDD on large databases. The key to this integration is the use of
a well-known spatial access method, the R*-tree. The focusing component of a
KDD system determines which parts of the database are relevant for the knowledge
discovery task. We present several strategies for focusing: selecting representatives
from a spatial database, focusing on the relevant clusters and retrieving all objects
of a given cluster. We have applied the proposed techniques to real data from a large
protein database used for predicting protein-protein docking. A performance eval-
uation on this database indicates that clustering on large spatial databases can be
performed, both, efficiently and effectively.

1 Introduct ion

Numerous applications require the management of geometric, geographic or spatial
data, i.e. data related to space. The specific space may be, e. g. a two-dimensional pro-
jection of the surface of the earth, in a geographic information system, or a 3D space
containing a protein molecule in an application in molecular biology. Spatial Database
Systems (SDBS) [Gue 94] are database systems for the management of spatial data.

Both, the number and the size of spatial databases are rapidly growing because of the
large amount of data obtained from satellite images, X-ray crystallography or other sci-
entific equipment. This growth by far exceeds human capacities to analyze the data-
bases in order to find implicit regularities, rules or clusters hidden in the data. There-
fore, automated knowledge discovery becomes more and more important in spatial da-
tabases. Knowledge discovery in databases (KDD) is the non-trivial extraction of
implicit, previously unknown, and potentially useful information from databases
[FPM 91]. So far, most of the KDD methods have been based on relational database
systems which are appropriate to handle non-spatial data, but not spatial data.

1. This research was funded by the German Minister for Research and Technology (BMFF) under
grant no. 01 IB 307 B. The authors are responsible for the contents of this paper.

68

One of the well-known techniques for KDD is induction. [HCC 93] assumes the ex-
istence of concept hierarchies in the application domain and uses them to generalize the
tuples of a relation into characteristic rules and classification rules. [LHO 93] extends
this method for SDBS by adding spatial concept hierarchies and performing spatial in-
duction. However, these hierarchies may not be available in many applications and, if
available, they will not be appropriate for all KDD tasks. Therefore, [NH 94] does not
rely on any domain knowledge and explores the applicability of cluster analysis tech-
niques for KDD in SDBS. An algorithm called CLARANS (Clustering Large Applica-
tions based on RANdomized Search) is presented, which is both, efficient and effective
for databases of some thousand objects.

[NH 94] assumes that all objects to be clustered can reside in main memory at the
same time. However, this does not hold for large databases. Furthermore, the runtime
of CLARANS is prohibitive on large databases. In general, the issue of interfacing
KDD systems with a database management system (DBMS) has received little attention
in the KDD literature and many systems are not yet integrated with a DBMS (c.f.
[MCP 93]). [MCP 93] proposes an architecture ofa KDD system including a DBMS in-
terface and a focusing component. Well-known techniques are, e.g. focusing on a small
subset of all tuples or focusing on a subset of all attributes. [A.IS 93] presents a set of
basic operations for solving different KDD tasks and shows how to apply them for ef-
ficient classification, i.e. finding rules that partition the database into a given set of
groups. Good performance even on a large database is obtained by splitting the search
space into independent parts, which is possible because different branches of a decision
tree may be expanded independently from each other. [HK 94] addresses the issue of
classification on large databases for relational database systems. Splitting the given re-
lation into a lot of relatively small binary relations, i.e. focusing on one attribute at a
time, [HK 94] always keeps the relevant part of the database in main memory. Addi-
tional histograms for each of the binary relations efficiently support the expensive com-
putation of rule quality.

The task considered in this paper is class identification, i.e. the grouping of the ob-
jects of the database into meaningful subclasses (c.f. [MCP 93]).We show how to inte-
grate CLARANS with a SDBS in order to perform class identification on large spatial
databases, which can only partially be loaded into main memory. The key to this inte-
gration is the use of a well-known spatial access method, the R*-tree [BKSS 90]. The
R*-tree, designed for supporting spatial queries, provides an efficient interface to a
SDBS. This DB interface supports several focusing techniques allowing efficient class
identification even on large spatial databases. The rest of the paper is organized as fol-
lows. Chapter 2 gives a brief introduction into CLARANS and discusses its application
to large databases. An architecture for KDD in SDBS is outlined in chapter 3, giving
special attention to the SDB interface. The focusing component of our KDD system, a
main contribution of this paper, is presented in chapter 4. We perform an evaluation of
both, efficiency and effectiveness on a protein database (chapter 5) and finish with the
conclusion in chapter 6.

69

2 CLARANS on Large Databases

Cluster analysis techniques are attractive for KDD, because they can find hidden struc-
tures in data without using any additional domain knowledge. Different kinds of clus-
tering algorithms have been developed (see [KR 90] for a survey), k-mean being one of
the most prominent ones. The methods of type k-mean (e.g. ISODATA), however, suf-
fer from some important drawbacks when applied to databases. First, these algorithm
are quite sensitive to outliers, i.e. objects which are far away from the rest of the objects.
Second, the cluster centers are no objects of the database, i.e. they may have no meaning
in the domain of the application. Third, k-mean can only be applied when the mean of
a cluster of objects is defined, which may not be the case in some applications, e.g.
when the attributes are non-numeric, k-medoid algorithms avoid these drawbacks. Their
goal is to find representative objects, called medoids. To achieve this goal, only the def-
inition of a distance for any two objects is needed. Note that a distance function is also
required by k-mean algorithms. Each object is assigned to the closest medoid so that the
database of objects is partitioned into a set of clusters. Because of the above advantages,
we have chosen the type k-medoid as the basis for our approach.

In the following, we introduce some basic notions for this paper. Let O be a set o f n
objects. M c_ O denotes the set of k medoids, NM = O - M denotes the set o fnon-me-
doids. We assume the objects to be polyhedrons, a common assumption for SDBS.
Thus, each object is given by a list of its edges, and an edge is given by a list of two
vertices, being points. Let P c R 3 be the set of all points. In general, the objects are spa-
tial, and we define the center o f an object to be the arithmetic mean of its vertices.

center." 0 --~ P

Let dist be a distance function:

dist: P x P ---> R0 +

In the following, we assume dist to be the euclidean distance, which is a natural choice
for spatial clustering. Distance function dist can naturally be extended from points to
polyhedron objects via the center function:

dist." 0 x 0 ---> Ro +

dist (o i, oj) = dist (center(oi), center(oj))

Now each object is assigned to one of the medoids, such that the distance of its center
to its medoid is minimal. Therefore, we define a function medoid:

medoid: 0 --~ M

medoid (o) = m i, m i E M, V mj E M: dist (o, mi) < dist (o, mj)

Finally, we define the cluster of medoid m i to be the subset of all objects from 0 with
medoid(o) = m i and a clustering to be a set of clusters partitioning O. Let C O be the set
of all possible clusterings of O. The total distance of a clustering is used to measure its
quality:

total_distance." C O --> RO +

total_distance(c) = Z Z dist (o, mi)
m i E M o ~ cluster(m i)

70

PAM (Partitioning Around Medoids, see [KR 90]) is an algorithm of type k-medoid. It
starts from an initial set of medoids and iteratively replaces one of the medoids by one
of the non-medoids as long as the total distance of the resulting clustering is improved.
PAM works efficiently for small data sets, but its runtime is prohibitive for large data-
bases. [NH 94] proposes a clustering method called CLARANS (Clustering Large Ap-
plications based on RANdomized Search) based on PAM with a new heuristic search
strategy. The key idea is not to consider all possible replacements of one medoid by one
non-medoid and to select the optimal one, but to perform the first replacement improv-
ing the quality of the clustering. The clustering obtained after performing a single re-
placement is called a neighbor of the current clustering. The number of neighbors tried
is restricted by a parameter provided by the user (maxneighbor) and the selection of
these neighbors is random. Each iteration of CLARANS yields a local optimum, i.e. a
clustering for which no neighbor with a better quality was found. Note that not all
neighbors are considered for a local optimum but only maxneighbor of them. The pa-
rameter numlocal allows the user to define the number of these local optima to be
searched. In the following, we present the algorithm CLARANS in a C++-like notation.
O, k, dist, numlocal, and maxneighbor are given as input. The output consists of a set
of k clusters.

Algorithm CLARANS (int k, fir dist, int numlocal, int maxneighbor)

for (i = i; i++; i <= numlocal) {

current.create_randomly(k);

j = i;
while (j < maxneighbor) {

current.select_randomly(old, new);
diff = current.calculate_distance_difference(old, new);

if (diff < O) {
current.exchange(old, new);

j = i;
} // end if

} // end while (inner loop)
dist = current.calculate_total_distance();

if (dist < smallest_dist) {
best = current;
smallest_dist = dist;

} // end if
} // end for (outer loop)

The algorithm assumes the existence of a class c l u s t e r i n g with methods of the fol-
lowing meaning:
�9 create_randomly(k)

Creates a random clustering with k clusters, i.e. it selects randomly k of the n objects
as medoids. This selection is random, because it is performed inside the outer loop
of the algorithm so that a different selection is required for each iteration.

�9 select_randomly(old, new)

Selects randomly one of the medoids as o l d and one of the non-medoids as new.

71

�9 calculate_distance_difference(old, new)

Calculates the difference in total distance between the current clustering and the hy-
pothetical clustering obtained when replacing medoid o l d by new. A naive imple-
mentation sums up the distance differences for each object implied by the replace-
ment.

�9 exchange (old, new)

Exchange old (a selected medoid) and new (a selected non-medoid), i.e. old be-
comes a non-medoid and new becomes a medoid. Consequently, the assignment of
objects to medoids has to be updated.

�9 calculate_total_distance ()

Calculates the total distance for the current clustering.

Note that the algorithm is mainly based on relative distances. No total distance is cal-
culated for the initial clustering of each iteration, and only differences of distances im-
plied by changing medoids are calculated until a local minimum is found. Only then,
the total distance is calculated for the current clustering.

Now, we want to analyse the cost of CLARANS, when applied to a database. Our
analysis is based on the following assumptions. Let c be the average number of objects
stored on one page. The small set of medoids is resident in main memory, while the
large set of non-medoids has to reside on disk. The I/O-cost heavily dominates the CPU
cost. Therefore, we take the number of disk pages to be read as the cost measure, which
is a common approach for database systems. We obtain the following cost for one call
of the different methods:
�9 create_randomly

has to choose k medoids, i.e. it has to read k pages in the worst case.
�9 select_randomly

has to read just one of the non-medoids, i.e. one page.
�9 calculate_distance_difference

accesses all objects, i.e. it reads n/c pages.
�9 exchange

only updates the set of medoids and thus does not access to the disk
�9 calculate_total-distance

has to access all objects, ie has cost n/c

The calculation of the number of calls, i.e. the number of iterations in the inner loop,
cannot be done in an analytic way because of the heuristic nature of the algorithm.
Therefore, we only distinguish whether a method is called within the inner loop (a lot
of iterations) or within the outer loop (numlocal iterations) of the algorithm.

Thus, the cost of CLARANS is dominated by the cost of the method
calculate_distance_difference, because its cost is O(n) and it is called in-
side the inner loop of the algorithm. All other methods are either not as expensive per
single call or are not called in the inner loop of the algorithm. A similar observation can
be found in [HK 94] stating that in their case the main problem is the efficient compu-
tation of the quality of all possible rules. As a consequence of our analysis, in chapter 4
we propose several techniques to improve the efficiency of CLARANS on large data-
bases.

72

3 An Architecture for Knowledge Discovery in SDBS

[MCP 93] proposes an architecture for a KDD system (cf. figure 1) consisting of the
following components: controller, DB interface, focus, pattern extraction, evaluation
and knowledge base.

User - - I ,

Domain
Knowledge

Controller

DB l
~nt er~ Focus Pattern
face! Extraction

Knowledge Base

Evalu-
ation Discoveries

Fig. 1. architecture of a KDD system

So far, we have only considered the task of class identification, a kind of unsupelvised
learning, i.e. learning only from the data without using additional domain knowledge.
Thus, we do not require the controller and the knowledge base. In the following, we
sketch the components of our KDD system in terms of the above architecture.

The DB interface allows the KDD system to select a set of objects from the database
fulfilling a given condition on their attributes. Typical queries for SDBS are region que-
ries (return all objects from the database intersecting a query polygon) and nearest
neighbor queries (return the object closest to a query object) [Gue 94]. Spatial access
methods (SAM) have been developed to support efficient processing of such queries
(cf. [BHKS 93] [BKSS 94]). An approximation is a simple object with limited com-
plexity preserving the main properties of a complex spatial object. The most common
approximation is the bounding box (BB), i.e. the minimal rectilinear rectangle contain-
ing a given spatial object. Therefore, most SAMs are designed to manage rectangles.

The R*-tree [BKSS 90] is a SAM which is very efficient for points and rectangles.
Each node of the tree represents a page, the unit of transfer from secondary storage to
main memory. Therefore, the number of rectangles per node is constrained by a lower
and an upper limit, such that a high storage utilization is obtained and consequently the
number of disk pages to be read for query processing is as small as possible. The nodes
storing the data objects are called data pages, the nodes organizing the directory are
called director3' pages. As soon as overlapping data rectangles do not fit into the same
page, an overlap of directory pages will occur. This overlap of directory pages has to be
minimized for efficient query processing. Therefore, the R*-tree uses a heuristic split-
ting strategy when the capacity of a page is exceeded after the insertion of a new object.

The focusing component determines which parts of the database are relevant for pat-
tern extraction. In relational DBS, e.g. one could focus on some attributes of the tuples
yielding most information or focus on a randomly drawn sample of all tuples. Finally,
the focusing component asks queries to the DB interface obtaining the input for pattern
extraction. The focusing component is outlined in chapter 4.

73

Pattern Extraction is based on the data returned by the focusing component. In gen-
eral, pattern extraction is a multi-step process, i.e. a cluster might be input for another
step of cluster analysis. For example, a first step might cluster the data according to a
non-spatial attribute like landuse, and a second step would cluster all data within one of
the resulting clusters according to the spatial attributes.

The evaluation component should determine the statistical significance of the ex-
tracted patterns and support an application-specific evaluation of their usefulnes s by the
user. So far, we do not compute the significance. The clusters extracted are visualized
to the user in a graphical way, either all clusters at the same time or one cluster at a time
together with its neighboring clusters.

4 The Focusing Component
In chapter 2, we have concluded that the most expensive operation of CLARANS is cal-
culating the difference of the total distances of two clusterings. There are two ap-
proaches to improve the efficiency of this operation. First, a reduction of the number n
of all objects will result in a significant speed-up, because the calculation of the distance
difference is O(n). Second, a careful analysis shows that actually not all n objects con-
tribute to the result of the operation, so that efficiency can be improved by restricting
the access to the relevant objects. In this chapter, we present three different focusing
techniques exploiting both approaches.

4.1 Focus on Representative Objects

The number of all possible clusterings of a database depends on n and k. In order to re-
duce the time complexity, we propose to apply CLARANS not to the whole database,
but to select a relatively small number of representatives from the database and to apply
CLARANS only to these representatives. This is a kind of sampling, a technique com-
mon in KDD systems, e.g. [KR 90]. The quality of the sampling is crucial for the quality
of the resulting clustering. Our DB interface supports a new way of selecting represen-
tatives from a SDBS. From each data page of the R*-tree, we select the most central
object as a representative. Thus, the clustering strategy of the R*-tree, which minimizes
the overlap between directory rectangles, yields a well-distributed set of representa-
tives.

Let the center of the data page be the center of the bounding box of its objects. The
most central object in a data page is the object with the minimal distance of its center
from the center of the data page. Figure 2 illustrates the selection of representatives ac-
cording to this definition for some data pages.
An obvious question is, whether it is reasonable to let the R*-tree perform the whole
clustering in one step without using CLARANS in a second step. The answer is "no"
because of the following reasons:

�9 The R*-tree does not allow the users to specify the number k of clusters, it derives
k indirectly from n and from the capacity of a page. This k may be inappropriate for
a given application and may yield clusterings with a high total distance.

�9 All clusters (i.e. the directory rectangles) have a rectangular shape and, furthermore,
these rectangles have to be parallel to the axes of the coordinate system.

74

c. center of data page center of object

r Q

C~

" ~ o r r. representative

Fig. 2. example data pages of an R*-tree with representatives selected

We propose to combine the good properties of the R*-tree and of CLARANS in the fol-
lowing two-step approach:

1.) Extract one representative for each data page of the R*-tree.
2.) Cluster the representatives using CLARANS and return k medoids.

For the purpose of extracting the representatives, we need a new query, called centroid

query., returning the most central object for each data page. This query requires a scan
over all data pages of an R*-tree, i.e. tu'c pages have to be read. On the other hand, when
focusing on representatives, CLARANS only has to cluster n/c objects instead of n ob-
jects.

4.2 Focus on Re levant Clusters

In this section, we take a closer look at the calculation of the difference of total distance
between two neighbor clusterings, i.e. clusterings differing in exactly one medoid. This
method gives the main contribution to the cost of CLARANS. The algorithm presented
by [NH 94] performs a loop over all non-medoid objects for calculating the difference
of distance. This is prohibitive when working on a database, because all these objects
would have to be loaded into main memory. Therefore, our goal is to restrict the calcu-
lation to the relevant parts of the database.

There are four different cases of non-medoid objects o to be distinguished when cal-
culating the distance difference between a current clustering and the resulting clustering
after exchanging a medoid old with a non-medoid new. They are illustrated in the fol-
lowing figures by examples of 2D-points.

1.) The current medoid of o is old, and o is closer to its second closest medoid than
to new. Then o will be inserted into the cluster whose medoid is its second clos-
est medoid (see figure 3).

Q G

Qw<> 0

X medoid

old cluster
0 o fo

new cluster
o fo

Fig. 3. Example of Case 1

75

2.) The current medoid of o is old, and o is closer to n e w than to its second closest
medoid. Then o will be inserted into the cluster whose medoid is n e w (see
figure 4).

G
X medoid

old cluster
O o f o

new cluster
of o

3.)

Fig. 4. Example of Case 2

The current medoid of o is different from o l d and o is closer to its medoid than
to n e w . Then o will stay in its cluster (see figure 5).

O

|

O

Q Q
new

X medoid

t g ~ old and new
cluster of o

Fig. 5. Example of Case 3

4.) The current medoid of o is different from old, and o is closer to n e w than to its
current medoid. Then o will be inserted into the cluster whose medoid is n e w

(see figure 6).

|

O

Q Q X medoid

old cluster
O o f o

new cluster
of o

Fig. 6. Example of Case 4

Only in cases 1.), 2.) and 4.) o will be moved to another cluster, i.e. only in these cases
the total distance for o will change. The objects of case 1.) form a subset of the objects
with medoid old , cases 2.) and 4.) cover the objects with medoid n e w . Thus, only the

76

objects belonging to the clusters of old and new contribute to the distance difference.
Instead of reading all non-medoid objects from disk (i.e. the objects of all k clusters),
we just have to read the objects of two clusters. Assuming the same average size for all
clusters, we expect a performance gain of k/2 compared to [NH 94]. However, we need
an efficient way of retrieving exactly the objects of a given cluster from the database.
This is the issue of section 4.3.

4.3 Focus on a Cluster

In this section, we will discuss how to retrieve all the objects of the cluster for a given
medoid efficiently from the database. A naive solution of this problem will calculate all
distances dist(o,m), for all o ~ O and all tne M. This technique would require n/c pages
to be read from disk.

Now, we want to solve this problem more efficiently. According to chapter 2, the dis-
tance of polyhedron objects is defined by using the distance of points. Thus, in the fol-
lowing, we only consider point objects without loss of generality. We construct a poly-
hedron for a medoid m i such that all objects within this polyhedron belong to the cluster
with medoid m i while no objects from other clusters are contained in it. Then, we re-
trieve the objects whose centers intersect this polyhedron by a region query. The con-
struction of this polyhedron can efficiently be performed, because it needs only the me-
doids and the bounding box of all objects in the database, but not all objects in the da-
tabase. Assuming the same average size for all clusters, we expect only n/k*c instead of
n/c pages to be read from disk with this focusing technique.

To construct the polyhedron, we need the following definitions. Given two different
medoids m i, mj E M, the perpendicular bisector of m i and mj is defined by (1). Obvi-

Bij := {x ~ R 3 1 d i s t (x, mi) =d i s t (x, mj)} (1)

ously, the bisector is a plane bounding the half-space Hij, which is defined by (2).

Hij := {x ~ R 3 I dist (x, mi) < dist (x, mj) } (2)

For any medoids m i and mj, all objects closer to m i than to mj are located in the
half-space Hij. Let V(i) denote the intersection of the k-1 half-spaces, i.e.
V (i) = ~ Hii . V(i) contains all the objects which are closer to m i than to any other

medoid of set M, i.e. V(i) contains all objects of the cluster with medoid m i. At the same
time, V(i) contains no object of other clusters. Otherwise, this object would be contained
in one of the half-spaces Hij. This is a contradiction to definition (2). V(i) is called the
Voronoi polyhedron (or polygon in the 2D case) associated with m i [PS 85]. V(i) may
be bounded or unbounded. If it is bounded, we use V(i) as a query region to the R*-tree.
Otherwise, we use the intersection of V(i) with the bounding box (BB) of all objects of
O as a query region. The bounding box can be easily computed without accessing all
the objects of the database only by using the root of the R*-tree. Figure 7 illustrates the
constructed query region for a small database of 2D-polygons.

77

BB .•m3
f

center of medoid

~ que.ry
reglon

Fig. 7. The query region for all objects of the cluster with medoid m i

5 Application and Performance Evaluation

We apply the proposed clustering techniques to a large protein database and evaluate
their performance in this context. We introduce the protein database (section 5.1), illus-
trate the KDD task in this application (section 5.2) and evaluate focusing on represen-
tatives with respect to effectiveness and efficiency (section 5.3).

5.1 BIOWEPRO - a SDBS for Protein-Protein Docking

Proteins are biomolecules consisting of some hundreds to some thousands of atoms.
Their mode of operation lies in the interaction with other biomolecules, for example
proteins, DNA or smaller partner molecules. These interactions are performed by con-
necting the partner molecules, and are therefore called docking.

Molecular biologists point out that the geometry of the molecular surfaces at the in-
teraction site plays an important role, along with the physicochemical properties of the
molecules. A necessary condition for protein-protein docking is the complementarity of
the interaction site with respect to surface shape, electrostatic potential, hydrophobicity
etc. Therefore, a database system for protein-protein docking has to process queries for
proteins with similar or complementary surfaces.

In the BIOWEPRO (Biomolecular Interactions of Proteins) project (cf. [EKSX 95],
[SK 95]) we are developing a SDBS to support protein-protein docking. We use the crys-
tallographically determined atom coordinates of proteins and protein complexes from
the Brookhaven Protein Data Bank ([Ber 77], [PDB 94]), presently containing some
3,000 proteins. Each protein has a triangulated surface with some 10,000 3D points. For
each point on the protein surface, several geometric and physicochemical features are
computed. The solid angle (SA), e.g., [Con 86] is a geometric feature describing the de-
gree of convexity or concavity of the surface in the neighborhood of the considered
point.

78

5.2 K D D in the B I O W E P R O Database

The search for similar protein surfaces is not performed at the level of surface points,
but at the level of surface segments, resulting in a significant reduction of the number
of both, the objects in the database and the answers to a given query. A segment is de-
fined as a set of neighboring surface points with similar non-spatial attributes, e.g. with
similar SA values. The segments should have a good correlation with the known dock-
ing sites of the proteins, i.e. a docking site on a protein surface should consist of a small
number of segments. Thus, the KDD task is to find a segmentation of protein surfaces
supporting the processing of docking queries. There are two possible ways to combine
the processing of spatial and non-spatial attributes [NH 94]:

1.) Spatial dominated approach. Apply the clustering algorithm first on the spatial
attribute to obtain segments. The number of clusters is determined heuristically
by using the number of local extrema of SA. Then generalize the non-spatial at-
tributes for all 3D points of a given segment to classify the shape of the segment.

2.) Non-spatial dominated approach. Apply the clustering algorithm first on the
non-spatial attributes with the number of clusters, e.g., set to 5. In the second
step, we cluster each of the 5 non-spatial clusters using the spatial attributes such
that these clusters are split into segments of neighboring points.

For an illustration, we sketch the application of the spatial dominated approach in the
BIOWEPRO database. Figure 8 depicts some of the segments found on the surface of
protein 2ptc by spatial clustering.

�9 $2

$4

Fig. 8. Example segments on the surface of protein 2ptc

79

Based on the values of SA, three classes of shapes (convex, neutral and concave) can
be distinguished. Since no crisp definitions of these classes are available, we perform
fuzzy classification. Figure 9 presents our fuzzy membership functions for the three
classes.

T Convex. ~ rleatral �9 ~:~ 1 ,/, s o
S ~" S

/ '- �9

7 �9 "-

0 7t 2re 3~

concave

* ~ SA
4~

Fig. 9. Fuzzy membership functions for the three classes of shape

According to the membership functions, segment S 1 is neutral (with grade 0.826) and
convex (with grade 0.174), whereas $2 is convex (with grade 0.981) and neutral (with
grade 0.019).

5 .3 E v a l u a t i o n o f F o c u s i n g o n R e p r e s e n t a t i v e s

In this section, we present experimental results from the BIOWEPRO database evalu-
ating the technique of focusing on representatives with respect to efficiency and effec-
tiveness. Our measure of effectiveness is the average distance of the resulting cluster-
ings, i.e. the average distance of an object from its medoid. Efficiency is measured by
the CPU runtime of the whole processing. All experiments have been run on an
HP 9000/735 workstation.

We use the protein hemoglobin (4hhb) for our experiments, because it is one of the
largest objects in the database. The surface of 4hhb consists of 50,559 points, and for
each of these points we store the 3D-coordinates along with the value of SA. The num-
ber of clusters is set to 10 and numlocal set to 2. In the first set of experiments, we di-
rectly apply CLARANS on 4hhb with maxneighbor varying from 250 over 500 to
1,000. In the second set of experiments, we use "focusing on representatives". We ob-
tain 1,027 representatives out of the 50,559 points for 4hhb, and CLARANS is then ap-
plied to this set of representatives.

The results on effectiveness in terms of the average distance are presented in
figure 10. Using the focusing technique, we observe a decrease of effectiveness ranging

o 14-
0
= 12-

10-
8-

o 2
etO

2-

5b0 1600

without focus with focus

~ maximum number of neighbors

Fig. 10. Comparison of Effectiveness

80

from 1.5% to 3.2% compared to clustering without focus. Figure f 1 depicts the results
of the comparison of efficiency. Focusing improves the efficiency by a factor ranging
from 48 to 158 in comparison to clustering without focus.

30000 m

Z" 25000

e ~

'~ 20000 without focus with focus
�9

= 15000 E

10000

~ maximum number
i i ~ r- of neighbors

250 500 1000

Fig. 11. Comparison of Efficiency

To conclude, focusing improves efficiency by a factor of 48 to 158, whereas the loss of
effectiveness is only 1.5% to 3.2%.

6 C o n c l u s i o n

We use the clustering algorithm CLARANS [NH 94] for class identification in SDBS.
Our analysis points out that the most expensive operation of CLARANS, when applied
to a large SDB, is calculating the difference of the total distances of two clusterings.

The DB interface of our KDD system is based on the R*-tree, a well-known spatial
access method. For the purpose of focusing, we need a new query, called centroid
query, returning the most central object for each data page.

The focusing component supports three types of focusing. Focusing on representative
objects significantly reduces the number of objects to be clustered. Focusing on relevant
clusters restricts the calculation of the difference of distance between two clusterings to
the relevant clusters, i.e. to the cluster of the medoid and the cluster of the non-medoid
to be exchanged. Focusing on a given cluster is performed by determining the minimum
polyhedron intersecting all objects of this cluster.

We have applied the proposed clustering techniques to real data from a large protein
database used for predicting protein-protein docking. There are other types of applica-
tions for the proposed clustering method, because its only requirement is the availability
of an appropriate distance function for any two objects. In [NH 94] CLARANS is ap-
plied in the context of a geographic information system. We want to apply our approach
to a k-dimensional feature space, in which CAD parts are described by k non-spatial
features. The first goal is to find classes of CAD parts based on their features. Further-
more, we want to discover associations between the different features, indicating e.g.
the redundancy of a given feature.

81

We have performed an evaluation of focusing on representatives on the protein data-
base. In terms of efficiency, CLARANS with focusing outperforms CLARANS by a
factor of 48 to 158. The decrease of effectiveness, using the focus on representatives, is
only 1.5% to 3.2% compared to CLARANS. Thus, focusing on representatives offers a
very good trade off between efficiency and effectivity.

Future research will have to consider the following issues. CLARANS randomly se-
lects two objects to be exchanged and does not consider any alternatives if the exchange
results in a reduction of the total distance of the clustering. Heuristic strategies for se-
lection should reduce the huge size of the search space and thus improve the efficiency
of pattern extraction. So far, we have created crisp clusterings, i.e. each object has been
assigned to a unique cluster. However, due to the spatial nature of the objects, it is pos-
sible that an object intersects the area of two clusters at the same time. A similar situa-
tion occurs when two objects have the same distance from two different medoids. In
both cases, fuzzy clustering techniques, assigning an object to several clusters with
varying degrees of membership, seem to be more appropriate than crisp clustering
methods. We intend to explorethem in our future work.

Acknowledgment
We thank Thomas Seidl for engaging and fruitful discussions on the subject of this pa-
per and for his support in the performance evaluation on the BIOWEPRO data.

References
[AIS 93] Agrawal R., Imielinski T., Swami A.: "Database Mining: A Performance Perspective ",

IEEE Transactions on Knowledge and Data Engineering, Vol.5, No.6, 1993, pp. 914-925.
[Ber 77] Bemstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Brice M. D., Rodgers J. R.,

Kennard O., Shimanovichi T., Tasumi M.: 'The Protein Data Bank: a Computer-based Ar-
chival File for Macromolecular Structures', Journal of Molecular Biology, Vol. 112, 1977,
pp. 535-542.

[BHKS 93] Brinkhoff T., Hom H., Kriegel H.-P., Schneider R.: 'A Storage and Access Architec-
ture for Efficient Query Processing in Spatial Database Systems', Proc. 3rd Int. Symp. on
Large Spatial Databases, Singapore, 1993, Lecture Notes in Computer Science, Vol. 692,
Springer, pp. 357-376.

[BKSS 90] Beckmann N., Kriegel H.-P., Schneider R., Seeger B.: 'The R*-tree: An Effic&nt and
Robust Access Method for Points and Rectangles', Proc. ACM SIGMOD Int. Conf. on Man-
agement of Data, Atlantic City, N J, 1990, pp. 322-33 I.

[BKSS 94] Brinkhoff T., Kriegel H.-P., Schneider R., Seeger B.: 'Efficient Multi-Step Processing
of Spatial Joins', Proc. ACM SIGMOD Int. Conf. on Management of Data, Minneapolis,
MN, 1994, pp. 197-208.

[Con 86] Connolly M. L.: 'Measurement of protein surface shape by solid angles', Journal of
Molecular Graphics, Vol. 4, No. 1, 1986, pp. 3-6.

[EKSX 95] Ester M., Kriegel H.-P., Seidl T., Xu X.: "Shape-based Retrieval of Complementary
3D Surfaces in Protein Databases", (in German), Proc. GI Conf. on Database Systems for
Office Automation, Engineering, and Scientific Applications. 1995, Berlin: Springer 1995.

[FPM 91] Frawley W.J., Piatetsky-Shapiro G., Matheus J.: "Knowledge Discovery in Databases:
An Overview", in: Knowledge Discovery in Databases, AAAI Press, Menlo Park, 1991,
pp. 1-27.

82

[Gue 94] Gueting R.H.: "An Introduction to Spatial Database Systems", Special Issue on Spatial
Database Systems of the VLDB Journal, Vol.3, No.4, October 1994.

[HCC 93] Han J., Cai Y., Cercone N.: "Data-driven Discovery of Quantitative Rules in Rela-
tional Databases", IEEE Transactions on Knowledge and Data Engineering, Vol.5, No. 1,
1993, pp. 29-40.

[HK 94] Holsheimer M., Kersten M.L.: "Architectural Support for Data Mining", Proc. AAAI
Workshop on Knowledge Discovery in Databases, Seattle, Washington, 1994, pp. 217-228

[KR 90] Kaufman L., Rousseeuw P.J.: "Finding Groups in Data: an Introduction to Cluster
Analysis ", John Wiley & Sons, 1990.

[LHO 93] Lu W., Han J., Ooi B.C.: "Discovery of General Knowledge in Large Spatial Dam-
bases", Proc. Far East Workshop on Geographic Information Systems, Singapore, 1993,
pp. 275-289.

[MCP 93] Matheus C.J., Chan P.K., Piatetsky-Shapiro G." "Systems for Knowledge Discovery in
Databases", IEEE Transactions on Knowledge and Data Engineering, Vol.5, No.6, 1993, pp.
903-913.

[NH 94] Ng R.T., Han J.: "Efficient and Effective Clustering Methods for Spatial Data Mining",
Proc. 20th Int. Conf. on Very Large Data Bases, Santiago, Chile, 1994, pp. 144-155.

[PDB 94] Protein Data Bank: 'Quarterly Newsletter No. 70 (Oct. 1994)', Brookhaven National
Laboratory, Upton, NY, 1994.

[PS 85] Preparata F. P., Shamos M. I.: "Computational Geometry", Springer 1985.
[SK 95] Seidl T., Kriegel H.-P.: 'Solvent Accessible Surface Representation in a Database Sys-

tem for Protein Docking ', Proc. 3rd Int. Conference on Intelligent Systems for Molecular Bi-
ology (ISMB-95), Cambridge, UK, AAAI Press, 1995.

